甘蓝型黄籽油菜种皮色泽的主基因+多基因遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在相同遗传背景下,黄籽油菜具有高含油量和高蛋白质含量、低粗纤维含量、低酚类化合物含量,不及黑籽产生的大量具有苦涩味的单宁、鞣酸等多酚化合物,油的品质好,蛋白质可消化率较高和检察种子成熟较易等优点,鉴于黄籽油菜的诸多优良特性,选育黄籽类型品种则被国内外油菜育种工作者作为改造甘蓝型油菜品质的一条非常重要途径。但甘蓝型黄籽油菜种皮色泽与白菜型和芥菜型油菜种皮色泽的遗传行为明显不同。在研究甘蓝型黄籽油菜的遗传机制时,前人主要从两个方面入手:一方面把种皮色泽的遗传单独作为质量性状来分析;另一方面由于种皮颜色深浅不一,又将其视为数量性状进行分析。实际上,由于甘蓝型黄籽油莱来源复杂,种皮色泽呈现出了独特特点:不仅呈现出质量性状遗传的特征,还呈现出数量性状遗传的特征,属于典型的质量-数量性状,应用主+多基因遗传模式对其进行分析。
     本文通过已选育稳定的黄籽自交系GH06作为同一母本与稳定遗传的两黑籽自交系94005和A800杂交,分别利用它们组合的6个世代(P_1、P_2、F_1、B_1、B_2和F_2)通过植物数量性状遗传体系主基因+多基因的联合世代分离分析法对种皮色泽和皮壳率的遗传作了系统分析,同时在各分离世代研究了所考察性状间的相关性。论文主要结果如下:
     1.利用实物解剖显微镜测定种皮的曝光时间,通过计算它们的粒色指数(T_2/T_1)能区分不同色泽的种子。粒色指数越低,其种皮色泽越黄。从论文的结果和分析可看出,此种方法在实际运用中是可行的,它可以快速、准确反映种子种皮色泽之间的差异,并可以克服以往在判断种皮色泽时人为因素等的影响。
     2.对两组合种皮色泽进行主基因+多基因混合遗传分析表明,甘蓝型黄籽油菜种皮色泽属于质量-数量性状,其遗传为1对主基因+多基因的混合遗传,多基因效应对种皮色泽具有很强的修饰作用,同时环境对种皮色泽的影响较大。该黄籽和两个黑籽亲本间的主基因作用方式可能属于同一位点存在不同复等位基因的遗传模式。假设Sc~1、Sc~2和Sc~3为主基因的三个不同复等位基因,其效应值为Sc~1>Sc~2>Sc~3。黄籽GH06主基因的复等位基因型为Sc~2Sc~2,黑籽94005主基因的复等位基因型为Sc~1Sc~1,黑籽A800主基因的复等位基因型为Sc~3Sc~3。由于Sc~1复等位基因的效应大于Sc~2,复等位基因型Sc~1Sc~2表现为黑籽;Sc~2复等位基因的效应大于Sc~3,复等位基因型Sc~2Sc~3则表现为黄籽。在组合GH06×94005的1对负向完全显性主基因+加性-显性多基因混合遗传模型中,多基因的加性和显性效应对种皮色泽的影响大。该组合主基因遗传率以B_1最高,B_2和F_2均较低;多基因遗传率B_2和F_2较高,而B_1最小。对于B_1、B_2和F_2,其主基因+多基因的遗传率分别为76.83%、61.44%和68.31%,环境方差占表型方差的23.17%~38.56%。在组合GH06×A800的1对加性-显性主基因+加性-显性多基因模型中,主基因显性效应为正向显性,其显性效应绝对值略大于加性效应。在多基因效应中,其加性效应明显,而显性效应较小。主基因遗传率以B_2最高,其次是F_2和B_1;多基因遗传率B_1和F_2较高,而
    
    西南农业大学硕士学位论文
    BZ较小。对于B、、BZ和FZ,其主基因十多基因的遗传率分别为55.34%、85.92%和71.72%,
    环境方差占表型方差的14.08%~44.66%。
     3.对两组合种子皮壳率进行主基因+多基因混合遗传分析表明,随组合不同,其皮壳率的
    遗传表现为多基因遗传模式和l对主基因+多基因遗传模式,环境对皮壳率有一定的影响.黄
    籽复等位主基因scZ可能具有一因多效的作用,它不仅作用于种皮色泽的表达,同时还影响皮
    壳率的遗传.在组合GH06x94005中,由于sc,复等位基因的效应大于scZ,抑制了s矛主基
    因的表达,而sc,主基因对皮壳率不具有主效作用,所以皮壳率在该组合中则表现出数里性状
    的多基因遗传。多基因存在加性、显性效应和加性x加性,加性x显性,显性x显性多种互作效
    应,其显性效应和互作效应均较明显。多基因遗传率在B,、BZ和凡代相差不大,分别为79.56%、
    ”.71%、78.68%。环境方差占表型方差的20.44%~22.2少场。在组合GH06xA800的1对加性
    主基因+加性一显性多基因混合遗传模型中,主基因以加性为主;多基因效应加性效应明显,显
    性效应不明显。说明控制该组合种子皮壳率这个性状的遗传主要是加性效应的作用。主基因
    遗传率以凡最高,其次为BZ和B:;多基因遗传率以氏和B,较高,凡较低。对于Bl、几和
    FZ,其主基因+多基因的遗传率分别为79.16%、92.53%和89.18%,而环境方差占表型方差的
     一.岁
    7.47%~20.84%。
     4.各性状间在回交世代和凡代的相关分析表明,各性状间的相关性在各分离世代中表现
    基本一致,除有个别世代和性状结果有细微善别外·简单相关分析表明,种皮色泽与皮壳率
    间呈极显著正相羌,与种子含油量、饼粕蛋白质含量和皮壳含油量间均存显著或极显著负相
    关.皮壳率与种子含油量和饼粕蛋自质含里均呈极显著负相关,与皮壳含油量在组合的部分
    世代皇极显著负相关.饼粕蛋白质含量与种子含油量、皮壳含油量间及种子含油量与皮壳含
    油量间几乎?
Yellow-seeded rape has higher oil and protein content, lower crude fiber and polyphenol content, good oil quality and higher protein digestion and easier way to examine seed ripeness compared with dark-seeded rape under the same genetic background. For the mang merits, yellow-seeded rape breeding is considered as a very important approach to improve Brassica napus quality by many oil breeders all over the world. But the inheritance of seedcoat color in Brassica napus is apparently different from ones in Brassica campestris and in Brassica juncea. Some researchers had made many studies about the inheritance of seedcoat color in Brassica napus, but they considered seedcoat color in Brassica napus mainly as either qualitative or quantitative traits when they studied. In fact, as yellow-seeded Brassica napus L. may be obtained from different breeding approaches, its seedcoat color has showed distinctive characteristics, which has not only showed the inheritance characteristics of qualitative traits but also the
    ones of quantitative traits, and belongs to the qualitative-quantitative traits and should be analysed by major gene-polygene mixed inheritance model.
    This paper made a systemic study about the inheritance of seedcoat color and seed husk content in yellow-seeded rape {Brassica napus L.) by applying the major gene plus poly-gene model of genetic system of quantitative traits through a joint segregation analysis of P1,F1,P2,B1,B2 and F2 generations of the crosses of both GH06 (yellow-seeded self-crossing line) x 94005 (black-seeded self-crossing line) and GH06 x A800 (black-seeded self-crossing line). At the same time, the correlations among some traits were also studied in the backcross generations and F2 generations of both the crosses in this paper. The conclusions in this paper were mainly as follows:
    
    
    
    1 .The seed-colour coefficient (T2/T1) that obtained from the exposure time of seedcoat measured by dissection microscope could distinguish from seeds with different seedcoat color. The lower the seed-colour coefficient was, the yellower the seedcoat colour. It was an effective way to show the difference of the seedcoat color quickly and truly through calculating the seed-colour coefficient of seeds with different colour from the results and analyses in this paper, and also overcome the influence of subjective factors when estimating the seedcoat color in the past.
    2.The results indicated that the seedcoat colour in yellow-seeded Brassica napus L. belonged to qualitative-quantitative trait whose inheritance was the mixed inheritance of one major gene plus poly-gene, that poly-gene effects and environments had a strong modified function to the seedcoat color by applying the major gene plus poly-gene model of genetic system of quantitative traits through a joint segregation analysis of P1, F1,P2,B1,B2 and F2 generations of both the crosses. The interaction mode of major genes between the yellow-seeded line (GH06) and two black-seeded lines (94005 and A800) may belong to the inheritance mode of existing the different poly allele genes in the same locus. If the three different poly allele genes of the major gene wore Sc1, Sc2 and Sc3 respectively and the relation on their effect values was Sc1> Sc2> Sc3, the poly allele genotype of the major gene in yellow-seeded GH06 was Sc2Sc2 and that in black-seeded 94005 was Sc1Sc1 and that in black-seeded A800 was Sc3Sc3. As the effect of Sc1 was dominant to Sc2, the poly allele genotype Sc'Sc2 behaved with black seed . As the effect of Sc2 was dominant to Sc3, the poly allele genotype Sc2Sc3 behaved with yellow seed. In the mixed inheritance model of one major gene with negative completely dominance plus polygenes with additive and dominance in GH06x94005, the additive and dominance effects of the polygenes had a great influence on seedcoat colour. In the cross of GH06x94005, the major gene heritability of B1 was higher than the one of B2 and F2, and however the poly-gene heritability of B2 and F2 was higher than the one of B,. The heritability of seedcoat color
引文
1. Ahmed,S.U., Zuberi,M.I. Inheritance of seed coat color in Brassica campestris L. variety Toria. Crop Sci., 1971 (11):309-310
    2. Akaike,H. On entropy maximum principle. In: Krishnaiah P R (ed.) Applications of Statistics. Amsterdam:NorthHolland Publishing Company, 1977,27-41
    3. Anand, I.J;, Reddy, W.R.&Rawat, D.S. Inheritance of seed coat colour in mustard. Indian J.Genet., 1985(45):34-37
    4. Asthana, A. N. Breeding of improved yellow-seeded Indian mustard. Ind.J.Genet.Plant Breed. ,1975,35 (1):49-53
    5. Bochkaryova, E.B.and Gorlov, S.L. Utilization of interspecific hybridization and mutagenesis for the development of yellow-seeded spring rapeseed. In proceedings of 9th International Rapeseed Congress., 1995,J32/1:1150-1152
    6. Chanhan,Y.S.&Kumar, K. Genetics of seed colour in mustard (Brassica juncea L. Czern&Coss.). Cruciferae Newslett., 1987(12):22-23
    7. Chen, B.Y. & Meng,J.L. Preliminary observation on testa development of rape (Brassica napus L.) seeds. J. Central ChinaAgric. Univ., 1984(3):5-8
    8. Chen,B.Y., Heneen, S.K. and Josson,R. Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B.campestris L.with special emphasis on seed colour. Plant Breeding, 1988(101):52-59
    9. Chen, B.Y. &Heneen,W.K. Inheritance of seed coiour in Brassica campestris L. and breeding for yellow-seeded B.napus L. Euphytica,1992(59):157-163
    10. Daun,J.K.and Declercq,K.R. Quality of yellow and dark seeds in Brassica campestris canola varieties Candle and Tobin. J. Am. Oil Chem. Sec., 1988, 65:122-126
    11. Dempster, A. P., Laird,N.M. and Robin,D.B. Maximum likelihood from incomplete data via the EM algorithm. J.R. Statist. Soc. B., 1977(39):1-38
    12. Denis, L., Dominguez, J., Vear, F. Inheritance of hullability in sunflowers(HelianthusannuusL.). Plant-Breeding, 1994,113:1,27-35
    13. Deynze,A.V. and Pauls,K. The inheritance of seed colour and vernalization requirement in Brassica napus L. using doubled haploid populations. Euphytica,1994,4:77-83
    14. Elkind,Y. and Cahaner, A. A mixed model for the effects of single gene,polygenes and their interaction on quantitative traits. 1. The model and experimental design. Theor. Appl. Genet., 1986(72):377-383
    15. Elkind, Y. and Cahaner, A. A mixed model for the effects of single gene,polygenes and their
    
    interaction on quantitative traits. 2.The effects of the major gene and polygenes on tomato fruit softness. Heredity, 1990(64):205-213
    16. Elston,R.C. and Stewart,J. The analysis of quantitative traits for simple genetic models from parental,F_1 and backcross data. Genetics, 1973(73):695-711
    17. Elston,R.C. The genetic analysis of quantitative trait difference between two homozygouse line. Genetics, 1984(108):733-744
    18. Falconer, D.S. Introduction to Quantitative Genetics (3rd edn). London and New York: Longman, 1989
    19. Fernando,R.L. The finite polygenic mixed model: an alternative formulation for the mixed model of inheritance. Thero. Appl. Genet., 1994(88):573-580
    20. Gai,J. and Wang,J. Identification and estimation of a QTL model and its effects. Theor Appl Genet., 1998,97(7): 1162-1168
    21. George,L.&Rao,P.S. Yellow-seeded variant in invitro regenerants of mustard (Brassica juncea Coss var. Rai-5). Plant Sci. Lett., 1983(30): 327-330
    22. Getinet,A., Rakow, G.&Downey, R.K. Seed color inheritance in Brassica carinata A.Braun. cultivar S-67. Plant Breed., 1987(99):80-82
    23. Getinet,A. and Rakow, G. Repression of seed coat pigmentation in Ethiopian mustard. Can.J.Plant Sci., 1997(77):501-505
    24. Goffinet, B., Loisel,P. and Laurent,B. Statistical tests for identification of the genotype at a major locus of progenytested sites. Biometrics, 1990(46):583-594
    25. Gomez-Campo,C..Morphology and morpho-taxonomy of the tribe Brassiceae. Japan Scientific Societies Press, Tokyo, Japan, 1980,3-31
    26. Hawk,J.A. Single gene control of seed color and hypoeotyls color in turnip rape. Can.J.Plant. Sci., 1982(62):331-334
    27. Henderson,C.A.P.&Pauls,K.P. The use of haploidy to develop plants that express several recessive traits using light-seeded canola(Brassica napus) as an example. Theor. Appl. Genet.,1992(83): 476-479
    28. Heyn, F.W. Beitrge zum Auftreten unreduzierter Gameten und zur Genetik einiger Merkmale bei den Brassiceae. Ph.D.thesis, Landw. Fak., University of Gttingen. 1973
    29. Hoeschele, I. Genetic evaluation with data presenting evidence of mixed major gene and polygenic inheritance. Theor. Appl. Genet., 1988(76):81-92
    30. Jiana, L.,Chen,L.,Liang, Y. et al. Research and commercial application of the complete dominance yellow-seeded gene in Brassica napus L. In Proceedings of the 11th International Rapeseed Congress,2003,BO5.7:202-204
    
    
    31. Jiang,C.X. Pan and M.Gu. The use of mixture models to detect effects of major genes on quantitative characters in plant breeding experiment. Genetics, 1994,136:383-394
    32. Jnsson,R. Breeding for improved oil and meal quality in rape(Brassica napus L.)and turnip rape(Brassica carnpestris L.). Hereditas, 1977,(87):205-218
    33. Kearsey, M.J. and Farquhar, A.G.L. QTL analysis in plants: where are we now? Heredity, 1998(80): 137-142
    34. Knott, S.A., Haley, C.S. and Thanpson,R. Methods of segregation analysis for animal breeding data: a compariso.n of power. Heredity, 1991a,68(3):299-311
    35. Knott, S.A., Haley, C.S. and Thanpson, R. Methods of segregation analysis for animal breeding data: parameter estimates. Heredity, 1991b,68(3):313-320
    36. Leung,J., Fenton,T.W., Mueller, M.M., Clandinin,D.R. Condensed tannins of rapeseed meal. J.Food Sci., 1979(44):1313-1316
    37. Loisel,P., Goffinet, B., Monod, H. and De Oca, G.M. Detecting a major gene in an F_2 population. Biometrics, 1994(50):512-516
    38. Mather, K. Biometrical Genetics. London: Methuen & Co. Ltd., 1949
    39. Mather, K. and Jinks, J. L. Biometrical Genetics(3rd edn). London:Chapman and Hall Ltd., 1982
    40. Meng,J. Interspecific hybridization and seed coat quality. In Proceedings of 9th International Rapeseed Congress. 1995,J25
    41. Meng, J.,Gan,L,Li,Z and Si,S. Doubled transfer of yellow-seeded genes from Brassica campestris and B.carinata to B. napus. Journal of Huazhong Agricultural University, Sup.Sum. 1994(17):4
    42. Meng, J., Shi,S. The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B.campestris (AA) and B.carinata (BBCC) with B.napus. Euphytica,1998,103(3):329-333
    43. Meng, X.L. and Rubin,D.B. Maximum likelihood estimation via the ECM algorithm:A general framework. Biometrika, 1993(80):267-278
    44. Mohammad,A.,S.M. Sikka and M.A.Aziz. Inheritance of seed colour in some oleiferous Brassicae. Indian J. Genet.Breed., 1942,2:112-127
    45. Morton,N.E. and MacLean,C.J. Analysis of family resemblance. Ⅲ. Complex segregation of quantitative waits. Am. J. Hum. Genet., 1974(26):489-503
    46. Nayar, G.G. Seed colour mutation in B. juncea Hook.F. and Thorns. Induced by radioactive phosphorus-~(32)P. Science and Culture, 1968,34(10):421-422
    47. Nayar, G.G.&George,K.P. Inheritance of pod arrangement and seed colour in Brassica juncea(L.)Czem&Coss. Indian J. Genet., 1970(30):579-580
    
    
    48. lsson , G., Species crosses within the genus Brassica. Ⅱ. Artificial Brassica napus L. Hereditas, 1960(46):351-396
    49. Paterson,A.H. Molecular dissection of complex traits. Boca Raton:CRC Press, 1997
    50. Qi,C.K., Pu,H.M. and Fu,S.Z. Variation of fertility and agronomic traits in populations derived from F_1 hybrid of an interspecific cross between B.napus and B.carinata. Oil Crops of China, 1993(2):8-10
    51. Rahman,M.H., Joersbo,M. and Poulsen, M. H. Development of yellow-seeded Brassica napus of double low quality.Plant Breeding,2001(120):473-478
    52. Rakow, G.,Relf-Eekstein,J.,Raney, P., and Gugel,R. Development of high yielding, disease resistant, yellow-seeded Brassica napus. In Proceedings of the 10th International. Rapeseed Congress, Canberra, Australia, September 1999,Session C07 26-29
    53. Rashid,A and Rakow, G. and Downey, R.K. Development of yellow seeded Brassica napus L. through interspecific crosses. Plant Breeding, 1994(112): 127-134
    54. Rueeker-B. On the inheritance of seed coat eolour in winter oilseed rape (Brassica napus L.). Cruciferae-Newsletter, 1991, No. 14-15,50-51
    55. Schwetka.A. Inheritance of seed colour in turnip rape (Brassica campestris L.). Theor. Appl. Genet., 1982(62): 161-169
    56. Shirzadegan, M., and Rbbelen,G. Influence of seed colour and hull proportions on quality properties of seeds in Brassica napus L. Fette Seifen Anstrichm., 1985,87:235-237
    57. Shirzadegan,M. Inheritance of seed color in Brassica napus L. Z.Pflanzenzucht, 1986(96):140-146
    58. Shoukri,M.M. and McLachlan,G.J. Parametric estimation in a genetic mixture model with application to nuclear family data. Biometrics, 1994(50):128-139
    59. Singh,R.N.&Srivastava,A.N. Note on the breeding behaviour of a yellow seeded Rai (Brassica juncea L.Coss.) Sci. Cult., 1974(40):407
    60. Slominski,B.A. and Campbell,L.D. The carbohydrate content of yellow-seeded eanola. In Proceedings of the 8th International Rapeseed Congress. 1991,P: 1402-1405
    61. Somers,D.J., Rakow, G.,Prabhu, V.K. et al. Identification of a major gene and RAPD markers for yellow seed coat color in Brassica napus. Genome,2001 (44):1077-1082
    62. Stringam,G.R., Mcgregor, D.I. and Pawlowski,S.H. Chemical and morphological characteristics associated with seedcoat color in rapeseed. Proc. 4th.lnt.Rapeseed Congress, 1974:90-103
    63. Stringam,G.R. Inheritance of seed color in turnip rape. Can.J.Plant.Sci., 1980(60):331-335
    64. Sun, P.C. Genetic studies in Brassica juncea Coss. Ⅰ. Flower colour, leaf shape,seed colour and branching habit. Journal of Agriculture Association of China(Suppl.), 1945(50): 12-13
    
    
    65. Tang, Z.L., Li,J.N. Genetic variation of yellow-seeded rapeseed lines (B. napus L.) from different genetic sources. Plant Breeding, 1996,116(5):471-474
    66. Theander, O.,P.Aman,G.E.Miksche and S.Yasuda. Carbohydrates,polyphenols,and lignin in seed hulls of different colors from turnip rapeseed. J.Agric.Food chem., 1977,25:270-273
    67. Van Caeseele,L., Mills,J.T., Sumner, M. & Gillespie. Cytological study of the palisade development in the seed coat of Candle canola. Can.J.Bot., 1982(60):2469-2475
    68. Van Deynze,A.E., Beversdorf, W.D. and Pauls,K.P. Temperature effects on seed color in black-and-yellow-seeded rapeseed. Can.J.Plant Sci, 1993(73):383-387
    69. Vaughan, J.G. The seed coat structure of Brassica integrifolia (West) O.E. Schulz vat. 'carinata' (A.Br.). Phytomorphology, 1956(6):363-367
    70. Vaughan J. G., Hemingway, J.S., Schofield,H.J. Contdbutions to a study of variation in Brassica juncea Coss. and Czern. J. Linn. Soc.(Bot.), 1963(58):435-447
    71. Vaughan,J.G. The structure and utilization of oil seeds. London: Chapman and Hall, 1970
    72. Vera, C.L.,Woods,D.L. and Downey, R.K. Inheritance of seed coat in B.jnucea. Can.J.Plant Sci.,1979(59):635-637
    73. Vera, C.L.,Woods,D.L. and D0wney, R.K. Isolation of independent gene pairs at two loci for seed coat color in Brassicajuncea. Can.J. Plant Sci.,1982(62):47-50
    74. Viehoever, A., Clavenger, J.F., Ewing,C.O. Studies in mustard seeds and substitutes: Ⅰ.Chinese colza (Brassica campestris chinoleifera Viehoever). J. Agric. Res., 1920(20):117-140
    75. Wang,H.Z., Liu, H.L. Genetic analysis of seed color stability in yellow-seeded Brassica napus L. In Proceedings of the 8th International Rapeseed Congress, 1991, 211-218
    76. Woods,D.L. The association of yellow-seed color with other characters in mustard(Brassica juncea). Cruciferae Newsletter,1980,(5):23-24
    77.陈宝元,孟金陵.甘蓝型油菜种皮发育的初步观察.华中农学院学报,3(2):58
    78.陈玉萍,刘后利.甘蓝型油菜种子发育过程中种皮色素含量动态.中国油料,1994,16(4):13-16
    79.盖钧镒,王建康.利用回交世代或F(2:3)家系世代鉴定数量性状主基因-多基因混合遗传模型.作物学报,1998,24(4):402-409
    80.盖钧镒,管荣展.植物数量性状QTL体系检测的遗传试验方法.世界科技研究与发展,1999,21(1):34-40
    81.盖钧镒,章元明,王建康.QTL混合模型扩展至两对主基因+多基因时的多世代联合分析.作物学报,2000,26(4):385-391
    82.盖钧镒,章元明,王建康著.植物数量性状遗传体系.科学出版社,2003:224-260;10-19
    83.高永同.黄籽油菜的遗传和育种研究进展冲国油料,1984(3):85-89;(4):82-87
    84.谷类、油料作物种子粗脂肪测定法(GB2906-82)(中华人民共和国国家标准).中国油
    
    料,1983,2:75-77
    85.胡晓君.不同类型油菜品种种皮色泽与色素含量的关系的研究[硕士论文].华中农业大学,1988
    86.黄继英,徐爱遐,胡胜武等.甘蓝型黄籽油菜粒色变因分析.西北农业大学学报,1996,24(3):33-36
    87.姜长鉴,莫惠栋.质量.数量性状的遗传分析Ⅳ.极大似然法的应用.作物学报,1995,21(6):641-648
    88.李云昌.不同类型油菜种皮色泽的遗传以及色泽与含油量的相关研究[硕士论文].武昌:华中农业大学,1985
    89.李加纳,张学昆,谌利等.不同遗传背景的甘蓝型黄籽油菜粒色遗传初步研究.中国油料作物学报,1998,20(4):16-19
    90.李加纳.甘蓝型黄籽油菜研究进展.油菜研究年报,2000:12-17
    91.李殿荣,田建华.甘蓝型油菜显性黄籽基因的发现和黄籽杂交种的选育.迎接二十一世纪的中国油料科学—中国作物学会油料作物专业委员会第四次全国会员大会学术论文摘要,2000,30-31
    92.李敏,张瑞茂.甘蓝型黄籽油菜果位分布和农艺措施与粒色相关性的研究.耕作与栽培,1999(5):26-29
    93.李崇辉,陈文艺.甘蓝型油菜黄籽分布与种皮颜色变化研究.西南农业大学学报,1998,20(3):256-258
    94.梁艳丽.甘蓝型黄籽油菜种皮特异形成机理研究(硕士论文).西南农业大学,2001
    95.刘后利.甘蓝型黄籽油菜的发现及其遗传行为的初步研究.遗传学报,1979,6(1):54
    96.刘后利主编.油菜的遗传和育种.上海:上海科学技术出版社,1985:24-28
    97.刘后利主编.实用油菜栽培学.上海:上海科学技术出版社,1987:37-39
    98.刘后利.甘蓝型黄籽油菜的遗传研究.作物学报,1992,18(4):241-249
    99.刘后利编著.油菜遗传育种学.北京:中国农业大学出版社,2000:104-108,220-225
    100.陆美琴,丁守仁.二棱大麦粒重、皮壳率和粒形性状的遗传分析.浙江农业学报,1991,3(4):164-168
    101.毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析.农业生物技术学报,1999(4):386-394
    102.孟金陵.芸苔属的远缘杂交研究.中国油料,1987(4):71-77
    103.莫惠栋.质量-数量性状的遗传分析Ⅰ.遗传组成和主基因基因型鉴别.作物学报,1993a,19(1):1-6
    104.莫惠栋.质量-数量性状的遗传分析Ⅱ.世代平均数和遗传方差.作物学报,1993b,19(3):193-200
    
    
    105.戚存扣,浦惠明,傅寿仲.甘蓝型油菜种皮色的遗传特性研究.江苏农业科学,1991(5):28-30
    106.王汉中,刘后利.甘蓝型油菜粒色与种子有关性状问的关系研究.中国油料,1989,11(2):32-35
    107.王汉中,刘后利.油菜皮壳中多酚氧化酶活性的组织化学鉴定及其与粒色的关系.中国油料,1991(1):30-33
    108.王汉中,刘后利.甘蓝型油菜黄籽和黑籽皮壳中花色素、多酚、苯丙烯酸含量和PAL酶活性的变异.华中农业大学学报,1996,15(6):509-513
    109.王建康,盖钧镒.利用杂种F_2世代鉴定数量性状主基因—多基因混合遗传模型并估计其遗传效应.遗传学报,19978,24(5):432-440
    110.王建康,盖钧镒.主基因-多基因混合遗传分析中的EM算法.生物数学学报,1997b,12(5):540-548
    111.王建康,盖钧镒.数量性状主基因+多基因混合遗传的P_1,P_2,F_1,F_2和F_(2:3)联合分析方法.作物学报,1998a,24(6):651-659
    112.王建康,盖钧镒.数量性状主基因-多基因混合遗传模型的图形分析.遗传,1998b,20(增刊):110-111,139-140
    113.王庆钰,乔春贵,杨忠群等.向日葵皮壳率杂种优势表现及应用的研究.吉林农业大学学报,1990,12(3):20-22.
    114.王庆钰,乔春贵,孙云德等.油用向日葵皮壳率与其他性状的相关和通径分析.吉林农业大学学报,1992,14(4):13-15
    115.王庆钰,乔春贵,孙云德等.油用向日葵皮壳率遗传的研究.中国农业科学,1993,26(5):38-44.
    116.王庆钰,贾玉峰,张新生.利用配合力类型互补培育高产低皮壳油用向日葵杂交种的探讨.中国油料作物学报,2002,24(3):33-36
    117.吴江生,刘后利,石淑稳.甘蓝型油菜显性黄籽种质的研究.华中农业大学学报,1997,16(1):25-28
    118.吴江生,石淑稳,刘后利.甘蓝型油菜黄耔突变体的遗传研究.中国油料作物学报,1998,20(3):5-9
    119.肖达人,刘后利.甘蓝型油菜种皮颜色与种子含油量的相关分析.作物学报,1982,8(4):245-254
    120.徐绍英,陈文华,张伟梅等.二棱大麦籽粒外观品质性状的遗传研究.浙江农业大学学报,1994,20(6):593-598
    121.杨光伟.芸苔属黄籽种质资源的转育.作物育种探索.四川科学技术出版社,1993:258-261
    122.叶小利.甘蓝型黄籽和黑籽油菜种皮色素差异机理研究[博士论文].西南农业大学,2001
    123.张子龙,李加纳.甘蓝型黄籽油菜粒色遗传及其育种研究进展.作物杂志,2001(6):37-40
    124.张子龙.环境对甘蓝型黄籽油菜粒色及其相关品质性状的影响[硕士论文].西南农业大学,2001
    
    
    125.章元明,盖钧镒.数量性状主基因+多基因混合遗传分析中鉴定多基因存在的IECM算法.生物数学学报,1999,14(4):429-434
    126.章元明,盖钧镒.利用P_1,P_2,F_1,F_2或F_(2:3)家系的联合分离分析.西南农业大学学报,2000a,22(1):6-9
    127.章元明,盖钧镒.利用DH或RIL群体鉴定QTL体系并估计其遗传效应.遗传学报,2000b,27(7):634-640
    128.章元明,盖钧镒.数量性状分离分析中分布参数估计的IECM算法.作物学报,2000c,26(6):699-706
    129.章元明,盖钧镒,王建康.利用B_1和B_2或F_2群体鉴定数量性状主基因+多基因混合遗传模型并估计其遗传效应.生物数学学报,2000d,15(3):358-366
    130.章元明,盖钧镒.两对互作基因重组率的EM算法估计.南京农业大学学报,2001a,2:24-27
    131.章元明,盖钧镒,戚存扣.利用家系群体鉴定多基因的存在.生物数学学报,2001b,16(1):96-102
    132.章元明,盖钧镒,戚存扣.植物数量性状遗传体系检测中回交或自交家系重复试验数据的分析方法.遗传,2001c,4:329-332
    133.章元明,盖钧镒,戚存扣.数量性状分离分析的精确度及其改善途径.作物学报,2001d,27(6):787-793
    134.章元明,盖钧镒,王永军.利用P_1、P_2和DH或RIL群体联合分离分析的拓展遗传,2001e,23(5):467-470
    135.章元明,盖钧镒.利用P_1、F_1、P_2、F_2和F_(2:3)家系的数量性状分离分析.生物数学学报,2002,17(3):363-368
    136.钟黔湘.影响甘蓝型黄籽频率的若干因素.中国油料,1991(2):85-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700