腺病毒介导的A20基因对耳蜗毛细胞保护作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景和目的
     听力损失作为名列第十五位的世界疾病,在发达国家,约有一亿人遭受听力损失,且90%为感音神经性聋。据我国残疾人抽样调查统计,听觉残疾呈逐年上升态势。毛细胞病变所导致的听力丧失是耳聋的主要原因,因此如何保护毛细胞已成为科研工作者日益关注的课题。耳蜗毛细胞是将声刺激转化电化学能的末梢感受器,其中内毛细胞是感受器细胞,负责将机械振动转化为与之相连的听神经纤维的动作电位;外毛细胞与增强听神经的高度频率选择性、耳蜗自我的调节功能有关。内、外毛细胞的损伤都可引起不可逆的感音神经性耳聋。耳蜗位于蜗壳内,被其包裹和保护,同时存在血迷路屏障,这种独特的生理结构导致耳蜗在解剖和功能上相对独立,一旦受到损伤很难通过全身或局部循环与外界交流,主要靠自身代谢来排除损伤因素,因此如何提高毛细胞自身的保护功能,保护正常细胞不被进一步破坏是研究这一问题的关键。因此急切寻找一条途径对毛细胞进行持久的保护。
     机体遇到外界有害因子刺激时会产生防御性反射,而很多细胞在遇到有害因素刺激时会产生一些保护性蛋白,锌指蛋白A20就是其中之一。锌指蛋白A20首先是在人的内皮细胞中作为肿瘤坏死因子(TNF)刺激的应答产物被发现的。通过基因测序发现其可读框编码一个新型锌指蛋白,命名为锌指蛋白A20,简称A20。A20是一种存在于胞液的NF-κB(nuclear factor-κB)活性负反馈调控蛋白,在许多细胞中都发现有A20的表达,A20 mRNA中的3’端非翻译区内有4个规范重复序列ATTTA,正是该序列决定了A20在细胞表达的不稳定性。A20已在多种细胞如内皮细胞、脑神经细胞中显示有抗炎、抗凋亡、坏死作用。研究表明,毛细胞的损伤会导致NF-κB和Caspase-3信号通路的改变,这一点和A20的抗损伤通路之间有共同交叉作用点,前者上调NF-κB和Caspase-3的表达,后者抑制NF-κB和Caspase-3的表达,因此A20可用于毛细胞的防护研究。A20在体内的表达是快速而短暂的,因此需要体外构建载体来持续表达A20,从而发挥其抗损伤作用。腺病毒(Ad)载体具有高效率、低致病性、高滴度及不整合入宿主细胞染色体等优点,已被广泛应用于内耳基因治疗研究。
     造成毛细胞损伤有各种各样的原因,其中药物致耳毒性是日常生活中很常见的原因;同时现代社会、现代战争中电磁辐射尤其是高频电磁辐射也是威胁人类健康的重要原因,因此本实验选用这两个损伤模型来进行研究。通过研究初步明确锌指蛋白A20对内耳毛细胞的保护作用及其分子机制,为改善和修复受损的听功能提供了理论依据。
     基于以上分析,本研究首先建立了庆大霉素、高功率微波(HPM)致毛细胞损伤模型,观察了A20在毛细胞正常、损伤条件下的表达规律,然后制备纯化A20重组腺病毒表达载体pAdEasy-1/A20,观察其在庆大霉素、HPM两种损伤条件下对毛细胞的保护作用,并对其可能的机制进行了探讨。
     二、研究方法和结果
     1. HPM损伤毛细胞模型的建立:将豚鼠置于反射系数近似为零的微波暗室内进行辐照,辐照剂量分别为30 W/cm2、65 W/cm2、90 W/cm2,辐照时间20min,辐照后3 h、6 h、12 h三个时相点观察。结果发现不同功率的辐照对豚鼠的神经行为、体温产生程度不一的影响,说明HPM可致豚鼠热效应损伤;ABR阈值测定显示功率65 W/cm2辐照6 h后出现显著性差异;光镜、电镜观察65 W/cm2 6 h后出现形态学改变,毛细胞损伤数目较辐照前有差异,尤其是内毛细胞损伤较大,细胞间出现许多球形物质。这部分实验说明HPM可以造成毛细胞损伤,65 W/cm2 6 h可以作为损伤观察的研究剂量。
     2.庆大霉素损伤毛细胞模型的建立:给予庆大霉素120㎎/㎏腹腔注射,连续10天,通过ABR、光镜、电镜观察发现庆大霉素功能上可以造成听力下降,形态上可以造成毛细胞损伤,其损伤主要表现为外毛细胞,第一排外毛细胞的损伤较第二、三排重。
     3.锌指蛋白A20在豚鼠耳蜗毛细胞的表达研究:通过耳蜗冰冻切片、A20原位杂交显示正常情况下A20在体内沉默表达,HPM、庆大霉素损伤后3 h即出现表达,但6 h后表达即减弱,12 h后表达基本消失。说明体内毛细胞存在A20基因,其在损伤条件下出现短暂表达。
     4. pAdEasy-1/20腺病毒的制备及其在体对毛细胞作用的表达:通过酶切连接的方式将pCAGGS-FLAGmA20质粒的表达框连入pAdtrack-CMV穿梭载体,后者和Adeasy-1在大肠杆菌中进行同源重组,随后转染293细胞进行病毒颗粒包装。经单、双酶切及PCR鉴定正确,大量扩增病毒后,通过GFP报告基因确定病毒滴度为5×109 pfu /ml。
     5. pAdEeay-1/A20重组腺病毒对毛细胞的保护作用研究:通过耳蜗冰冻切片及免疫组化观察,pAdEeay-1/A20可以成功感染毛细胞;我们把研究对象按毛细胞损伤模型分为庆大霉素和HPM两个大组,每组又分为5个实验组,分别为正常对照组、pAdEeay-1组、pAdEeay-1/庆大霉素注射(或HPM)组、pAdEeay-1/A20/庆大霉素注射(或HPM)组和人工外淋巴液/庆大霉素注射(或HPM)组。
     结果发现正常对照组处死前后ABR听阈无明显变化,P>0.05;pAdEeay-1组耳蜗给药前、后动物ABR反应阈变化无统计学意义(P>0.05),表明耳蜗给药操作及重组腺病毒对动物ABR反应阈无明显影响,未导致内耳损伤;pAdEeay-1/庆大霉素(或HPM)组处死前后听反应阈值变化明显,P<0.01,提示不含A20的pAdEeay-1未对庆大霉素(或HPM)造成的听功能下降起到保护作用;pAdEeay-1/A20/庆大霉素(或HPM)组及人工外淋巴液/庆大霉素(或HPM)组听反应阈均提高,两组与正常对照组比较差异有统计学意义(P<0.05),但pAdEeay-1/A20/庆大霉素(或HPM)组听阈增高程度较人工外淋巴液/庆大霉素(或HPM)组低,两者统计学比较有差异,两组之间P<0.05,提示A20能够对庆大霉素(或HPM)所造成的听功能下降起到一定的保护作用,但这种保护作用是不完全的。
     毛细胞形态学观察同样发现pAdEeay-1/A20/庆大霉素(或HPM)组与正常对照组比较毛细胞损害数目有差异(P<0.05),但同时pAdEeay-1/A20/庆大霉素组(或HPM)与pAdEeay-1/庆大霉素组(或HPM)、人工外淋巴液/庆大霉素(或HPM)组比较毛细胞损伤数目又有有明显差异(P<0.01)。说明A20可以在形态上对内、外毛细胞起到一定的保护作用。
     6.锌指蛋白A20保护毛细胞的作用机制:理论上A20抗损伤和毛细胞的损伤通路上都有一个共同作用点就是caspase-3,但A20保护毛细胞是否是作用于caspase-3这一通路还不得知,本研究采用免疫组化,通过对损伤组(庆大霉素、HPM)、pAdEeay-1/A20组比较发现免疫标记在正常对照组和空载体组中都呈阴性反应;损伤组和pAdEeay-1/A20组中冰冻切片标本均显示有大量含棕黄色颗粒细胞出现在耳蜗Corti器内,其中毛细胞和支持细胞均有阳性细胞出现,但pAdEeay-1/A20组的阳性颗粒细胞数明显少于损伤组,损伤组与pAdEeay-1/A20组阳性细胞数经IOD统计,结果具有显著差异性,P<0.05。
     三、结论
     1.本实验成功制作电磁辐射(HPM)损伤毛细胞模型,发现HPM可以造成毛细胞损伤,HPM对毛细胞的损伤效应是随剂量和时间的变化而变化的,同时发现HPM主要对内毛细胞造成明显的损伤,而且细胞间有不规则的球状物出现。
     2.锌指蛋白A20在正常毛细胞中沉默表达,当受到外界损伤因素刺激后出现一过性表达,其表达时效仅数小时。
     3.通过构建重组pAdEeay-1/A20腺病毒载体以及在毛细胞的有效感染,证实了A20可以从功能和形态上对庆大霉素和HPM造成的毛细胞损伤起到一定的保护作用。
     4.本研究表明锌指蛋白A20保护毛细胞的作用机制之一可能是通过抑制caspase-3的表达来实现的。
1 Background and aims
     Hearing loss is the fifteenth common disease in the world. Even in developed countries, there are about 100 million people suffering from it, and 90% among them are sensorineural hearing loss. According to the data collected by a sampling survey on the handicapped in our country, auditory deformity is in a trend of rising year by year. Hearing loss due to hair cell damage is the main reason for deafness, so how to protect hair cells becomes the focus of scientific researchers. Cochlear hair cells, the terminal receptor which transforms the acoustic stimulus into chemical energy, consists two kinds of cells, inner and outer hair cells. The former are the receptor cells which transform the mechanical vibration into the action potential of the connected auditory nerves, and the later are involved in the enhancement of the auditory nerves on height-frequency selectivity, and regulation and self-protection of the cochlea. The lesion of either outer or inner hair cells can lead to irreversible sensorineural hearing loss. Although being enveloped and protected in a snail-shaped bony structure and with the help of blood-labyrinth barrier, the cochlea is relatively independent in anatomical and functional aspects. Once it is impaired, it will be difficult to communicate with outside via systemic or local circulation, and has to depend on its own metabolism to eliminate the injury factors. In this way, the key point of this issue is to improve the self-protective ability of hair cells so as to prevent the normal cells from damage. We need to find a factor which can exert consistent protection on hair cells.
     When there are exogenous deleterious factors, our body will generate defensive reflection to response them, while for cells, they will produce some protective proteins. Zinc finger protein A20 is one of them. This protein was firstly found as the product when TNF was used to treat human endothelial cells. Gene sequencing revealed that it encodes a new zinc protein, so was named as zinc finger protein A20. The zinc finger protein A20 exists in the cytoplasma, which negatively regulates the activity of nuclear factor-kappa B (NF-κB), and is expressed in many cells. There are four standard repeats ATTTA in the 3' untranslated region of the A20 mRNA, which indicating the unstable expression of A20. A20 exerts anti-inflammation, anti-apoptosis, and anti-necrosis effects in various cells, such as endothelial cells, and brain nerve cells. It has reported that hair cell injury results in the alteration of NF-κB and Caspase-3 signal pathways, leading to up-regulation of these two proteins. While A20 can inhibit the expressions of NF-κB and caspase-3. Thus, we infer A20 can protect hair cells through caspase-3. Since A20 is expressed rapidly and transiently, recombinant expression vector is need to obtain stable expression to perform its anti-injury effect. Adenovirus vector is well adopted in the treatment targeting inner ear genes because of its high-efficiency, low pathogenicity and high-titer.
     There are various causes for hair cell injury, and drug poisoning is the most common one. What’s more, in this modern society and during modern war, electromagnetic radiation, especially that of high-frequency, becomes a main reason threatening human’s health,. Base on this, we employed these two kinds of injury models of hearing loss. We aim to found theoretical basis for A20 improving and repairing injured auditory function by exploring its protective effect and possible molecular mechanism on inner hair cells.
     Based on above mentioned analyses, we established the hair cell injury models induced by gentamicin ototoxicity and high power microwave, observed A20 expression in normal and injured hair cells, then explore the protective effect of A20 by constructing recombinant adenoviral expression vector pAdEasy-1/A20 and the possible mechanism.
     2 Methods and results
     2.1 Establishment of HPM-induced hair cell injury model
     Guinea pigs was placed in a microwave anechoic chamber with a reflection coefficient of approximately zero, and exposed to radiation of 30, 65 or 90 W/cm2 for 20 min. Then the animals were observed 3, 6 and 12 h after radiation. Changes of neurobehavior function and body temperature were observed in guinea pigs exposure to different power radiation, indicating that HPM leads to thermal effect injury. Significant difference was found in the evoked potentials of auditory brainstem response (ABR) in guinea pigs 6 h after being exposed to 65 W/cm2 radiation. Light and electron microscopy observed that there were more injured hair cells, especially inner hair cells, and many globular objects in the group 6 h after 65 W/cm2 radiation. These results suggested that HPM resulted in hair cell injury and 6 h after 65 W/cm2 radiation could be used as the dose for damage study.
     2.2. Establishment of gentamicin -induced hair cell injury model
     This model was established by i.p. injecting 120㎎/㎏ gentamicin for 10 d. ABR, light and electron microscopy discovered that gentamicin caused hearing loss, made the damage of hair cells morphologically, especially those inner cells. The damage of first row hair cells was more severe than those at second and third rows.
     2.3 Expression of A20 in the cochlear hair cells of guinea pigs
     In situ hybridization indicated that A20 was not expressed in normal cochlea, but begun to express 3 h after gentamicin ototoxicity or HPM radiation, declined in 6 h and almost disappeared in 12 h. These data indicated that A20 was transiently expressed only under damage condition in cochlea inner hair cells .
     2.4 Construction, purification and expression of adenoviral vector pAdEasy-1/20 in hair cells in vivo
     After the expression cassette of plasmid pCAGGS-FLAGmA20 was cloned into shuttle vector pAdtrack-CMV by enzyme ligation, the recombinant was amplified in E. coli Adeasy-1 and then packaged in 293 cells. After identified by single and double enzyme digestion and PCR, the virus was expanded and purified, and yield a titer of 5×109 pfu /ml with the aid of reporter gene GFP.
     2.5 Protective effect of recombinant adenovirus pAdEeay-1/A20 on hair cells Immunohistochemical methods indicated that the recombinant adenovirus could infect hair cells in vivo. The guinea pigs in this study were divided into normal control, pAdEeay-1 group, pAdEeay-1 and gentamicin/(or HPM) group, pAdEeay-1/A20/ gentamicin/(or HPM) group, and artificial perilymph solution/gentamicin group. There was no significant difference in hearing threshold of ABR in the animals of normal control group and of pAdEeay-1 group before and after drug administration into the cochlea, indicating that this way of administration and recombinant adenovirus had no obvious effect on the hearing threshold of ABR. Significant change was observed in animals from pAdEeay-1 and gentamicin/(or HPM) group, suggesting that there was no protective effect of pAdEeay-1 on hearing loss. The hearing threshold of ABR was significantly higher in pAdEeay-1/A20/ gentamicin/(or HPM) group and artificial perilymph solution/ gentamicin group in comparison with that in normal control group. That of pAdEeay-1/A20/ gentamicin/(or HPM) group was significantly lower than that of artificial perilymph solution/ gentamicin group. These results implied that A20 exerted protective effect on hearing loss induced by gentamicin ototoxicity or HPM radiation, but the protection was not complete. Morphological study found that there were lesser injured hair cells in pAdEeay-1/A20/ gentamicin/(or HPM) group and artificial perilymph solution/ gentamicin group than in normal control group, with the former better than the later group, indicating that A20 could protect outer and inner hair cells morphologically.
     2.6 Mechanism of A20 protecting hair cells
     Theoretically, the pathway of A20 exerting its anti-injury effect has a crossing point with the damage mechanism of hair cells, that is, caspase-3. We aimed to investigate whether caspase-3 played a role in this protective process. Immunohistochemical method was used to detect its expression in above mentioned group. It was negatively expressed in normal control group and of pAdEeay-1 group, strongly expressed in gentamicin/(or HPM) group and pAdEeay-1/A20/ gentamicin/(or HPM) group. It was distributed in the organ of Corti, hair cells and cells of Deiters. But the caspase-3 expression was significantly milder in pAdEeay-1/A20/ gentamicin/(or HPM) group than in gentamicin/(or HPM) group.
     3 Conclusion
     3.1 HPM-induced hair cell injury model is successfully established in guinea pigs. HPM is proved to damage hair cells in a dose- and time- dependent manner, and mainly injures inner hair cells.
     3.2 Zinc finger protein A20 is not expressed in normal cochlear hair cells, but transiently expressed after the stimulation of external injury factors.It,s expression maintained only several hours.
     3.3 Zinc finger protein A20 has certain protective effect on the function and morphology of hair cells after gentamicin ototoxicity or HPM radiation via the construction of recombinant adenovirus pAdEeay-1/A20 and its transfection to hair cells.
     3.4 Zinc finger protein A20 may protect hair cells by inhibiting the expression of caspase-3.
引文
1.余争平.高功率微波武器损伤医学防护研究进展,第三军医大学高功率微波(HPM)生物医学论文汇集第五卷,2001年11月.
    2. Zolin V.F.Radio Science,1995.30(1):255-265.
    3. Schot IJ,Hilgcrs FJ,Keas RB.Late effecs of radio therapy On hearing.Eur Arch Otorhinolaryngol,1992,249:305.
    4.冯勃,姜泗长,杨伟炎等.急性次声波暴露后豚鼠位听功能及内耳超微结构的变化,中华耳鼻咽喉科杂志,2001;2(l):18-21.
    5. Akyel Y, Hunt EL, Gambrill C, Vargas C Jr. Immediate post-exposure effects of high-peak-power microwave pulses on operant behavior of Wistar rats. Bioelectromagnetics. 1991;12(3):183-95.
    6. D'Andrea JA, Thomas A, Hatcher DJ. Rhesus monkey behavior during exposure to high-peak-power 5.62-GHz microwave pulses. Bioelectromagnetics. 1994;15(2): 163-76.
    1. SchachtJ.Biochemicalbasisof aminoglycoside ototoxicity.Otolaryngol Clin North Am. 1993 Oct;26(5):845-56. Review.
    2. Garetz SL,Schacht J.Ototoxicity:Of mice and men.In Handbook of Auditory Research,ed.by R.R.Fay and A.N.Popper,Vo1.V11:Clinical Aspc;cts of Hearing,ed.by T.R.Van.De Water,A.N.Popper,and R.R.Fay,pp.116-154,Springer,New York,1996.
    3. Begg EJ,Barclay ML. Aminoglycosides--50 years on.Br J Clin Pharmacol. 1995 Jun;39(6):597-603.Review
    4. Forge A,schacht J.Aminoglycoside aritibiotics.Audiol Neurootol.2000 Jan-Feb; S(1): 3-22.Review.
    5.唐镜波.目前抗菌药临床应用中的某些问题与对策.中华内科杂志.1997;77: 323-324.
    6. Seidman MD, Quirk WS, Nuttall AL, et al. The protective effects of allopurinol and superoxide dismutase-polyethylene glycol on ischemic and reperfusion induced cochlear damage. Otolaryngol Head Neck Surg, 1991,105:457-463.
    7. Puel JL, Pujol R, Tribillac F, et al. Excitatory a mino acid antagonists protect cochleal auditory neurons from excitotoxicity.J Comp Neurol,1994,341:241-256.
    8.丁大连Richard Salvi.氨基糖昔类抗生素耳毒性研究.中华耳科学杂志,2007, (2):125-132.
    9. Hiel H, Erre JP, Aurousseau C, et al. Gentamicm apke by cochlear hair cells precedes hearing impairment during chronic treatment.Audialogy, 1993, 32:78-87.
    10. Mazurek B, Winter E, Fuchs J,et al. Susceptibility of the hair cells of the newborn rat cochlea to hypoxia and ischemia.Hear Res. 2003 Aug;182(1-2):2-8.
    1. Minoda R,et al.Strategies for replacing lost cochlear hair cells.Neuroreport. 2004 May 19;15(7):1089-92.
    2. Zhu Chuhong,et al.The zinc finger protein A20 protects endothelial cells from burns serum injury. Burns. 2004, 30(2):127-133.
    3. Yu L,et al.Neuroprotective Effect of A20 on TNF-Induced Postischemic Apoptosis. Neurochem Res. 2006 Jan;31(1):21-32.
    4. Daniel Labbé, et al. Activation of caspase-3 is associated with oxidative stress in the hydropic guinea pig cochlea .Hearing Research, 2005, 202( 1-2):21-27.
    5. Masatsugu Masuda, et al. Nuclear factor-kappa B nuclear translocation in the cochlea of mice following acoustic overstimulation . Brain Research, 2006, 12(1): 237-247.
    6. X.Wei,et al.Minocycline prevents gentamicin-induced ototoxicity by inhibiting p38 MAP kinase phosphorylation and caspase 3 activation.Neuroscience,2005,131(2):513-521.
    7. Opipari AW Jr, Hu HM, Yabkowitz R and Dixit VM, The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem ,1992.267: 12424-12427.
    8. Janicke RU, Lee FH and Porter AG, Nuclear c-Myc plays an important role in the cytotoxicity of tumor necrosis factor a in tumor cells. Mol Cell Biol 14: 5661-5670,1994
    9. Jaattela M, Mouritzen H, Elling F and Bastholm L, A20 zinc finger protein inhibits TNF and IL-l signaling. J lmmunol 156: 1166-1173, 1996.
    10. Slowik MR, Min W, Ardito T,et al Evidence that tumor necrosis factor triggers apoptosis in human endothelial cells byinterleukin-1-converting enzyme-like protease-dependent and -independent pathways.Lab Invest 77: 257-267, 1997.
    11. Natoli G, Costanzo A, Guido F, et al.Nuclear factor kB-independent cytoprotective pathways originating at tumor necrosis factor receptor- associated factor 2. J Biol Chem 273: 31262-31272, 1998.
    12. Hess S, Gottfried E, Smola H, et al.CD40 induces resistance to TNF-mediated apoptosis in a fibroblast cell line. Eur J Immunol 28:3594-3604, 1998.
    13. De Valck D, Jin DY, Heyninck K, et al.The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases. Oncogene 18: 4182-4190, 1999.
    14. Wissing D, Mouritzen H and Jaattela M, TNF-induced mitochondria changes and activation of apoptotic proteases are inhibited by A20. Free Radic Biol Med 25: 57-65,1998.
    15. Heyninck K, Denecker G, De Valck D, et al.Inhibition of tumor necrosis factor-induced necrotic cell death by the zinc finger protein A20. Anticancer Res19: 2863-2868, 1999.
    16. Wertz IE, O'Rourke KM, Zhou H, et al.De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004,430(7000):694-9.
    17. Nancy ST, Danilo DL, Peter MF. Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nature Biotech, 1997, 15:647-652.
    18. Krikos A, Laherty CD, Dixit VM. Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. J Biol Chem, 1992, 267:17971-17976.
    1. McFadden SL, Ding D, Salvemini D, Salvi RJ. M40403, a superoxide dismutase mimetic, protects cochlear hair cells from gentamicin, but not cisplatin toxicity.Toxicol Appl Pharmacol. 2003 Jan 1;186(1):46-54.
    2. Ding D, Stracher A, Salvi RJ .Leupeptin protects cochlear and vestibular hair cells from gentamicin ototoxicity.Hear Res. 2002 Feb;164(1-2):115-26.
    3. Duan M, Qiu J, Laurell G, Olofsson A, Counter SA, Borg E. Dose and time-dependent protection of the antioxidant N-L-acetylcysteine against impulse noise trauma.Hear Res. 2004 Jun;192(1-2):1-9.
    4. Liu Y, Okada T, Shimazaki K, Sheykholeslami K, Nomoto T, Muramatsu S, Mizukami H, Kume A, Xiao S, Ichimura K, Ozawa K Protection against aminoglycoside-induced ototoxicity by regulated AAV vector-mediated GDNF gene transfer into the cochlea.Mol Ther. 2008 Mar;16(3):474-80. Epub 2008 Jan 8.
    5. Kawamoto K, Yagi M, St?ver T, Kanzaki S, Raphael Y. Hearing and hair cells are protected by adenoviral gene therapy with TGF-beta1 and GDNF.Mol Ther. 2003 Apr;7(4):484-92.
    6. Feghali JG, Lefebvre PP, Staecker H, Kopke R, Frenz DA, Malgrange B, Liu W, Moonen G, Ruben RJ, Van de Water TR. Mammalian auditory hair cell regeneration/repair and protection: a review and future directions.Ear Nose Throat J.1998 Apr;77(4):276, 280, 282-5.
    7. Tang LS, Montemayor C, Pereira FAIUBMB Life. Sensorineural hearing loss: potential therapies and gene targets for drug development..2006 Sep;58(9):525-30.
    8. Maiorana CR, Staecker H. Advances in inner ear gene therapy: exploring cochlear protection and regeneration.Curr Opin Otolaryngol Head Neck Surg. 2005 Oct;13(5):308-12.
    9. Davis BR, Brown DB, Prokopishyn NL,et al. Micro-injection-mediated hematopoietic stem cell gene therapy[J].Curr Opin Mol Ther,2000 ,2(4):412-419
    10. Wolff J, Lewis DL, Herweijer H,et al. Non-viral approaches for gene transfer[J]. Acta Myol,2005 ,24(3):202-208
    11. Gorman C, Padmanabhan R, Howard BH. High efficiency DNA-mediated transformation of primate cells[J]. Science,1983 ,221(4610):551-553
    12. Panyam J,Labhausetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue[J].Advanced Drug Deliver Reviews,2003,55(3):329-347.
    13. Weiss MA,Frisancho JC,Roessler B.et al. Viral- mediated gene transfer in the cochelear.Int J Dev Neurosci,1997,15:577-583.
    14. Raphael Y,Frisancho JC,Roessler BJ.Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo.Neurosci Lett.1996 Mar 29;207(2):137-41.
    15. Derby ML, Sena-Esteves M, Breakefield XO, et al. Gene transfer into the mammalian inner ear using HSV-1 and vaccinia virus vectors.Hear Res. 1999 Aug;134(1-2):1-8.
    16. Han JJ, Mhatre AN, Wareing M, et al. Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector.Hum Gene Ther. 1999 Jul 20;10(11):1867-73.
    17. Liu Y, Okada T, Nomoto T, et al. Promoter effects of adeno-associated viral vector for transgene expression in the cochlea in vivo.Exp Mol Med. 2007 Apr 30;39(2):170-5.
    18. Stone IM, Lurie DI, Kelley MW, et al. Adeno-associated virus-mediated gene transfer to hair cells and support cells of the murine cochlea.Mol Ther. 2005 Jun;11(6):843-8.
    19. Nakai H, Montini E, Fuess S, Storm TA, Grompe M, Kay MA.Nat Genet. AAV serotype 2 vectors preferentially integrate into active genes in mice 2003 Jul;34(3):297-302.
    20. Derby ML, Sena-Esteves M, Breakefield XO, et al..Gene transfer into the mammalianinner ear using HSV-1 and vaccinia virus vectors.Hear Res. 1999 Aug;134(1-2):1-8.
    21. Sandrin V, Russell SJ, Cosset FL. Targeting retroviral and lentiviral vectors.Curr Top Microbiol Immunol. 2003;281:137-78.
    22. Han JJ, Mhatre AN, Wareing M, et al..Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector.Hum Gene Ther. 1999 Jul 20;10(11):1867-73.
    23. Schiedue G, Morral N, Parks RJ, et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo Gene expression and decreaseed toxicity. Nat Genet. 1998. 18: 180-183.
    24.陈琳,薛绪潮.第三代腺病毒载体的改良与应用,第二军医大学学报,2007,28(7): 722-725.
    25. Bett AJ, Haddara W, Prevec L, et al. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3.Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8802-6.
    26. Kremer EJ, Boutin S, Chillon M, et al. Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer.J Virol. 2000 Jan;74(1):505-12.
    1. Malgrange B, Rigo JM, Coucke P, et al.Hear Res. Identification of factors that maintain mammalian outer hair cells in adult organ of Corti explants.2002 Aug;170(1-2):48-58.
    2. Hu BH, Henderson D, Nicotera TM.Hear Res. Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise.2002 Apr;166(1-2):62-71.
    3. Li Duan M .Bordet T .M ezzina M.et al. Adenoviral and adeno-associated viral vector mediated Gene transfer in the guinea pig cochlea[J].Neuroreport, 2002, 13(10):1293-1299.
    4. Goycoolea MV. Clinical aspects of round window membrane permeability under normal and pathological conditions[ J].Acta Otolaryngol, 2001.121(4):437-447.
    5. Jero J,Mhatre AN,Tseng CJ,et al.Cochlear gene delivery throunh an intact round window membrane in mouse[J].Hum Gene Ther, 2001,12(5):539-548.
    6. Lalwani AK,Jero J,Mhatre AN.Current issues in cochlear gene transfer[J].Audiol Neurootol, 2002,7(3):146- 151.
    7.李永团,迟晓艳,董频等.Ad-GFP基因经半规管转导对豚鼠内耳形态和功能的影响,山东大学基础医学院学报,2005,19(4):150-154.
    8.孙建军,冯红云.内耳疾病的局部给药研究,中国医学文摘耳鼻咽喉科学,2007, 22(2):81-83
    9.王晓侠,李胜利,刘晖,等.腺病毒携带GFP在豚鼠耳蜗基因转导的形态结构与功能改变[J],2002,(02):121-124.
    10. Weiss MA, Frisancho JC, Roessler BJ, Raphael Y. Viral-mediated gene transfer in the cochlea.Int J Dev Neurosci. 1997 Jul;15(4-5):577-83.
    11. Luebke AE, Foster PK, Muller CD, Peel AL.Hum Gene Ther. Cochlear function and transgene expression in the guinea pig cochlea, using adenovirus- and adeno-associated virus-directed gene transfer.2001 May 1;12(7):773-81.
    12.徐耀先,周晓峰,刘立德主编.分子病毒学[M].武汉:湖北科技出版社.2000.66-67.
    13. Laherty CD, Perkins ND, Dixit VM. Human T cell leukemia virus type I Tax and phorbol 12-myristate 13-acetate induce expression of the A20 zinc finger protein by distinct mechanisms involving nuclear factor kappa B.J Biol Chem. 1993 Mar 5;268(7):5032-9.
    1. Zhu CH, Ying DJ, Mi JH,et al. The zinc finger protein A20 protects endothelial cells from burns serum injury. Burns. 2004, 30(2):127-133.
    2. Yu L, Miao H, Hou Y, et al.Neuroprotective Effect of A20 on TNF-Induced Postischemic Apoptosis. Neurochem Res. 2006 Jan;31(1):21-32.
    3. Wei X, Zhao L, Liu J, et al. Minocycline prevents gentamicin-induced ototoxicity by inhibiting p38 MAP kinase phosphorylation and caspase 3 activation.Neuroscience, 2005,131(2):513-521.
    4. Ohlemiller KK, Dugan LL.Elevation of reactive oxygen species following ischemia-reperfusion in mouse cochlea observed in vivo.Audiol Neurootol, 1999, 4(5):219-228.
    5. Kooy N M,Royall,J A, et al Evidence for in vivo peroxynitrite production in human acute lung injury[J].Am J Respir Cirt Med 1995,151(4): 1250-1254
    6.丁大连;Richard Salvi;氨基糖苷类抗生素耳毒性研究,中华耳科学杂志,2007,5(2): 125-131.
    7. Wolf BB, Schuler M, Echeverri F, et al. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation.J Biol Chem. 1999 Oct 22;274(43):30651-6.
    1. Carl O. Pabo, Ezra Peisach, et al.Design and selection of novel Cys2His2 zinc finger proteins. Annu.Rev.Biochem.2001,70:313-340.
    2. FRANKEL A D,PABO C O.Fingering too many proteins [J].Cell,1988,53(6):675
    3. Miller J, McLachlan AD, Klug A.Repetitive zinc-binding domains in the proteintranscription factor IIIA from Xenopus oocytes. EMBO J. 1985 Jun;4(6):1609-14.
    4. Berg JM, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science. 1996 Feb 23;271(5252):1081-5.
    5. Henikoff S, Greene EA, Pietrokovski S et al. Gene families: the taxonomy of protein paralogs and chimeras. Science. 1997, 278 (5338):609-616.
    6. Opipari AW Jr, Boguski MS, Dixit VM. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein.J Biol Chem. 1990 Sep 5;265(25):14705-8.
    7. Anthomy W. Opipari, Jr., Mark S.Boguski, et al. The A20 cDNA Induced by Tumor Necrosis FactorαEncodes a Novel Type of Zinc Finger Protein. J Bio Chem.1990, 265(25):14705-14708.
    8.吴丽娟,蒋建新,朱佩芳等.人A20基因ORF的克隆.第三军医大学学报. 2004,26(8):658-662.
    9. Alexandra Krikos, Carol D. Laherty, Vishva M. Dixit, et al. Transcriptional Activation of the Tumor Necrosis Factorα-Inducible Zinc Finger Protein, A20, Is Mediated byκB Elements. J Biol Chem.1992,267(25):17971-17976.
    10.吴丽娟,康格非.锌指蛋白A20及其对炎症反应的调控.生命的化学. 2004,24(3):202-224.
    11. Ballard DW, Dixon FP, Peffer NJ, et al.The 65-kDa subunit of human NF-kappa B functions as a potent transcriptional activator and a target for v-Rel-mediated repression. ProcNatl Acad Sci. 1992,1;89 (5):1875-9.
    12.殷莉群,廖伟,曹亚. Rel/NF-κB/IκB/IKK信号通路转导途径研究进展.国外医学分子生物学分册. 2000,22(4):223-227.
    13. Heyninck K, Kreike MM, Beyaert R. Structure-fuction analysis of the A20-binding inhibitor of NF-kappaB activation, ABIN-1. FEBS Lett. 2003,536(1-3):135-140.
    14. David P. Hughes, Marie B, et al.The Antiinflammatory Endothelial Tyrosine Kinase Tie2 Interacts With a Novel Nuclear Factor-κB Inhibitor ABIN-2. Circ Res.2003, 92:630-636.
    15. Sofie Van Huffel, Filip Delaei, Karen Heyninck, et al. Indentification of a Noval A20-binding inhibitor of Nuclear Factor-κB Activation Termal ABIN-2. J Biol Chem,2001,276(32):30216-30223.
    16. Opipari AW Jr, Hu HM, Yabkowitz R and Dixit VM, The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem ,1992.267: 12424-12427.
    17. Janicke RU, Lee FH and Porter AG, Nuclear c-Myc plays an important role in the cytotoxicity of tumor necrosis factor a in tumor cells. Mol Cell Biol 14: 5661-5670,1994
    18. Jaattela M, Mouritzen H, Elling F et al.A20 zinc finger protein inhibits TNF and IL-l signaling. J lmmunol 156: 1166-1173, 1996.
    19. Slowik MR, Min W, Ardito T, et al.Evidence that tumor necrosis factor triggers apoptosis in human endothelial cells byinterleukin-1-converting enzyme-like protease-dependent and -independent pathways.Lab Invest 77: 257-267, 1997.
    20. Natoli G, Costanzo A, Guido F, et al.Nuclear factorκB-independent cytoprotective pathways originating at tumor necrosis factor receptor- associated factor 2. J Biol Chem 273: 31262-31272, 1998.
    21. Hess S, Gottfried E, Smola H, et al.CD40 induces resistance to TNF-mediated apoptosis in a fibroblast cell line. Eur J Immunol 28:3594-3604, 1998.
    22. De Valck D, Jin DY, Heyninck K, et al.The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases. Oncogene 18: 4182-4190, 1999.
    23. Wissing D, Mouritzen H and Jaattela M, TNF-induced mitochondria changes and activation of apoptotic proteases are inhibited by A20. Free Radic Biol Med 25: 57-65,1998.
    24. Heyninck K, Denecker G, De Valck D, et al.Inhibition of tumor necrosis factor-induced necrotic cell death by the zinc finger protein A20. Anticancer Res19: 2863-2868, 1999.
    25. Varani J, Dame MK, Taylor CG, et al.Age-dependent injury in human umbilical vein endothelial cells: Relationship to apoptosis and correlation with a lack of A20 expression. Lab Invest 73: 851-858, 1995.
    26. Fries KI,Miller WE and Raab-Traub N, Epstein-Barr virus latent membrane protein 1 blocks p53-mediated apoptosis through the induction of the A20 gene. J virol 70: 8653-8659, 1996.
    27. Hu X, Yee E, Harlan JM, et al.Lipopolysaccharide induces the antiapoptotic molecules,A1 and A20, in microvascular endothelial cells. Blood 92:2759-2765. 1998.
    28. Krikos A, Laherty CD and Dixit VM, Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated byκB elements. J Biol Chem 267: 17971-17976, 1992.
    29. Zhang SQ, Kavalenko, A, Cantarella G et al.Recruitment of the IKK signalosome to the p55 T'NF receptor: RIP and A20 bind to NEMO (IKKg) upon receptor stimulation. Immunity 12: 301-311,2000.
    30. Song HY, Rothe M and Goeddel DV, The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-κB activation.Proc NatL Acad Sci USA 93:6721-6725, 1996.
    31. De Valck D, Heyninck K, Van Criekinge W, et al.A20 inhibits NF-κB activation independently of binding to 14-3-3 proteins. Biochem Biophys Res Commun 238: 590-594, 1997.
    32. Ferran C, Stroka DM, Badrichani AZ, et al.A20 inhibits NF-κB activation in endothelial cells without sensitizing to tumor necrosis factor-mediated apoptosis. Blood 91:2249-2258, 1998.
    33. Heyninck K, De Valck D, Vanden Berghe W, et al.The zinc finger protein A20 inhibits TNF-induced NF-κB-dependent gene expression by interfering with an RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-κBinhibiting protein ABIN. J Cell Biol 145: 1471-1482, 1999.
    34. Eliopoulos AG, Stack M, Dawson CW, et al.Epstein-Barr virus-encoded LMY1 and CD40 mediate IL-6 production in epithelial cells via an NF-κB pathway involving TNF receptor-associated factors.Oncogene 14: 2899-2916, 1997.
    35. Carpentier I and Beyaert R, TRAF1 is a TNF inducible regulator of NF-κB activation.FEBS Lett 460:246-250, 1999.
    36. Rothe M, Sarma V, Dixit VM et al.TRAF2-mediated activation of NF-ΚB by TNF receptor 2 and CD40.Science 269:1424-1427, 1995.
    37. Wertz IE, 0' Rourke KM, Zhou H, et al.De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling.Nature,430:694-9,2004.
    38. Li HL, Wang AB, Zhang B, et al.A20 inhibits oxidized low-density lipoprotein-induced apoptosis through negative Fas/Fas ligand- dependent activation of caspase-8 andmitochondlrial pathways in murine BAW264.7 macrophages.J Cell Physiol, 2006, 208(2):307- 318.
    39. Lee EG, Boone DL, Chai S, et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-dificient mice. Science.2000,289:2350-2354.
    40.朱楚洪,应大君,糜建红等.锌指蛋白A20在内毒素所致人脐静脉内皮细胞损伤中的作用.解剖学报. 2003,34(6):629-632.
    41.糜建红,朱楚洪,应大君等.锌指蛋白基因抑制氧损伤诱导的内皮细胞E-选择素的表达.解剖学杂志. 2004,27(4):345-347.
    42.侯春丽,朱楚洪,应大君.外源性A20基因对缺氧诱导的内皮细胞E-选择素表达的影响.解剖学杂志. 2007,30(1):1-3.
    43. Beyaert R, Heyninck K, Van Huffel S.A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem Pharmacol. 2000 Oct 15;60(8):1143-51.
    44. Heyninck K, Kreike MM, Beyaert R.Structure-function analysis of the A20-binding inhibitor of NF-kappa B activation, ABIN-1. FEBS Lett. 2003 Feb 11;536(1-3):135-40.
    45. Hughes DP, Marron MB, Brindle NP. The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-kappaB inhibitor ABIN-2.Circ Res. 2003 Apr 4;92(6):630-6.
    46. Zhang SQ, Kovalenko A, Cantarella G, Wallach D.Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity. 2000 Mar;12(3):301-11.
    47. Tewari M, Wolf FW, Seldin MF, et al. Lymphoid expression and regulation of A20. Aninhibitor of programmed cell death. J Immunol. 1995,154:1699-1706.
    48. Laherty CD, Hu HM, Opipaer AW, et al. The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J Biol Chem. 1992,267:24157-24160.
    49. Kumar S. Mechanisms mediating caspase activation in cell death. Cell Death Differ.1999,6:1060-1066.
    1. Murugasu E, et al.Recent advances in the treatment of sensorineural deafness, Ann Acad Med Singapore, 2005 May;34(4):313-21.
    2. Pent C,Levilliers,J, Hardelin ,JP.Moleeular genetics of hearing loss.[J]Annu Rev Genet,2001, 35(12):589- 646.
    3. Ohlemiller KK, Dugan LL.Elevation of reactive oxygen species following ischemia-reperfusion in mouse cochlea observed in vivo.Audiol Neurootol, 1999, 4 (5):219-228.
    4. Lesniak W, Pecoraro VL, Schacht J.Ternary comp lexes of gentamicin with iron and lipid catalyze formation of reactive oxygen species.Chem Res Toxicol, 2005, 18 (2):357-364.
    5. Clerici WJ, DiMartino DL, Prasad MR.Direct effects of reactive oxygen species on cochlear outer hair cell shape in vitro.Hear Res, 1995,84 (1-2) : 30-40.
    6. Clerici WJ, Yang L.Direct effects of intraperilymphatic reactive oxygen species generation on cochlear function.Hear Res, 1996, 101(1-2):14-22.
    7. Dehne N, Lautermann J, ten CateWJ, et al. In vitro effects of hydrogen peroxide on the cochlear neurosensory epithelium of the guinea pig.Hear Res, 2000, 143 (1-2) : 162-170.
    8. Matsunobu T, Schacht J.Nitric oxide / cyclic GMP pathway attenuates ATP-evoked intracellular calcium increase in supporting cells of the guinea pig cochlea.J Comp Neurol, 2000, 423 (3) : 452-461.
    9. Sha SH, Taylor R, Forge A, et al.Differential vulnerability of basal and apical hair cells is based on intrinsic suscep tibility to free radicals.Hear Res, 2001 May; 155 (1-2) : 1-8.
    10. Kooy N M,Royall,J A, et al Evidence for in vivo peroxynitrite production in humanacute lung injury[J].Am J Respir Cirt Med 1995,151(4): 1250-1254
    11. Moncada S,Palmer RMJ,Higgs EA,Nitricoxide:physiology,pathophysiology,and pharmacol Rev,1991,43( 2):109-142
    12.丁大连;Richard Salvi;氨基糖苷类抗生素耳毒性研究,中华耳科学杂志,2007,5(2): 125-131.
    13.廖英俊,汤浩.抗癌药顺铂耳毒性机制及防治力法的研究进展,[J]生理科学进展, 2003, 34: 266.
    14.李兰,王重远,郭晓峰,等.丫碇橙荧光染色技术对顺铂致聋机制的研究[J].临床耳鼻咽喉科杂志,1995, 9: 341
    15. Ryhak LP, Somani S. Ototoxicity: Amelioration by protective agents [Ototoxicity: Basic Science and Clinical Applicationsa:Part 3: Cisplatin][J].Annals of the New York Academy of Science,1999,884:143.
    16. Daniel Labbé, et al. Activation of caspase-3 is associated with oxidative stress in the hydropic guinea pig cochlea.Hearing Research,2005,202(1-2):21-27.
    17. Masatsugu Masuda, et al. Nuclear factor-kappa B nuclear translocation in the cochlea of mice following acoustic overstimulation.Brain Research, 2006,(1):237-247.
    18. X Wei, et al. Minocycline prevents gentamicin-induced ototoxicity by inhibiting p38 MAP kinase phosphorylation and caspase-3 activation. Neuroscience, 2005,131 (2):513-521.
    19. Duan M,Agerman K,Ernfors P, Canlon B.Complementary roles of neurotrophin 3 and a N-methyl-D-aspartate antagonist in the protection of noise and aminoglycoside-induced ototoxicity.Proc Natl Acad Sci USA 2000; 97,7597-7602.
    20. Fan Jingping, Hu Yutian, Lu Guangyu, et al. Acoustic trauma of Guinea pigs caused by 60Coγ-Ray. J Med Coll PLA, 1989; 4(1):81.
    21. Cruz RM, Lambert PR, Rubel EW. Light microscopic evidence of hair cell regeneration after gentamicin toxicity in chick cochlea.Arch Otolaryngol Head Neck Surg.1987 Oct;113(10):1058-1062.
    22. Zhao H B.Long-term natural culture of cochlear sensory epithelia of guinea pigs[J].Neurosci Lett, 2001, 315(1-2):73-76.
    23. Slack,TM.Stem cells in epithelial tissues[J].Science,2000,287(5457):1431-1433.
    24. Chen P,Segil N.P27( Kip1) links cell proliferation to morphogenesis in the developingorgan Of Corti[J].Development,1999,126(8):1581-1590.
    25. Zheng JL,Gao WQ.Overexpression of mlath1 induces robust production of extra hair cells in postnatal rat inner ears[J].Nat Neurosci,2000,3(6):580-586.
    26. Sobkowicz HM,Loftus JM,Slapnick SM.Tissue culture of the organ of Corti[J].Acta Otolaryngol Suppl,1999,502:3-36.
    27. Warchol M.E., Lambert P.R., Goldstein B.J. et al. Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 1993; 259:1619- 1622.
    28. Roberson DW el al. Assoc Res Otolaryngol Abstr,1993: 16: 104-105.
    29. Rubel E.W., Dew L.A., Roberson D.W. Mammalian vestibular hair cell regeneration. Science 1995; 267:701-703.
    30. Avallone B, Fascio U, Balsamo G, Marmo F. Gentamicin ototoxicity in the saccule of the lizard Podarcis Sicula induces hair cell recovery and regeneration.Hear Res. 2008 Jan;235(1-2):15-22.
    31. Huawei Li, Hong Liu, Stafen Haller. Pluripotent stem cells from adult mouse inner ear.Nature Medicine 2003; 9:1293-1299.
    32. Rivolta MN,Crix N,Lawlor P,et al.Auditory hair cell precursors immortalized from the mammalian inner ear[J].Proc Biol Sci,1998,265(1406):1595-1603.
    33. Lawlor P,Marcotti W,Rivolta MN,et al.Differentiation of mammalian vestibular hair cells from conditionally immortal . Postnatal supporting cells[J].J Neurosci, 1999, 19(21):9445-9458.
    34. Zheng J.L., Helbig C., Gao WQ. Induction of cell proliferation by fibroblast and insulin-like factor in pure rat inner ear epithelial cell cultures. J Neurosci 1997; 17:216-226.
    35. Kopke R.D.,Jackson R.L., Li G et al. Growth factor treatment enhances vestibular hai r cell renewal and results in improved vestibular function. Proc Natl Acad Sci USA 2001;98:5886-5891.
    36.李华伟,汪吉宝.内耳毛细胞的再生前体细胞的来源、激活及调节因素.听力学及言语疾病杂志.1998, 6(1):51-54.
    37.高维强,翟所强.哺乳类内耳毛细胞的发育和再生研究的最新进展,中华耳鼻咽喉科杂志,2004,39(3):182-185.
    38. Bermingham N. A., Hassan B. A., Price S. D., et al. Mathl:an essential gene for the generation of inner ear hair cells. Science 1999; 284:1837-1841.
    39. Zheng JL, Shou JY,Guillemot F et al. Hesl is a negative regulator of inner ear hair cell differentiation. Development 2000; 127:4551-4560.
    40. Hori R,Nakagawa T,Sakamoto T,Matsuoka Y,Takebayashi S,Ito J. Pharmacological inhibition of Notch signaling in the mature guinea pig cochlea.Neuroreport.2007 Dec 3;18(18):1911-4.
    41. Hatakeyama J, Bessho Y, Katoh K, et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation[J]. Development, 2004,131(22):5539-5550
    42. Axelson H. The Notch signaling cascade in neuroblastoma: role of the basic helix-loop-helix proteins HASH-1 and HES-I [J]. Cancer Lett, 2004, 204(2):171-178.
    43. Kageyama R.and Nakanishi S.Helix-loop-helix factor in growth and differentiation of vertebrate nervous system. Curr. Opin. Genet. Dev 1997;7:659-665.
    44. Chen P, Segil N. p27 (Kipl) links cell proliferation to morphogenesis in the developing organ of corti. Development 1999; 126:1581-1590.
    45. L?wenheim H, Waldhaus J, Hirt B, Sandke S, Müller M.Regenerative medicine in the treatment of sensorineural hearing loss. HNO. 2008 Mar;56(3):288-300.
    46. Fischer W, Wictorin K, Bjorklund A, et al. Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor.Nature. 1987 Sep 3-9; 329(6134):65-68.
    47.阮芳铭,高文元,王海明等.神经生长因子对豚鼠噪声性听力损伤的保护作用.Acad J Sec Mil Med Univ. 2000 Jan; 21(1).
    48. Mou K,Adeamson CL,Davis RL,et al.Time-dependence and cell-type specificity of synergistic neurophin actions on spiral ganglion neurons[J].J Comp Nerual.1998, 402:129-139.
    49. Yamashita H., Oesterle E.C. Induction of cell proliferation in mammalian inner ear sensory epithelia by transforming growth factor alpha and epidermal gowth factor. Proc Natl Acad Sci USA 1995; 92:3152-3155.
    50. J.Lisa Zheng,Annette K.Lewis,Wei-Qiang Gao.Establishment of conditionally immortalized rat utricular epithetial cell lines using a retrovirus-mediated gene transfertechnique. Hearing Res 1998; 117:13-23.
    51. Kiernan AE,Pelling AL,Leung KK,et al. Sox2 is required for sensory organ development in the mammalian Inner ear. [J] .Nature,2005, 434: 1031.
    52. Oesterle EC, Campbell S, Taylor RR, et al. Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear.J Assoc Res Otolaryngol. 2008 Mar;9(1): 65-89.
    53. Martinez-Monedero R, Edge AS. Stem cells for the replacement of inner ear neurons and hair cells.Int J Dev Biol. 2007;51(6-7):655-61.
    54. Zuo ,T.Transgenic and gene targeting studies of hair cell function in mouse inner earl [J] .J Neurobiol, 2002, 53:286.
    55. Hildebrand MS, Newton SS, Gubbels SP,et al.Advances in molecular and cellular therapies for hearing loss.Mol Ther. 2008 Feb;16(2):224-36.
    1. Yuan W, Zhang XY, Hou CL, et al. Construction of mouse A20 gene adenovirus vector and its expression by cochleal hair cells, Journal of Immunology (Chinese), 2008, 24(3):353-356.
    2. Yang WP, Hu BH. Comparison of the three methods to detect cochleal hair cell death, Chinese Journal of Otology, 2004,2(4) :301-304.
    3. Wertz IE, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004,430(7000):694-9.
    4. Zhu Chuhong, Ying DJ, Mi JH, et al. The zinc finger protein A20 protects endothelial cells from burns serum injury. Burns. 2004, 30(2):127-133.
    5. Yu L, Miao H, Hou Y, et al. Neuroprotective Effect of A20 on TNF-Induced Postischemic Apoptosis. Neurochem Res. 2006 Jan; 31(1):21-32.
    6. X.Wei, Zhao L, Liu J,et al. Minocycline prevents gentamicin-induced ototoxicity by inhibiting p38 MAP kinase phosphorylation and caspase-3 activation. Neuroscience, 2005, 131(2): 513-521.
    7. Masatsugu Masuda, Nagashima R, Kanzaki S, et al. Nuclear factor-kappa B nuclear translocation in the cochlea of mice following acoustic overstimulation. Brain Research, 2006, 12 (1): 237-247.
    8. Panyam J,Labhausetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue[J].Advanced Drug Deliver Reviews,2003,55(3):329-347.
    9. Hiel H, Erre JP, Aurousseau C, et al. Gentamicm apke by cochlear hair cells precedes hearing impairment during chronic treatment. Audialogy, 1993, 32:78-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700