联合应用G-CSF/SCF动员、募集及调控自体骨髓衍生干细胞防治骨坏死的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分联合应用小剂量脂多糖和大剂量甲强龙诱导兔骨坏死的实验研究
     目的激素性骨坏死发生发展的病理生理机制目前还不明确,合适的实验模型是骨坏死治疗研究的基础。本实验研究设计一新型兔骨坏死模型制作方案,采用低剂量的脂多糖和高剂量的甲强龙诱导骨坏死。
     材料与方法38只大白兔分为实验组和对照组,实验兔连续两次静脉注射脂多糖(LPS,10μg/kg),然后连续三次肌注甲强龙(MPS,20 mg/kg)(L-LPS×2+H-MPS×3)。组织学评估双侧股骨和肱骨近端和远端部分的病理改变。其它评估指标包括不同评估时间点的MRI扫描、骨内压检测、血清纤溶酶原活性剂/抑制剂比值、血清胆固醇、甘油三酯和低密度脂蛋白胆固醇和高密度脂蛋白胆固醇的比值(LDL/HDL ratio)。
     结果注射MPS后6刷,MRI扫描发现73.3%(22/30)兔出现骨坏死影响学改变,T_1WI表现为不规则低信号,T_2WI表现为不规则低信号或高信号;组织学证实,90%(27/30)兔子出现骨坏死,呈特征性骨坏死的病理学改变。其它结果包括骨髓脂肪细胞增大、骨内压增高、血液凝固异常和高脂血症。
     结论总之,此改良新型骨坏死诱导模型可有效地阐明激素性骨坏死发生发展的病理生理变化,以利于骨坏死的预防和治疗研究。
     第二部分粒细胞集落刺激因子(G-CSF)和干细胞因子(SCF)单独及联合应用对间充质干细胞生物学行为的影响
     目的本实验主要研究粒细胞集落刺激因子(G-CSF)和干细胞因子(SCF)单独及联合应用对骨髓间充质干细胞(MSCs)的粘附、迁移、增殖和成骨能力的影响。
     材料与方法分离、培养兔骨髓MSCs,采用流式细胞技术分析培养至第三代MSCs的谱系和表面标志表型,行细胞粘附特性测定、Transwell迁移实验、细胞增殖实验、成纤维细胞集落形成实验(CFU-F)和ALP活性测定。
     结果流式检测细胞标记物示,培养至第3代的细胞表型为CD29~+/CD45~-,CD105~+/CD34~-,CD90~+/HLADR~-。免疫细胞化学染色示抗波形蛋白抗体阳性。因此,据该群细胞的免疫表型可以确定该群细胞为MSCs。G-CSF或SCF诱导后骨髓基质干细胞的黏附性增强,其中G-CSF的效果优于SCF;联合应用G-CSF/SCF可显著增强骨髓基质干细胞对FN的黏附。SCF对MSCs迁移作用的潜能和效果类似G-CSF。联合应用G-CSF和SCF可导致更强烈的细胞迁移效应。G-CSF/SCF对MSCs的增殖有明显的促进作用(*P<0.05,**P<0.01),联合应用G-CSF/SCF的细胞生长状态好于两者的单用,可有效的促进细胞增殖:与MSCs形成CFU-F的数目成正性剂量效应关系。G-CSF与SCF均抑制骨髓基质干细胞的成骨分化(*P<0.05,**P<0.01),各组各检测时间点ALP的活性均较对照组明显降低。
     结论骨髓基质干细胞有诱人的应用前景,本研究发现G-CSF/SCF可抑制MSCs的分化,促进其增殖再生,其协同作用可导致重要的生物学效应。
     第三部分联合应用粒细胞集落刺激因子和干细胞生长因子(G-CSF/SCF)治疗兔激素性骨坏死的实验研究
     目的大量研究证实骨髓衍生干细胞(Bone marrow-derived stem cell,BMSC)可用于治疗塌陷前期股骨头坏死。本研究,我们通过建立兔骨坏死模型,评估G-CSF/SCF动员自体BMSCs修复激素性骨坏死的潜能。
     材料与方法我们采用低剂量的脂多糖和甲强龙(L-LPS×2+H-MPS×3)建立兔骨坏死模型,分为治疗组和对照组。治疗组兔皮下注射G-CSF 100μg/kg和SCF 25μg/kg,连续干预5天;对照组给予等量的生理盐水。抽取血液,采用酶联免疫吸附测定法(ELISA)检测血清骨钙素的水平;采用磁共振(MRI)行影像学检查。采集实验动物双侧股骨和肱骨,处理成石蜡切片和硬组织切片,以进行免疫组织化学、组织学和组织形态学检测分析。
     结果应用G-CSF/SCF动员后,白细胞的平均数目和单核细胞的相对数目明显增多。G-CSF/SCF治疗组兔血清OCN蛋白表达明显增高。MRI检查发现,通过G-CSF/SCF干预后,骨坏死区和修复区呈现出活性修复界面。定量分析发现,治疗组的新生血管和血管密度分别是对照组的3.3倍和2.6倍。组织学和组织形态学证实,G-SCF/SCF组治疗4周后,新生骨容量明显高于对照组。
     结论联合应用G-CSF/SCF动员BMSC至骨坏死区,可促进早期骨坏死区骨的生长与修复,是治疗骨坏死值得探索的新策略。
PartⅠExperimental osteonecrosis induced by a combination of low-doselipopolysaccharide and high-dose methylprednisolone in rabbits
     Objective The pathogenetic mechanisms involved in steroid-inducedosteonecrosis are poorly understood. Appropriate experimental models of thehuman disease are indispensable to the understanding of successful treatmentmodalities for osteonecrosis. In the present experiment we devised a novelrabbit model of steroid-induced osteonecrosis by use of LPS and MPS toinvestigate the development of osteonecrosis.
     Materials and Methods 38 rabbits were assigned into the treatment groupcontrol group. In treatment group, two injections of 10μg/kg body weight ofLPS were given intravenously, and then three injections of 20 mg/kg bodyweight of MPS were given intramuscularly, at a time interval of 24 h(L-LPS× 2 + H-MPS×3). Tissue assessments were performed on proximal third anddistal condyles of femora and humeri obtained 6 weeks after theadministration of LPS and MPS. MRI of these regions and intraosseouspressure of proximal femur were obtained at 0 and 6 weeks. Otherassessments included serum plasminogen activator/inhibitor ratio, cholesterollevel, LDL/HDL ratio, and triglyceride levels at various time points.
     Results 6 weeks after last injection of MPS ,MRI findings showed irregularlow signal on T_1-weighted images and irregular low or high signal onT_2-weighted image in 73.3%(22/30) rabbits. Histologically, 90% of the rabbits(27/30) in the treatment group developed ON 6 weeks after last injection ofMPS. Other results included bone marrow fat cell enlargement , a rise inintraosseous pressure, coagulation abnormalities and hyperlipidaemia.
     Conclusions On the whole, this is a novel modified animal model of steroidassociated osteonecrosis and it would be useful for elucidating thepathogenesis of steroid associated osteonecrosis and developing preventiveand therapeutic strategies.
     PartⅡEffects of granulocyte colony-stimulating factor and stem cell factor,alone and in combination, on the biological behaviours of bonemarrow mesenchymal stem cells
     Objective The effects of granulocyte colony-stimulating factor (G-CSF) andstem cell factor (SCF) on the proliferation and osteogenic differentiationcapacity of bone marrow mesenchymal stem cells (MSCs) were studied in theexperiment.
     Materials and Methods Bone marrow MSCs were collected from rabbitssuccessfully, and treated with various concentrations of G-CSF, SCF or acombination of the two. Flow cytometric analyse, MTT test, CFU-F assay,and alkaline phosphatase (ALP) activity measurement were employed.
     Results: The results of flow cytometry showed that immunophenotype of thecells were CD29~+/CD45~-,CD105~+/CD34~-,CD90~+/HLADR~- MSCs wereshown to constitutively express low levels of c-kit which could be enhancedby SCF. G-CSF and SCF had an obvious facilitative effect on the proliferationof MSCs in a dose-dependent fashion. In addition, G-CSF and SCF would beeffective in reversibly preventing their differentiation, as showed by thedecrease of ALP activity, leading to self-renewal rather than differentiative cell divisions. The effects of G-CSF were superior to SCF. And cells in thegroup treated with combination of G-CSF and SCF showed more powerfuleffects than the groups treated with G-CS, SCF, or none of the two.
     Conclusion: On the whole, these studies demonstrated that MSCs responsedto G-CSF, SCF, and to G-CSF plus SCF in a manner that suppresseddifferentiation, and promotes proliferation and self-renewal, and support theview that these factors could act synergistically.
     PartⅢA Combination of Granulocyte Colony- Stimulating Factor and Stem CellFactor Ameliorates Steroid-associated Osteonecrosis in Rabbits
     Objective Bone marrow-derived stem cell (BMSC) has been highlighted forthe treatment of osteonecrosis before collapse of the femoral head. In the study,the potential of G-CSF/SCF- mobilized BMSCs to repair steroid-associatedosteonecrosis were assessed in rabbits.
     Materials and Methods Osteonecrosis was induced by low-dose lipopolysaccharide and subsequent pulsed high-dose methylprednisolone.Rabbits in the treated group were subjected to subcutaneous injections ofG-CSF at a dose of 100μg/kg and SCF at a dose of 25μg/kg per day for 5days; and rabbits in the control group were given saline. Blood samples werecollected and serum osteocalcin was detected by ELISA. Radiological analysiswas performed by Magnetic Resonance Imaging. Then bilateral femora andhumeri were harvested and processed to paraffin sections and hard tissuesections for immunohistochemical, histologic and histomorphometric analysis.
     Results The mean number of leukocytes and the relative numbers ofmononuclear cell significantly increased after mobilization. All rabbitsdisplayed a marked increase in OCN protein expression in response toG-CSF/SCF. MRI scans showed reactive interface between the necrotic andreparative zones after G-CSF/SCF administration. Quantitative analysisshowed that new vessel and vessel density in the treatment group was 3.3-foldand 2.6-fold grater than the control group, respectively. The histologic andhistomorphometric analysis revealed that the new bone volume wassignificantly higher in the G-SCF/SCF group than in control group at 4 weeks.
     Conclusion G-CSF/SCF -induced mobilization of BMSC in the necrotic focimay represent a promising strategy for promoting functional bone repair of theearly-stage osteonecrosis.
引文
1.Yamamoto T, Hirano K, Tsutsui H, Sugioka Y, Sueishi K. Corticosteroid enhances the experimental induction of osteonecrosis in rabbits with Shwartzman reaction. Clin Orthop Relat Res 1995; 316: 235-243.
    2.Irisa T,Yamamoto T,Miyanishi K,Yamashita A,Iwamoto Y,Sugioka Y,Sueishi K. Osteonecrosis induced by a single administration of low-dose lipopolysaccharide in rabbits.Bone 2001 ;286:641-649.
    3.Yamamoto T, Irisa T, Sugioka Y, Sueishi K. Effects of pulse methylprednisolone on bone and marrow tissues: corticosteroid-induced osteonecrosis in rabbits. Arthritis Rheum 1997; 40:2055-2064.
    4.Ichiseki T, Matsumoto T, Nishino M, Kaneuji A, Katsuda S. Oxidative stress and vascular permeability in steroid-induced osteonecrosis model. J Orthop Sci 2004;9:509-515.
    5.Motomura G, Yamamoto T, Miyanishi K,et al. Bone marrow fat-cell enlargement in early steroid-induced osteonecrosis-a histomorphometric study of autopsy cases. Pathol Res Pract 2005;200: 807-811.
    6.Arlet J.Nontraumatic avascular necrosis of the femoral head. Past, present, and future. Clin Orthop Relat Res 1999;277: 12-21.
    7.Mankin HJ. Nontraumatic necrosis of bone (osteonecrosis). New Eng J Med 1992;326: 1473-1479.
    8.Glueck CJ, Freiberg RA, Wang P. Role of thrombosis in osteonecrosis, Curr Hematol Rep 2003; 2: 417-422.
    9.Jones LC,Mont MA, Le TB,Petri M,Hungerford DS,Wang P,Glueck CJ. Procoagulants and osteonecrosis. J Rheumatol 2003;30: 783-791.
    10.Zalavras C, Dailiana Z, Elisaf M, Bairaktari E, Vlachogiannopoulos P, Katsaraki A, Malizos KN. Potential aetiological factors concerning the development of osteonecrosis of the femoral head. Eur J Clin Invest 2000;30:215-221.
    11.Miyanishi K, Yamamoto T, Irisa T, et al. Effects of different corticosteroids on the development of osteonecrosis in rabbits. Rheumatology (Oxford) 2005;44: 332-336.
    12.Boss JH, Misselevich I. Osteonecrosis of the Femoral Head of Laboratory Animals: The Lessons Learned from a Comparative Study of Osteonecrosis in Man and Experimental Animals. Vet Pathol 2003 ;40:345-354.
    13.Aldridge JM 3rd, Urbaniak JR. Avascular necrosis of the femoral head: etiology, pathophysiology, classification, and current treatment guidelines. Am J Orthop 2004; 33:327-332.
    14.Miyanishi K,Yamamoto T, Irisa T, Yamashita A, Jingushi S, Noguchi Y,Iwamoto Y.A high low-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio as a potential risk factor for corticosteroid-induced osteonecrosis in rabbits..Rheumatology 2001;40:196-201.
    1. Koike N, Fukumura D, Gralla O, et al. Tissue engineering: creation of long-lasting blood vessels. Nature 2004;428:138-139.
    2. Lee KD, Kuo TK, Whang-Peng J, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 2004;40:1275-1284.
    3. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy.J Cell Mol Med 2004, 8: 301- 316.
    4. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential.Blood 2004, 103: 1662-1668.
    5. Short B., Brouard N., Occhiodoro-Scott T., Ramakrishnan A., Simmons P.J. Mesenchymal stem cells. Arch. Med. Res. 2003,34:565-571.
    6. Cancedda R, Bianchi G, Derubeis A, Quarto R. Cell therapy for bone disease: a review of current status. Stem Cells .2003,21:610 - 619.
    7. Rose FR, Oreffo RO. Bone tissue engineering: hope vs hype. Biochem. Biophys. Res Commun. 2002,292:1-7.
    8. Yang XB, Roach HI, Clarke NM,- Howdle SM, Quirk R, Shakesheff KM, Oreffo RO. Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone .2001,29:523 - 531.
    9. Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL. Human marrow- derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res. 2000;9:841-848.
    10. Duarte RF, Frank DA. SCF and G-CSF lead to the synergistic induction of proliferation and gene expression through complementary signaling pathways . Blood. 2000, 96:3422-3430.
    11. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not. British Journal of Haematology,2003,121:368-374.
    12. Short B, Brouard N, Occhiodoro-Scott T, Ramakrishnan A, Simmons P.J. Mesenchymal stem cells. Arch. Med. Res. 2003;34:565-571.
    13. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-147.
    14.Croff AP, Przyborski SA. Generation of neuroprogenitor-like cells from adult mammalian bone marrow stromal cells in vitro. Stem Cells Dev. 2004 ;13:409-420.
    15.Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418: 41-49.
    16.Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon- delivery into tumours. Cancer Res. 2002;62: 3603-3608.
    17.Koc ON, Gerson SL, Cooper BW, et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol. 2000; 18: 307-316.
    18.Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001,410: 701-705.
    19.Krampera M, Glennie S, Laylor R, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101: 3722-3729.
    20.Avalos B. Molecular analysis of the granulocyte-colony stimulating factor receptor. Blood. 1996; 88: 761-777.
    21.McLemore ML, Grewal S, Liu F, et al. STAT-3 activation is required for normal G-CSF- dependent proliferation and granulocytic differentiation. Immunity. 2001; 14: 193-204.
    22.Bodine DM, Seidel NE, Orlic D. Bone marrow collected 14 days after in vivo administration of granulocyte colony-stimulating factor and stem cell factor to mice has 10-fold more repopulating ability than untreated bone marrow. Blood 1996;88:89-97.
    23 Javazon EH, Beggs KJ, Flake AW. Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 2004;32:414-425.
    24.Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng ,2001;7:211-228.
    25.Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004;95:9-20.
    26.Smith JR, Pochampally R, Perry A, Hsu SC, Prockop DJ. Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells. 2004;22: 823-831.
    1. Mont MA, Hungerford DS. Non-traumatic avascular necrosis of the femoral head. J Bone Joint Surg [Am]. 1995;77(3):459-74.
    2. Deten A, Volz HC, Clamors S, et al. Hematopoietic stem cells do not repair the infarcted mouse heart. Cardiovasc Res 2005;65 (1):52-63.
    3. Priller J. Robert Feulgen Prize Lecture. Grenzganger: adult bone marrow cells populate the brain. Histochem Cell Biol 2003; 120(2):85-91.
    4. Yannaki E, Athanasiou E, Xagorari A, et al. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol 2005; 33(1):108-19.
    5.Herrera MB, Bussolati B, Bruno S, et al. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 2004;14(6):1035-41.
    6. Nishida M, Fujimoto S, Toiyama K, Sato H, Hamaoka K. Effect of hematopoietic cytokines on renal function in cisplatin-induced ARF in mice. Biochem Biophys Res Commun 2004; 324(l):341-7.
    7. Abe S, Boyer C, Liu X, et al. Cells derived from the circulation contribute to the repair of lung injury. Am J Respir Crit Care Med 2004;170(11):l158-63.
    8. Yamada M, Kubo H, Kobayashi S, et al. Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide- induced lung injury. J Immunol 2004;172(2): 1266-72.
    9. Borue X, Lee S, Grove J, et al.Bone marrow-derived cells contribute to epithelial engraftment during .wound healing. Am J Pathol. 2004;165(5):1767-72.
    10. Gangji V, Hauzeur JP, Schoutens A, et al. Abnormalities in the replicative capacity of Osteoblastic cells in the proximal femur of patients with osteonecrosis of the femoral head. J Rheumatol 2003; 30(2):348-51.
    11. Hernigou P, Beaujean F, Lambotte JC. Decrease in the mesechymal stem-cell pool in the proximal femur in corticosteroid-induced osteonecrosis. J Bone Joint Surg (Br) 1999;81 (2): 349-55.
    12. Gangji V, Hauzeur JP, Matos C, et al.Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells.A pilot study. J Bone Joint Surg(Am) 2004; 86(6): 1153-60.
    13. Hemigou P, Beaujean F.Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 2002.405:14-23.
    14. Anderson DM, Lyman SD, Baird A, et al. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell 1990;63(1):235 - 43.
    15. Ulich TR, del Castillo J, Yi ES, et al. Hematologic effects of stem cell factor in vivo and in vitro in rodents. Blood 1991;78(3):645 - 650.
    16. Verfaillie CM. Hematopoietic stem cells for transplantation. Nat Immunol 2002;3(4):314-7.
    17. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A. 2001;98(18): 10344-10349.
    18. Qin L, Zhang G, Sheng H, et al. Multiple bioimaging modalities in evaluation of an experimental osteonecrosis induced by a combination of lipopolysaccharide and methylprednisolone.Bone 2006;39(4):863-871.
    19. Gangji V, Toungouz M, Hauzeur JP. Stem cell therapy for osteonecrosis of the femoral head._Expert Opin Biol Ther 2005 ;5(4):437-42.
    20. Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells.Blood 2003;102(10): 3483-93.
    21. Korbling M, Katz RL, Khanna A, et al. Hepatocyte and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Eng J Med 2002;346(10):738-46.
    1. Sch(a|¨)chinger V, Erbs S, Els(a|¨)sser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med,2006,355:1210-1221.
    2. Collins SD, Baffour R, Waksman R. Cell therapy in myocardial infarction. Cardiovasc Revasc Med, 2007,8:43-51.
    3. Schuleri KH, Boyle AJ, Hare JM. Mesenchymal stem cells for cardiac regenerative therapy. Handb Exp Pharmacol, 2007,180:195-218.
    4. Tateishi-Yuyama E, Matsubara H, Murohara T,et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet,2002,360:427-435.
    5.Hernigou P, Beaujean F, Lambotte JC.Decrease in the mesenchymal stem-cell pool in the proximal femur in corticosteroid-induced osteonecrosis.J Bone Joint Surg Br, 1999,81:349-55.
    6. Lee JS, Lee JS, Roh HL, et al. Alterations in the differentiation ability of mesenchymal stem cells in patients with nontraumatic osteonecrosis of the femoral head: comparative analysis according to the risk factor.J Orthop Res,2006,24:604-609.
    7. Sottile V, Thomson A, McWhir J. In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells, 2003,5:149-155.
    8. Slack JM. Stem cells in epithelial tissues.Science, 2000,287:1431-1433.
    9.Liechty KW, Mackenzie TC,Shaaban AF,et al.Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep.Nat Med,2000, 6:1282-1286.
    10.Ikeguchi R,Kakinoki R,Aovama T, et al. Regeneration of osteonecrosis of canine scapho-lunate using bone marrow stromal cells: possible therapeutic approach for Kienbock disease. Cell Transplant, 2006,15:411-22.
    11 刘虎仙,贾赤宇,付小兵,等.成体干细胞的可塑性研究近况.中华医学杂志,2005,85:1941-1943.
    12 钱晖,黄淑帖.成体干细胞的可塑性:横向分化还是细胞融合.生命科学, 2005, 17: 25-29.
    13. Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood, 2003, 102:3483-3493.
    14. Korbling M, Katz RL, Khanna A,et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med, 2002,346:738-746.
    15. Gangji V, Toungouz M, Hauzeur JP. Stem cell therapy for osteonecrosis of the femoral head.Expert Opin Biol Ther, 2005 ,5:437-442.
    16. Prockop DJ.Marrow stromal cells as stem cells for nonhematopoietic tissues. Science,1997, 276 :71-74.
    17. Nilsson SK, Dooner MS, Weier HU,et al.Cells capable of bone production engraft from whole bone marrow transplants in nonablated mice. J. Exp. Med, 1999, 189:729-734.
    18. Hou Z, Nguyen Q, Frenkel B,et al. Osteoblast-specific gene expression after transplantation of marrow cells: implications for skeletal gene therapy. Proc Natl Acad Sci U S A, 1999,96: 7294-7299.
    19. Murphy JM, Fink DJ, Hunziker EB, et al. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003,48(12):3464-3474.
    20. Horwitz EM, Prockop DJ, Fitzpatrick LA,et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta.Nat Med, 1999,5:309-313.
    21. Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A, 2002,99:8932-8937.
    22. Asahara T, Murohara T, Sullivan A,et al. Isolation of putative progenitor endothelial cells for angiogenesis.Science, 1997,275:964-967.
    23. Shi Q, Rafii S, Wu MH,et al. Evidence for circulating bone marrow-derived endothelial cells. Blood, 1998,92:362-367.
    24. Kocher AA, Schuster MD, Szabolcs MJ,et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med, 2001,7:430-436.
    25. Gunsilius E,Petzer A.L,Duba H.C,et al.Circulating endothelial cells after transplantation. Lancet,2001,357:1449-1450.
    26. Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms.Circ Res,2004 ,94:678-685.
    27. Shyu KG, Manor O, Magner M,et al. Direct intramuscular injection of plasmid DNA encoding angiopoietin-1 but not angiopoietin-2 augments revascularization in the rabbit ischemic hindlimb. Circulation, 1998,98:2081-2087.
    28. Rehman J, Li J, Orschell CM, March KL. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors..Circulation, 2003, 107:1164-1169.
    29. Ziegelhoeffer T, Fernandez B, Kostin S, et al.Bone marrow-derived cells do not incorporate into the adult growing vasculature.Circ Res, 2004,94:230-238.
    30. Hernigou P, Bernaudin F, Reinert P,et al. Bone-marrow transplantation in sickle-cell disease. Effect on osteonecrosis: a case report with a four-year follow-up. J Bone Joint Surg Am, 1997, 79:1726-1730.
    31. Gangji V, Hauzeur JP, Matos C, De Maertelaer V, Toungouz M, Lambermont M. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am,2004 ,86-A: 1153-60.
    32. Hernigou P, Poignard A, Manicom O, Mathieu G, Rouard H. The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J Bone Joint Surg Br, 2005,87:896-902.
    33. Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res, 2002,405:14-23.
    34. Cui Q, Xiao Z, Li X, Saleh KJ, Balian G. Use of genetically engineered bone-marrow stem cells to treat femoral defects: an experimental study. J Bone Joint Surg Am, 2006 ,88 Suppl 3:167-172.
    35. Mont MA, Ragland PS, Biggins B, Use of bone morphogenetic proteins for musculoskeletal applications. An overview. J Bone Joint Surg Am, 2004,86-A Suppl 2:41-55.
    36. Kawate K, Yajima H, Ohgushi H, et al. Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. Artif Organs, 2006 ,30:960-962.
    37. Tang TT, Lu B, Yue B, et al. Treatment of osteonecrosis of the femoralhead with hBMP- 2-gene-modified tissue-engineered bone in goats. J Bone Joint Surg Br, 2007,89: 127-129.
    [1] Jiang Y, Jahagirdar BN, Reinhardt RL,et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature.2007, 447(7146):880-881.
    [2] Habib NA, Gordon MY(?) Clinical applications of stem cell therapy-the pros and cons of stem cell sources. Regen Med. 2006,1(3):301-2.
    [3] Petit I, Szyper-Kravitz M, Nagler A,et al.G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4.Nat Immunol. 2002,3:687-694.
    [4] Dar A, Goichberg P, Lapidot T, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol.2005,6:1038-1046.
    [5] Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol. 2002 , 30:973-981.
    [6] Helmuth L.Stem cell hear call of injured tissue.Science, 2000, 290:1478-1481.
    [7] van Weel V, Seghers L, de Vries MR, et al. Expression of vascular endothelial growth factor, stromal cell-derived factor-1, and CXCR4 in human limb muscle with acute and chronic ischemia.Arterioscler Thromb Vasc Biol. 2007,27(6): 1426-1432.
    [8] Grant, M.B. et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med.2002, 8:607-612.
    [9] Beck C, Nguyen XD, Kluter H,et al.Effect of recombinant human deoxyribonuclease on the expression of cell adhesion molecules of thawed and processed cord blood hematopoietic progenitors. Eur J Haematol. 2003,70:136-42.
    [10] Wang Y,Haider Hkh,Ahmad N,et al. Evidence for ischemia induced host-derived bone marrow cell mobilization into cardiac allografts. J Mol Cell Cardiol.2006 ,41:478-487.
    [11] Ritter MR, Banin E, Moreno SK, et al. Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathyJ Clin Invest.2006,116(12):3266-3276.
    [12] Janowska-Wieczorek A, Majka M, Ratajczak J,et al. Autocrine/paracrine mechanisms in human hematopoiesis. Stem Cells. 2001; 19:99-107.
    [13] Peck AB, Yin L, Ramiya V. Animal models to study adult stem cell-derived, in vitro-generated islet implantation. ILAR J 2004; 45: 259-267.
    [14] Okamoto R, Yajima T, Yamazaki M, et al. Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract. Nat Med 2002; 8: 1011-1017.
    [15] Muguruma Y, Yahata T, Miyatake H, et al. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood. 2006,107(5):1878-1887.
    [16] Ikeguchi R,Kakinoki R,Aovama T,et al. Regeneration of osteonecrosis of canine scapho-lunate using bone marrow stromal cells: possible therapeutic approach for Kienbock disease. Cell Transplant. 2006; 15:411-22.
    [17] Bourin P, Gadelorge M. The hopes of the mesenchymal stem cells in regenerative medicine.Transfus Clin Biol. 2007 ,14(1): 120-126.
    [18] Farrell E, Byrne EM, Fischer J, et al. A comparison of the osteogenic potential of adult rat mesenchymal stem cells cultured in 2-D and on 3-D collagen glycosaminoglycan scaffolds. Technol Health Care. 2007;
    [19] Forbes SJ, Vig P, Poulsom R, et al.Adult stem cell plasticity: new pathways of tissue regeneration become visible. Clin Sci (Lond). 2002,103:355-69.
    [20] Liechty KW, MacKenzie TC, Shaaban AF,et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000,6:1282-1286.
    [21] Murphy JM, Fink DJ, Hunziker EB, et al. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003,48:3464-3474.
    [22] DeLise AM, Fischer L, Tuan RS. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilag. 2000,8:309-334.
    [23] Shum L, Nuckolls G. The life cycle of chondrocytes in the developing skeleton. Arthritis Res. 2002;4:94-106.
    [24] Zhang L, Yang R, Han ZC. Transplantation of umbilical cord bloodderived endothelial progenitor cells: a promising method of therapeutic revascularization. Eur J Haematol. 2006 , 76:1-8.
    [25] Lee M, Aoki M, Kondo T,et al. Therapeutic angiogenesis with intramuscular injection of low-dose recombinant granulocyte-colony stimulating factor. Arterioscler Thromb Vasc Biol. 2005,25:2535-41.
    [26] Li TS, Hayashi M, Liu ZL, et al. Low angiogenic potency induced by the implantation of ex vivo expanded CD117(+) stem cells. Am J Physiol Heart Circ Physiol. 2004 ,286:H1236-1241.
    [27] Nishida M, Li TS, Hirata K, et al.. Improvement of cardiac function by bone marrow cell implantation in a rat hypoperfusion heart model. Ann Thorac Surg. 2003,75:768-773.
    [28] Smadja DM, Cornet A, Emmerich J, Aiach M, Gaussem P. Endothelial progenitor cells: characterization, in vitro expansion, and prospects for autologous cell therapy.Cell Biol Toxicol. 2007 ,23(4):223-39.
    [29]Tse HF, Lau CP. Therapeutic angiogenesis with bone marrow--derived stem cells.J Cardiovasc Pharmacol Ther. 2007 ,12(2):89-97.
    [30]Weissman IL.Translating stem and progenitor cell biology to the clinic:barriers and opportunities.Science,2000,287:1442-1446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700