芥菜型油菜种皮颜色的分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与黑籽油菜相比,黄籽油菜以其种皮薄,纤维素、木质素含量低,蛋白质含量高,含油量高,油清澈透明及其饲用价值高等优点而受到油菜育种家的关注。芥菜型油菜种皮颜色遗传比较简单,黄籽对棕籽差别明显。为了弄清油菜黄籽的遗传规律和黄籽形成的分子基础,本研究以四川黄籽自交系和紫叶芥自交系及其杂种后代为材料,对芥菜型油菜种皮颜色和叶片颜色的遗传进行了研究;对控制棕色种皮的基因进行了RAPD标记;参照在拟南芥4-二氢黄酮还原酶基因序列,设计基因专一引物,靶向扩增克隆目的基因片段。
     通过本研究,取得了以下的结果:
     1 芥菜型油菜种皮颜色、叶片颜色的遗传分析表明,棕色种皮对黄色种皮为显性,BC_1和F_2代植株上种子种皮颜色出现分离,分离比分别为棕:黄为3:1和棕:黄为15:1,说明种皮颜色是由2对独立遗传基因控制的;叶片颜色是由一对基因控制的,紫色对绿色为显性。人工气候箱中的39株四川黄籽×(紫叶芥×四川黄籽)BC_1代叶色和种皮颜色分离情况研究表明:叶色基因和种皮颜色基因间的重组率为46.2%,初步判定芥菜型油菜种皮颜色基因和叶子颜色基因是独立遗传的。
     2 培育1个位点显性、另一位点纯合隐性的棕籽近等基因系,已回交3代,即{[四川黄籽×(紫叶芥×四川黄籽)]×四川黄籽}×四川黄籽,获得了7个1个位点显性、另一位点隐性的棕籽材料,他们分别是Y04816,Y04818,Y04819,Y04820,Y04823,Y04825,Y04828。
     3 以四川黄籽,紫叶芥,紫叶芥×四川黄籽F_1及四川黄籽×(紫叶芥×四川黄籽)BC_1单株为材料,利用群分法(bulked sergeant analysis,BSA)进行种皮颜色基因的定位。通过275个10-mer随机引物PCR分析,初步找到了与决定种皮颜色基因连锁的分子标记S20_(1000),S73_(800)。
     4 在芥菜型油菜四川黄籽自交系和紫叶芥自交系中克隆了DFR基因片段,并测序,二者该片段长度均为466碱基(base pair,bp)。并将这些序列在NCBI上用BLAST进行序列同源比较。四川黄籽DFR序列与甘蓝型油菜Stellar (Brassica napus)的二氢黄酮异构酶基因的同源性为99%(Expect=0.0),可以认为该片段为四川黄籽二氢黄酮异构酶基因的片段;它与甘蓝(Brassica oleracea)、芜菁(Brssica rapa)的二氢黄酮异构酶基因的同源性分别为96%、93%;与白菜型油菜(Brassica carinata)、拟南芥(Arabidopsis thaliana)二氢黄酮还原酶基因的同源性分别为93%、90%。紫叶芥DFR序列与甘蓝型油菜Stellar的二氢黄酮异构酶基因的同源性为97%(Expect=0.0),可以认为该片段为四川黄籽二氢黄酮异构酶基因的片段;它与甘蓝、芜菁的二氢黄酮异构酶基因的同源性分别为96%、94%;与白菜型油菜、拟南芥二氢黄酮还原酶基因的同源性分别为91%、90%。将四川黄籽DFR基因片段的序列提交Genebank登记,序列号为AY518296。
The breeding of yellow seed coat rapeseed are attracted increasing attention by rapeseed breeder. The yellow-seed trait is economically benefical to the oil industry, seeds of yellow cultivars have high oil content than those of dark-seed varieties. Yellow seeds of rapeseed have lower fiber and ligin, compared with those of dark-seed varieties. Yellow seed also have higher protein content than dark seeds. The seed coat color heredity in Brassicajuncea is simple, the yellow coat seed is obviously difference to the brown coat seed. In order to know the hereditary and molecular basis of yellow coat seed, we selected the materials which are Sichuan yellow selfing line and Ziyejie selfing line, we carried out the genetics studies of seed coat color and leaf color, RAPD(random amplified polymorphic DNA) analysis of gene which control the seed coat color. Using the primer designed from the gene of dihydroflavonol 4-reductase (DFR) in Arabidopsis thaliana, using the genomic DNA of Sichuan yellow Ziyejie as template, we obtained the DFR gene fragment. Through the research, we got some results as fellows:
    1 We know the genetics of seed coat color and leaf color in Brassica juncea.the brown seed coat color was dominant character, the yellow seed coat color was recessive character, seed coat color was controlled by two genes, the functions of two genes were independent, the seed coat color in BC1 showed the segregation phenomenon, the ratio for segregation of brown seed and yellow seed is 3:1, the seed coat color in F2 showed the segregation phenomenon, the ratio for segregation of brown seed and yellow seed is 15:1. The leaf color was controlled by one gene, the brown leaf was dominant character, the green leaf was recessive character. The segregation phenomenon of seed coat color and leaf color of Sichuan yellow x (Ziyejie x Sichuan yellow) BC1 in growth house showed that the recombination frequency of seed coat color gene and leaf color gene was 46.2%, which suggest that the inheritance of seed coat color and leaf color was independent.
    2 Breeding some lines that isolation of independent gene pairs at two loci for seed coat color in Brassicajuncea, one was dominant, the other was recessive. The lines are backcrossed to Sichuan yellow 3 times to obtain the lines that are {Sichuan yellow
    
    
    
    X (Ziyejie X Sichuan yellow)} X Sichuan yellow.
    3 Using Sichuan yellow, Ziyejie, Ziyejie X Sichuan yellow and Sichuan yellow X (Ziyejie X Sichuan yellow) as materials, we localized the seed coat color gene in Brassica jimcea. Using the way of bulked sergeant analysis(BSA), 275 10-mer random primers were chosen for polymorphism between the two bulks and Sichuan yellow, Ziyejie, we found two RAPD marker S201000, S73800 linked to brown seed coat color gene.
    4 We cloned the DFR gene fragment in Sichuan yellow and Ziyejie, knowed
    the sequences of the two DFR gene fragments, the length of DFR gene fragment in Sichuan yellow is same to this in Ziyejie, the length of the two DFR gene fragments are 466 base pair(bp). We compared the two sequences to NCBI-BLAST. In Sichuan yellow. 99% sequences are homologous to Brassica napus cultivar Stellar dihydroflavonone isomerase gene(partial cds), expect=0.0,we could consider the fragment was dihydroflavonone isomerase gene(partial cds) fragment; the dihydroflavonone isomerase gene( partial cds) sequences of Brassica oleracea cultivar and Brassica rapa cultivar have 96% and 93% homologization, the dihydroflavonol reductase gene (partial cds) sequences of Brassica carinata and Arabidopsis thaliana have 93% and 90% homologization, respectively, compared with Sichuan yellow DFR sequences. In Ziyejie, 97% sequences are homologous to Brassica napus cultivar Stellar dihydroflavonone isomerase gene(partial cds), expect=0.0,we could consider the fragment was dihydroflavonone isomerase gene(partial cds) fragment; the dihydroflavonone isomerase gene( partial cds) sequences of Brassica oleracea cultivar and Brassica rapa cultivar have 96% and 94% homologization. the dihydroflavonol reductase gene (partial cds) se
引文
[1] 黄先群,申永珍,黄燕芬,等.甘蓝型油菜黄籽基因分离研究 Ⅰ:自交.西南农业学报,2001,14 (1):43—45.
    [2] 赵成松,李强尘,李布青,等.白菜型油菜黄、黑籽间种皮、胚中蛋白质、脂肪及其组份的比较研究.作物学报,1994,20 (1):114-118.
    [3] 梁艳丽,梁颖,李加纳,等.甘蓝型黄、黑籽油菜种皮特性的比较研究.中国油料作物学报,2002.24(4):14-17.
    [4] 叶小利,李加纳,唐章林,等.甘蓝型油菜种皮色泽及相关性状的研究.作物学报,2001,27 (5):550—556.
    [5] 叶小利,李加纳,唐章林,等.甘蓝型黑籽和黄籽油菜种子发育过程中种皮色泽差异研究 Ⅰ.花色素、苯丙氨酸和苯丙氨酸解氨酶的变化及相关性.中国油料作物学报,2001,23(2):14—18.
    [6] 王汉中,刘后利.油菜皮壳中多酚氧化酶活性的组织化学检定及其与粒色的关系.中国油料.1991,13 (1):30-32.
    [7] 叶小利,李加纳,唐章林,等.甘蓝型黑籽和黄籽油菜种子发育过程中种皮色泽差异研究 Ⅱ.黑色素、酪氨酸和酪氨酸酶的变化及相关性.中国油料作物学报 2001,23 (3):38—45.
    [8] 梁艳丽,梁颖,李加纳等.甘蓝型油菜黄籽与黑籽种皮多酚及PPO的比较.西南农业大学学报.2002.24 (2):128-130.
    [9] 张学昆,谌利,殷家明,等.甘蓝型油菜RAPD和种皮色素遗传多样性.中国农业科学,2003,36 (7):752-756
    [10] 李敏,张瑞茂.甘蓝型黄籽油菜果位分布和农艺措施与粒色相关性的研究.耕作与栽培,1999(5):26-29.
    [11] Van A.E Deynze, Beverdorf W.D, Pauls K.P. Temperture effects on seed color in black-and yellow-seed rapeseed. Can. J. Plant Sci, 1993(73):383-387.
    [12] Varshney SK, Shrivastava S, Rai B. Inheritance of plant height and seed coat colour in yellow sarson (Brassica campestris L).The Indian Journal of Genetics & plant breeding, 1997,57(1): 108-111.
    [13] 刘后利编著.油菜遗传育种学.北京:中国农业大学出版社,2000:138
    [14] 吴江生,石淑稳,刘后利.甘蓝型油菜黄籽突变体的遗传研究.中国油料作物学报,1998,20 (3):5-9.
    [15] Vera C.L, Woods D.L.. Isolation of independent gene pairs at two loci for seed coat color in Brassica juncea. Can.J.Plant Sci. 1982,62:47-50.
    [16] www.brassicainfo.com
    [17] 刘后利.甘蓝型油菜黄籽的遗传研究.作物学报,1992,18 (4):241—249.
    [18] 李殿荣.黄籽油菜品种和产业化开发前景.陕西农业科学,2001,1 (5):1-2.
    [19] 吴江生,刘后利.甘蓝型油菜显性黄籽种质的研究.华中农业大学学报,1997,16(1):26-28.
    [20] Somers D J, Rakow G,Winod K. et al. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus, genome ,2001,44:1077-1082.
    [21] Rahman MH, Jeoersbo M, Poulsen MH. Development of yellow-seeded Brassica napus of double quality. Plant Breeding, 2001,120:473-478.
    [22] Van Deynze A E, Landry B S, Pauls K P. The identification of restriction fragment length polymorphisms linked to seed colour genes in Brassica napus. Genome , 1995,38:534-542.
    [23] 李崇辉,陈文艺.甘蓝型油菜黄籽分布与种皮颜色变化研究.西南农业大学学报,1998,20(3):256—259.
    [24] Allan Van D, Pauls KP. The inheritance of seed colour and vernalization requirement in
    
    Brassica napus using doubled haploid populations. Euphytica. 1994,74:77-83.
    [25] 李加纳,张学昆,谌利,等.不同遗传背景的甘蓝型油菜粒色遗传研究.中国油料作物学报.1998,20 (4):16-19.
    [26] Friedt W, Snowdon R. Utilisation and future needs for molecular markers in Brassica oilseed breeding. Proc. 11th International Rapeseed Congress, Copenhagen, Denmark, July 2003:73-77.
    [27] Heneen W.K, Jorgensen R.B. Cytology, RAPD and seed colour of progeny plants from Brassica rapa-alboglabra aneupoilds and development of monosomic addition lines.Genome, 2001,44:1007—1021.
    [28] Negi MS, Devic M, Delseny M,et al. Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor. Appl. Genet.2000,101 : 146-152.
    [29] Badni AG, Snowdon R, Batzel R, et al.QTL mapping for yellow seed colour in oilseed rape(Brassica napus). Proc. 11th International Rapeseed Congress,Copenhagen, Denmark, July 2003:85-87.
    [30] Lotz T, Snowdon R, Horn R, et al. Molecular analysis of Arabidopsia thaliana tranparent testa(tt) genes in Brassica napus. Proc. 11th International Rapeseed Congress, Copenhagen, Denmark, July 2003:109-111.
    [31] 戚存扣,仲裕泉,傅寿仲,等.埃塞俄比亚芥黄种皮性状向甘蓝型油菜的转移研究.江苏农业学报,1996,12(2):17-21.
    [32] Rahman M.H. Yellow-seed Brassica napus from interspcific crosses. Proc. 11th International Rapeseed Congress, Copenhagen, Denmark, July 2003:199-201.
    [33] Relf-Eckstein JA, Rakow G. Utilizing winter rape germplasm to enhance the agronomic performance of yellow-seed summer annual forms of Brassica napus canola. Proc. 11th International Rapeseed Congress,Copenhagen, Denmark, July 2003:455-457.
    [34] 张瑞茂,李敏,王华.甘蓝型油菜黄籽双低不育系 32Y22A 的选育.贵州农业科学,1999,27(3):14-18
    [35] Senda M, Jumonji A, Yumoto S,et al. Analysis of the duplicated CHSI gene related to the suppression of the seed coat pigmentation in yellow soybeans. Theor. Appl Genet, 2002,104:1086-1091.
    [36] Xie DY, Sharma SB, Paiva NL, et al. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science, 2003,299:396-399.
    [37] Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J, 2004,37:104-114.
    [38] Walker AR, Davison PA, Bolognesi-Winfreld AC, et al. The TRANSPARENT TESTA GLABRA 1 locus,which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein, Plant Cell, 1999,11:1337-1349.
    [39] Abrahama S, Lee E, Walker A, et al. The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J, 2003,35:624-636.
    [40] Marles MAS, Gruber MY, Scoles GJ, et al. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry, 2003,62:663-672.
    [41] 王关林,方宏筠.植物基因工程 (第二版).北京:科学出版社,2002:742-744.
    
    
    [42] 李佳,沈斌章,韩继祥,等。一种有效提取油菜叶片总DNA的方法.华中农业大学学报,1994,13(5):521-523.
    [43] Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Rec, 1991,19:1349.
    [44] J.萨姆布鲁克,D.W.拉塞尔著,黄培堂译.分子克隆实验 (第三版).科学出版社,2003:596-618.
    [45] 刘忠松,官春云,陈社员,等.芥菜型油菜与甘蓝型油菜种间杂种后代的RAPD分析.中国农业科学.2002.35(8):1010-015.
    [46] Fourmann M., Barret P., Froger N., et al From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic markers(ACGM) for construction of a gene map Theor Appl genet(2002) 105:1196-1206.
    [47] 张学敏,王宜强.靶向新基因分子克隆策策略—理论与方法.北京:军事医学科学出版社,1999:1-13
    [48] 刘佩英.中国芥菜.北京:中国农业出版社,1996:167-168
    [49] 方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2002:7-33
    [50] Wendy Ann Peer, Dana E.Brown,Bria W.Tague,et al.Flavoniod accumulation patterns of transparent teata mutants of Arabidopsis thaliana. Plant physiology,2001,26:536-548
    [51] Ian E.Burbulis,Brenda Winkel-shieley.Interaction among enzymes of the Arabidopsis thaliana flavonoid biosynthetic pathway.PANS, 1999,96:12929-12934

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700