烟气直接加热结晶硫酸氨的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分析了氨法脱硫中硫酸铵结晶典型的工艺与设备,对传统的氨法烟气脱硫技术进行了改进和创新,研制出了新型气-液直接换热结晶系统。该系统利用烟气热能直接加热结晶硫酸铵,取消了传统工艺上的蒸汽加热系统,节能环保;结晶器通过气-液直接接触换热,换热效率高,阻力小,不易结垢。
     对结晶器结晶过程和气-液直接换热蒸发过程进行了数学分析,导出了结晶动力学和气-液换热蒸发传热传质相关公式,分析了气-液换热蒸发结晶硫酸铵的影响因素;设计了实验装置和关键参数的测量方法。
     进行了结晶器加热蒸发过程流动特性实验研究,分析了烟气流量、气体分布器型式、结晶器流动型式和溶液粘度对气泡粒度与分布和床层含气率的影响。结果表明:溶液粘度对气泡粒度及分布产生决定性影响,空气-硫酸铵体系中气泡平均直径只有0.5mm左右,粒度均匀分布。工作流量区含气率随流量呈线性变化;结晶器的流动型式对含气率的影响较大;溶液粘度对含气率的影响主要与结晶器流动型式相关,直接鼓泡床中粘度增加可以提高床层含气率,环流鼓泡床中可忽略粘度影响。实验条件下单孔环流鼓泡结晶器使用空气-硫酸铵体系,全床平均含气率变化范围为0.12~0.25,主气床平均含气率变化范围为0.40~0.70。
     进行了结晶器换热结晶特性的实验研究,分析了烟气流量、气体分布器型式、结晶器流动型式和热空气初始温度对硫酸铵晶体粒度大小和分布的影响。结果表明:热空气流量是控制硫酸铵结晶产量的关键控制手段;热空气初始温度是控制硫酸铵晶体粒度和产量的重要参数;使用环流鼓泡床可以提高硫酸铵晶体的粒度和产量。实验条件下,单孔环流鼓泡床结晶器硫酸铵晶体粒度大、分布均匀且产量高,晶体主粒度范围一般在180μm~420μm,通过调节热空气初始温度,硫酸铵晶体主粒度范围可以增加到200μm~2000μm;通过实验结果计算表明单孔环流鼓泡床结晶器是一种理想的高效节能型结晶系统,换热效率为88.6%。
Typical technology and equipment of ammonium sulfate crystallization in Ammonia desulfurization process are analyzed and a new type of gas-liquid direct heat crystallization system has been designed by improvement and innovation on the traditional ammonia flue gas desulfurization technology. The system provides the advantages of energy-saving, environmental protection, high heat transfer efficiency and easy scaling because Steam Heating system has been abolished by gas-liquid direct heat evaporating to crystallize ammonium sulfate using of flue gas thermal energy.
     The mathematical analysis of crystallization and gas-liquid direct heat evaporation process is conducted. The relevant formulas of crystallization kinetics and heat and mass transfer of gas-liquid heat evaporation are derived. The experimental setup and measurement methods of key parameters are designed by analyzing of Influencing factors of crystallization and heat transfer process.
     The experimental study on flow characteristics of heating evaporation process of crystallizer were carried out and the effect of flue gas flow, gas distributor type, crystallizer flow patterns and solution viscosity on bubble size and distribution and on the bed void fraction were analyzed. The main results are described as follows. Solution viscosity has a decisive impact on bubble size and distribution. In air-ammonium sulfate system, the average diameter of the bubble is only about 0.5 mm and particle size distribution is even. The effect of solution viscosity on bed gas holdup is associated with crystallizer flow patterns. Increase of the viscosity in straight bubble column can enhance the bed gas holdup, but the effect of viscosity on the bed gas holdup can be neglected in circulating bubble column. Under the experimental conditions, the range of average gas holdup in crystallizer using single jet gas distributor is from 0.12 to 0.17 and the average gas holdup in the main bed is from 0.40 to 0.70.
     The experimental study on crystallization characteristics of crystallizer were carried out and the effect of flue gas flow, gas distributor type, crystallizer flow patterns and the initial temperature of hot-air on the ammonium sulfate crystal size distribution and yield were analyzed. The main results are described as follows. Hot air flow is a key means to control ammonium sulfate crystal yield and the initial temperature of hot air is important parameter to control ammonium sulfate crystal size and yield. The size and yield can improve by using circulating bubble column. Under the experimental conditions, there are larger size, more even distribution and higher yield of ammonium sulfate crystal in circulating bubble column crystallizer using single jet gas distributor, in which the range of ammonium sulfate crystals main particle size is from 180μm to 420μm. By adjusting the initial temperature of hot air, the range of ammonium sulfate crystals main particle size can be increased from 200μm to 2000μm in circulating bubble column crystallizer using single jet gas distributor. The circulating bubble column crystallizer using single jet gas distributor is an ideal efficient energy-saving crystallization system because its heat exchanger efficiency is 88.6% by calculating experimental date.
引文
[1]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2007
    [2]杨飏.二氧化硫减排技术与烟气脱硫工程[M].北京:冶金工业出版社,2004
    [3]Xu X,Chen C,Qi H,et al.Development of coal combustion pollution control for SO_2 and NO_x in China[J].Fuel Processing Technology,2000,62:153-160
    [4]杨国强,王晓冬,王景冬,等.常用锅炉烟气脱硫技术[J].氯碱工业,2005,8:26-27
    [5]马果骏.燃煤电厂烟气脱硫技术概况[C].中国环境,保护产业协会,2004:89-92
    [6]吴怀兆.火力发电厂环境保护[M].北京:中国电力出版社,1996:123-126
    [7]吴忠标.大气污染控制工程[M].北京:科学出版社,2002:23-225
    [8]时均,汪家鼎,余国琮,等.化学工程手册(第二版):下卷[M].北京,化学工业出版社,1996,10:1-35
    [9]徐长香,傅国光.氨法烟气脱硫技术综述[J].电力环境保护,2005,21(2):17-20
    [10]雷世晓,王德敏,雷士文.氨法烟气脱硫脱硝的技术特征[J].污染防治技术,2005,18(5):15-22
    [11]包振蕴.论述氨法烟气脱硫技术[J].SCIENCE & TECHNOLOGY INFORMATION,2007.34:384-385
    [12]叶树滋.硫铵溶液蒸发结晶技术的探讨[J].硫酸工业,2004,(2):88-90
    [13]章学来,卢家才,李瑞阳,等.直接接触式换热技术的研究进展[J].能源技术,2001,22(1):2-6
    [14]孙长贵,徐维勤,沈自求.气泡在热液相介质中上升时的传质与传热[J].高校化学工程学报,1992,6(2):139-146
    [15]罗人忠.真空制盐发展概况及工艺述评(续)[J].中国井矿盐,2001,32(2):7-9
    [16]叶铁林.化工结晶过程原理及应用[M].北京:北京工业大学出版社,2006
    [17]王利,张卫峰,马文奇,等.基于化肥生产的硫资源流动规律研究[J].自然资源学报,2005,20(6):900-908
    [18]宋丽,黄宏奎.烟气脱硫及生成物的综合同收利用[J].节能环保,2007,12:42-43
    [19]王静康.化学工程手册一结品(第二版)[M].北京,化学工业出版社,1996,10:1-55
    [20]丁绪淮,谈遒.工业结晶[M].北京,化学工业出版社,1985,74-137
    [21]张受谦.化工手册[M].济南,山尔科学技术出版社,1986,2168-2171
    [22]《化学工程手册》编辑委员会.化学工程手册:第9篇,蒸发及结晶[M].北京,化学 工业出版社,1985
    [23]Myerson A S.Handbook of Industrial Crystallization[M].Boston:Butterworth-Heinemann,1992:44-47
    [24]Wankat P C.Rate-Controlled Separations[M].New York:Elsevier Applied Science,1990:84-176
    [25]White E T,Bending L L,Larson M A.AIChE Syrup[J].Ser.,1976,72(153):41-47
    [26]Whitman W G.The two-film theory of gas absorption[J].Chem.Metll.Eng.,1923,29(4):146-148
    [27]Higbie R.The rate of absorption of a pure gas into a still liquid during short periods of exposure[J].Trans.Am.Inst.Chem.Engrs.,1935,35:360-365
    [28]Danckwerts P V.Significance of Liquid-Film Coefficients in Gas Absorption[J].Ind Eng Chem,1951,43:1460
    [29]Higble R.The rate of absorption of a pure gas into a still liquid during short periods of exposure[J].Am.Inst.Chem.Eng.,1935,31(2):365-388
    [30]Danckwerts P V.Significance of liquid-film coefficients in gas absorption[J].Ind.Eng.Chem.,1951,43(6):1460-1467
    [31]Hanratty T J.Turbulent exchange of mass and momentum with a boundary[J].AIChE Journal,1956,2(3):359-363
    [32]Azbel D.Two-phase Flows in Chemical Engineering[M].London:Cambridge University Press,1981,158
    [33]Toor H L,Marchello J M.Film-penetration model for mass and heat transfer[J].AIChE Journal,1958,4(1):97-104
    [34]Marchello J M,Toor H L.A mixing model for transfer near a boundary[J].I&EC Fudamentals,1963,2(1):8-12
    [35]Perlmutter D D.Surface-renewal models in mass transfer[J].Chem.Eng.Sci.,1961,16(4):287-296
    [36]Levich V G.Physicochemical hydrodynamics[M].New Jersey:Prentice-Hall Englewood Cliffs,1962,60-72
    [37]Davies J T,Driscoll J P.Eddies at free surfaces simulated using pulses of water[J].Industrial & Engineering Chemistry,1974,13(2):105-109
    [38]苗容生.两相流气泡界面附近湍动场和浓度场的激光测量及局部传质理论研究[D].天津:天津大学,1990
    [39]Miller C A.Interfacial Phenomena Equilibrium and Dynamic Effects[M].New York:Marcel Dekker Inc,1985
    [40]Stattery J C.Inteffacial Transport Phenomena[M].New York:Springer-Verlag,1990
    [41]Krishna R.Wessehbngh J A.Chem.Eng.Sci.,1997,52(6)861-911
    [42]Wang J F,Langemann H.Chem.Eng.Sci.,1994,49:3457-3463
    [43]Wang J F,Han S J,Wei E Chem.Eng.Processing,1997,36:291-299
    [44]Yang W G.Wang J F,Zhou L M,et al.Chem.Eng.Sci.,1994,54(22):5523-5528
    [45]Wang J E Langemann H.Chem.Eng.Tech.,1994,17:280-284
    [46]马友光,高瑞昶,冯惠生,等.吸收过程的界面传质机理[J].化学工程,2003,31(1):13-16
    [47]Rapaport D C.The Art of Molecular Dynamics Simulation[M].Cambridge University Press,UK,1995
    [48]胡英(Hu Y),刘洪来(Liu H L).化学进展(Progress in Chemistry),1995,7(3):235-247
    [49]吕家祯(Liu J z),陆小华(Lu x H)等.化工学报(J.Chemical Industry and Engineering),1998.49:64-70
    [50]M N奥齐西克著,俞昌铭主译.热传导[M].北京:高等教育出版社,1993
    [51]林瑞泰.沸腾换热[M].北京:北京科学出版社,1998
    [52]Nieuwland J J,Veenendaal M L,Kuipers J A M,et al.Bubble formation at a single orifice in gas-fluidized bed[J].Chem.Eng.Sci.,1996,51(17):4087-4102
    [53]Miyahara T,Iwata M,Takahashi T.Bubble fomation pattern with weeping at a submerged orifice[J].J.Chem.Eng.Japan,1984,17(6):592-602
    [54]Pamperin O.Influence of buoyancy on bubble formation at submerged orifices[J].Chem.Eng.Sci.,1995,50(19):3009-3024
    [55]Berghmans J.Stability of gas bubbles rising in inviscid fluids[J].Chem.Eng.Sci.,1973,28:2005-2011
    [56]Hinze J O.湍流(上、下册).北京:科学出版社,1987
    [57]Prince M J,Blance H W.Bubble coalescence and break-up in air-sparged bubble columns [J].AIChE.J.,1990,36:1485-1499
    [58]Nevers N D.Bubble driven fluid circulations[J].AIChE.J.,1968,14(2):222-226
    [59]Valentas K J,Bilous O,Ainundson R.Analysis of breakage in dispersed phase systems[J].I&E C Fundamentals.1996,5(2):271-279
    [60]大卫·阿兹贝尔.化学工程中的两相流.北京:化学工业出版社,1987
    [61]Gnotke O,Benk H,Loth R.Experimental study on the number density distribution function in turbulent bubbly flows with coalescence and break-up[J].Exp.Therm.Fluid.Sci.,2003,27:803-816
    [62]Lin T J,Tsuchiya K,Fan L S.Bubble flow characteristics in bubble columns at elevated pressure and temperature[J].AIChE.J,1998,44(3):545-560
    [63]Hesketh R P,Fraser Russell T W.Bubble size in horizontal pipelines[J].AIChE.J.,1987,33(4):663-667
    [64]鲁钟琪.两相流与沸腾传热[M].北京:清华大学出版社,2002
    [65]胡发亭,霍卫东,史士东,等.环流反应器流体力学参数测定技术研究[J].化工科技,2007,15(1):42-45
    [66]徐冬,龚领会.气液两相低温流体空泡率测量技术及其进展[J].低温工程,2007,6:32-37
    [67]Gandhi B,Prakash A.Hydrodynamic behavior of slurry bubble column at high solids concentrations[J].Powder Technol.,1999,103:80-94
    [68]胡松青,李琳,郭祀远,等.现代颗粒粒度测量技术[J].现代化工,2002,22(1):58-61
    [69]王旭.常用粒度测试方法[J].牙膏工业,2008,1:28-29
    [70]罗和安,Svendsen H F鼓泡床中的气泡分布[J].化工学报,1995,46(5):539-544
    [71]Anabtawi M Z A,Abu-Eishah S I,Hilal N.Hydrodynamic studies in both bi-dimensional and three-dimensional bubble columns with a single sparger[J].Chem.Eng.Process,2003,42:403-408
    [72]Shah Y T,Kelker B G,Godbole S P.Design parameters estimations for bubble column reactors[J].AIChE.J,1982,28:353-379
    [73]蔡平,金涌.气液固流态化工程(第1版)[M].北京:中国石化出版社,1993,135
    [74]Aldta K,Yoshida Y.Gas holdup and volumetric mass transfer coefficient in bubble columns [J].Ind.Eng.Chem.Proc.Des.Dev.,1973,12:76-80
    [75]Kumar A,Degaleesan T E,Laddha G S,et al.Bubble swarm characteristics in bubble columns[J].Can.J.Chem.Eng.,1976,54:503-508.
    [76]Zahraduik J,Fialova M,Ruzicka M,et al.Duality of the gas-liquid flow regimes in bubble columnreactors[J].Chem.Eng.Sci.,1997,52:3811-3826
    [77]Pohorecki R,Moniuk W,Zdrojkowsld A.Hydrodynamics of a pilot plant bubble column under elevated temperature and pressure[J].Chem.Eng.Sci.,2001,56:1167-1174
    [78]Fan L S.Gas-liquid-solid fluidization Engineering[M].Boston:Butterworths,1989,10
    [79]蔡龙俊,冯哲隽.散热管道在温室内放热特性的分析[J].节能技术,2002,6:10-12
    [80]化学工业部人事司编[M].硫酸铵.北京:化学工业出版社,1958
    [81]殷萍.硫酸铵蒸发过稃研究[D].天津:天津大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700