大豆种间杂交(Glycine max × G. soja)后代籽粒性状QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
野生大豆(Glycine soja Sieb.&Zucc.)是拓宽栽培大豆育成品种遗传基础、改善籽粒品质的有益基因源。百粒重、蛋白含量和泥膜是区别栽培大豆和野生大豆籽粒的3个显著特征。对野生大豆特别是对其重要性状的遗传研究将为认识和更好的利用这些珍贵资源提供坚实的科学基础。本研究以中国野生大豆ZYD2738为材料,与不同栽培大豆构建遗传群体,对其主要籽粒性状进行遗传分析,主要结果如下
     1、构建遗传图谱2个。以冀豆12×ZYD2738组合85个单株F2群体和冀豆9号×ZYD2738组合236个单株F2群体为作图群体构建的遗传图谱,对大豆基因组覆盖率达69.2%。其中,冀豆12×ZYD2738组合遗传图谱包括了121个SSR标记,标记间平均距离10.7cM;冀豆9号×ZYD2738遗传图谱包括了143个SSR标记,标记间平均距离12.9cM。在冀豆9号×ZYD2738遗传图谱中,发现了18号染色体上的偏分离热点区域。
     2、精细定位野生大豆泥膜基因B1,并利用精细定位区间两侧标记分析栽培大豆和野生大豆间的演化关系。以6个栽培大豆×野生大豆组合F2代进行遗传分析,结果表明,不同群体泥膜有无分别受1-2对基因控制遗传。以冀豆9号×ZYD2738组合204个F2纯合隐性单株和3072个F3次级群体单株为材料,将泥膜基因精细定位于13号染色体Indel标记B118和B1_9之间约43Kb范围内。利用B1精细定位区间两侧标记,以154份栽培大豆微核心种质和79份一年生野生大豆为材料,分析栽培大豆和野生大豆之间的演化关系。结果表明,不同地理来源群体间单倍型多样性水平由高到低依次为南方野生大豆≥北方野生大豆≥南方栽培大豆≥黄淮野生大豆≥北方栽培大豆≥黄淮栽培大豆,单倍型发生频率在各群体间存在差异。聚类分析可将栽培大豆和野生大豆区分开,揭示出北方和黄淮材料间较近的遗传关系,但定位区间单倍型地理来源特异不明显。
     3、精细定位百粒重位点qSWT_13_1。冀豆12×ZYD2738组合F2:3群体在石家庄种植定位到5号、7号、10号和13号染色体上的4个QTL,F2:4群体在三亚种植定位到2号和10号染色体上的2个QTL;冀豆9号×ZYD2738组合F2:3群体在石家庄种植定位到9号、13号和14号染色体上的3个QTL, F2:4群体在三亚种植定位到6号和9号染色体上的2个QTL。利用F6:7次级分离群体,将qSWT_13_1精细定位在13号染色体Satt663和Satt114之间物理距离3.27Mb范围内。以341份一年生野生大豆和栽培大豆种质资源和17份全基因组重测序种质资源为材料,通过关联分析,进一步将精细定位区间缩小至QSSNP-Gm13-0095635和QSSNP-Gm13-0101267之间物理距离1.49Mb范围内。
     4、定位野生大豆ZYD2738高蛋白位点qPRO_20_1并明确互作效应。以冀豆12×ZYD2738和冀豆9号×ZYD2738两个组合F2:3家系为材料,均定位到位于20号染色体的野生大豆高蛋白位点qPRO_20_1。在冀豆12×ZYD2738组合中,高蛋白位点与标记Satt239和Satt354相关,ZYD2738等位变异蛋白含量较冀豆12等位变异高出2.18%,在冀豆9号×ZYD2738组合中,高蛋白位点与标记Satt419和Satt270相关,ZYD2738等位变异蛋白含量较冀豆9号等位变异高出1.29%。在冀豆9号×ZYD2738组合中检测到了qPRO_20_1对另一个蛋白含量位点qPR0_19_1的屏蔽作用。分子标记辅助选择时,同时以qPRO_20_1和qPRO_19_1作为选择位点较仅以qPRO_20_1作选择位点,后代蛋白含量由40.43%提高到41.15%。
     本研究获得了具有育种利用价值的QTL位点和种质资源,为利用野生大豆优异基因拓宽栽培大豆遗传基础奠定了理论和材料基础。
Wild soybean (Glycine soja) is an important genetic resource for cultivated soybean (Glycine max) improvement. Genetic study of important traits in the G.soja will provide a solid scientific basis for better understanding of the genetic mechanisms and practically using of those for the trait improvement. Three seed characters that distinguish cultivated with wild soybean are100-seed weight, protein content, and seed bloom. In the present research, we studied the genetic basis of those traits using the wild soybean accession ZYD2738that originated in China. The followings are the major results obtained from the research:
     1.Two genetic linkage maps were developed by using the F2populations of Jidou12×ZYD2738and Jidou9hao X ZYD2738which were derived from crossing of wild soybean ZYD2738with two cultivars Jidou12and Jidou9hao. The genome coverage ratio in the genetic linkage map reached69.2%. A total of121SSR makers were anchored with average distance of10.7cM in85individuals of Jidou12×ZYD2738population whereas143SSR makers were anchored with average distance of12.9cM in236individuals of Jidou9hao×ZYD2738population by the linkage map. A segregation distortion region on chromosome18was found in the map of Jidou9hao×ZYD2738, but the distortion loci had little effects on linkage map.
     2.The seed bloom locus (B1) was fine mapped, and the flanking makers were used to analysis the relationship between wild and cultivated germplasm. The results showed that the seed bloom may be controlled by one or two genes among six F2populations. By fine mapping in3072F3individuals, B1was further defined within43Kb region between Indel marker B1_18and B1_9on chromosome13, containing5candidate genes which needed to be confirmed. A total of161G.max and100G.soja were compared to estimate the relationship between wild and cultivated soybean based on B1flanking markers. The results showed that the diversity of G.soja was higher than G.max. The diversity of accessions from geological distribution ranked as South region> North region> Huanghuai region but no obviously geographic distinction was found among the distribution of haplotype.
     3. The100-seed weight QTL qSWT_13_1was fine mapped on chromosome13. F2:3and F2:4populations of Jidou12X ZYD2738and Jidou9hao X ZYD2738were used to map the QTL of100-seed weight in2environments (Shijiazhuang and Sanya). Four QTL were mapped on chromosome5,7,10and13in Jidou12×ZYD2738population under Shijiazhuang environment, while2QTL were mapped on chromosome2and10in the same population under Sanya environment. In Jidou9hao×ZYD2738population, there were4QTL were mapped on chromosome9,13and14in Shijiazhuang, while2QTL were mapped on chromosome6and9in Sanya. The stable QTL qSWT_13_1in2populations was fine mapped on chromosome13flanked by SSR marker Satt663and Sattl14that spans3.27Mb physical distance in advanced analysis using F6:7sub-population, then the region was reduced to1.49Mb based on association mapping using the data of17re-sequenced accessions.
     4. The F2:3progenies of Jidou12×ZYD2738and Jidou9hao×ZYD2738were used to discover the QTL for protein and oil content in Shijiazhuang environment. Six protein QTL and5oil QTL were identified in2populations. The qPRO_20_1on chromosome20was a stable QTL under2populations. The allele from ZYD2738contributed2.18%more protein than that from Jidou12and1.29%more protein than that from Jidou9hao. In the population of Jidou9hao×ZYD2738, qPRO_20_1showed epistatic role over the qPRO_19_l on chromosome19. For maker assistant breeding, the protein content was40.43%in progenies selected by qPRO_20_1compared to the41.15%in the progenies selected by both qPRO_19_1and qPRO_20_1.
     The QTL and germplasm lines with breeding value were detected and summarized in the present study. The results will be helpful to expand the genetic base in soybean improvement program by introducing favorite genes from Gsoja.
引文
1. 卜慕华,潘铁夫.中国大豆栽培区域探讨.大豆科学,1982,1(2):105-121.
    2. 常汝镇.大豆几种农艺性状的遗传与相关的研究.作物学报,1980,6(2):111-118.
    3. 常汝镇.关于栽培大豆起源的研究.中国油料,1989,1:1-6.
    4. 陈庆山,张忠臣,刘春燕,王伟权,李文滨.应用Charleston X东农594重组自交系群体构建SSR大豆遗传图谱.中国农业科学,2005,38(7):1312-1316.
    5. 陈庆山,张忠臣,刘春燕,辛大伟,单大鹏,邱红梅,单彩云.大豆主要农艺性状的QTL分析.中国农业科学,2007,40(1):41-47.
    6. 单大鹏,齐照明,邱红梅,单彩云,刘春燕,胡国华,陈庆山.大豆油分含量相关的QTL间的上位效应和QE互作效应.作物学报,2008,34(6):952-957.
    7. 丁艳来,赵团结,盖钧镒.中国野生大豆的遗传多样性和生态特异性分析.生物多样性,2008,16(2):133-142.
    8. 董英山,庄炳昌,赵丽梅,孙寰,张明,何孟元.中国野生大豆遗传多样性中心.作物学报,2000,26(5):521-527.
    9. 董玉琛,郑殿升.小麦遗传资源,北京:中国农业出版社,2000.
    10.府宇雷,钱吉,马玉虹,李军,郑师章.不同尺度下野大豆种群的遗传分化.生态学报,2002,22(2):176-184.
    11.付春旭,陈维元,姜成喜,付亚书,景玉良,吕德吕.高蛋白大豆绥小粒豆1号的选育及栽培技术.大豆通报,2003,6:14.
    12.盖钧镒,许东河,高忠,岛本义也,阿步纯,福十泰史,北岛俊二.中国栽培大豆和野生大豆不同生态类型群体间遗传演化关系的研究.作物学报,2000,26(5):513-520.
    13.盖钧镒,赵团结.中国大豆育种的核心祖先亲本分析.南京农业大学学报,2001,24(2):20-23.
    14.盖钧镒.大豆加工业的发展及其对大豆品质的要求.农产品加工,2008,7:4-7.
    15.郭文韬.试论中国栽培大豆起源问题.自然科学史研究,1996,15(4):326-333.
    16.郭文韬.中国大豆栽培史.南京:河海大学出版社,1993.
    17.侯向阳,高卫东.作物野生近缘种的保护与利用.生物多样性,1999,7(4):327-331.
    18.来永才,林红,方万程,姚振纯,齐宁,王庆祥,杨雪峰,李辉.黑龙江野生大豆优异资源筛选、评价及利用的研究.中国农学通报,2005,21(6):379-382.
    19.来永才,林红,方万程,姚振纯,齐宁,王庆祥,杨雪峰,李辉.野生大豆资源在大豆种质拓宽领域中的应用.沈阳农业大学学报,2004,35(3):184-188.
    20.李福山,常汝镇,舒世珍.中国的大豆属(Glycine L.)植物.大豆科学,1983,2(2):109-115.
    21.李福山.大豆起源及其演化研究.大豆科学,1994,13(1):61-66.
    22.李福山.中国野生大豆资源的地理分布及生态分化研究.中国农业科学,1993,26(2):47-55.
    23.李军,陶芸,郑师章,周纪纶.同工酶水平上野生大豆种群内分化的研究.植物学报,1995,37(9):669-676
    24.李向华,王克晶,李福山,严茂粉.野生大豆(Glycine soja)研究现状与建议.中国农业科学,2005,24(4):305-309.
    25.李莹.大豆种间杂交质量性状的遗传变异.华北农学报,1991,6(4):36-42.
    26.李英慧,袁翠平,张辰,李伟,南海洋,常汝镇,邱丽娟.基于大豆胞囊线虫抗性候选基因的SNP位点遗传变异分析.遗传,2009,31(12):1259-1264
    27.李福山,徐豹.中国野生大豆资源研究进展.北京:中国农业出版社,1995.
    28.刘峰,吴晓雷,陈受宜.大豆分子标记在RIL群体中的偏分离分析.遗传学报,2000,27(10):883-887.
    29.刘广阳,齐宁,林红,杨雪峰.高可溶糖含量大豆新品种龙小粒豆2号选育.大豆科技,2008,5:46-47.
    30.刘海燕,崔金腾,高用明.遗传群体偏分离研究进展.植物遗传资源学报,2009,10(4):613-617.
    31.刘顺湖,周瑞宝,喻德跃,陈受宜,盖钧镒.大豆蛋白质有关性状的QTL定位.作物学报,2009,35(12):2139-2149.
    32.刘亚男.野生大豆微核心种质的遗传多样性分析[硕十学位论文].北京:中国农业科学院,2008.
    33.刘永吕,孟媛.辽宁省大豆品质发展概况与生产现状.大豆通报,2005,3:30-31.
    34.吕世霖.关于我国栽培大豆原产地问题的探讨.中国农业科学,1978,4:90-94.
    35.裴颜龙,王岚,葛颂,王连铮.野生大豆遗传多样性研究Ⅰ.4个天然居群等位酶水平的分析.大豆科学,1996,15(4):302-308.
    36.邱丽娟,常汝镇.大豆种质资源描述规范和数据标准.北京:中国农业出版社,2006.
    37.邱丽娟,李英慧,关荣霞,刘章雄,王丽侠,常汝镇.大豆核心种质和微核心种质的构建、验证与研究进展.作物学报,2009,35(4):571-579.
    38.史凤玉,朱英波,龙茹,甘金涛,乔亚科.野生大豆抗大豆花叶病毒病评价、聚类及性状间相关分析.大豆科学,2010,29(6):976-981.
    39.史宏,刘学义.野生大豆抗旱性鉴定及研究.大豆科学,2003,22(4):264-268.
    40.舒世珍,李福山,常汝镇.大豆主要性状演化的初步研究.作物学报,1986,12(4):255-259.
    41.宋启建,盖钧镒,马育华.长江中游夏大豆地方品种品质及产量等性状的典型相关与通径分析.大豆科学,1996,15(1):11-16.
    42.宋宪亮,孙学振,张天真.偏分离及对植物遗传作图的影响.农业生物技术学报,2006,14(2):286-292.
    43.瓦维洛夫著,董玉琛译.主要栽培植物的世界起源中心.北京:农业出版社,1982.
    44.汀霞,徐宇,李广军,李河南,艮文全,章元明.大豆百粒重QTL定位.作物学报,2010,36(10):1674-1682.
    45.王恩慧.中国大豆消费现状与展望.农业展望,2010,5:33-36.
    46.王金陵,孟庆喜,杨庆凯,赵淑文,武天龙.回交对克服栽培大豆与野生和半野生大豆杂交后代蔓生倒伏性的效应.大豆科学,1986,5(3):181-187.
    47.王金陵,孟庆喜,祝其昌.中国南北地区野生大豆光照生态类型分析.遗传学通讯,1973,3:1-8.
    48.王金陵,武镛祥,吴和礼,孙善澄.中国南北地区大豆光照生态类型的分析.农业学报,1956,7(2):169-180.
    49.王金陵.大豆性状之演化.农报,1947,12(5):6-11.
    50.王克晶,李福山.我国野生大豆(G. soja)种质资源及其种质创新利用.中国农业科技导报,2000,2(6):69-72.
    51.王克晶,李向华,张志卫,李福山,曹永生.野生大豆天然群体百粒重类型组成与地理分布调查.大豆科学,2005,24(4):243-248.
    52.王连铮.大豆的起源演化和传播.大豆科学,1985,4(1):1-6.
    53.王书恩.中国栽培大豆的起源及其演变的初步探讨.吉林农业科学,1986,1:75-79.
    54.王贤智,周蓉,张晓娟,单志慧,沙爱华,陈海峰,邱德珍,李培武,周新安.大豆遗传图谱的构建和含油量的QTL分析.中国油料作物学报,2008,30(3):272-278.
    55.文白翔.中国栽培和野生大豆的遗传多样性、群体分化和演化及其育种性状QTL的关联分析[l尊十学位论文].南京:南京农业大学,2008.
    56.吴晓雷,贺超英,王永军,张志永,东方阳,张劲松,陈受宜,盖钧镒.大豆遗传图谱的构建和分析.遗传学报,2001,28(11):1051-1061.
    57.吴晓雷,王永军,贺超英,陈受宜,盖钧镒,王学臣.大豆重要农艺性状的QTL分析.遗传学报,2001,28(10):947-955.
    58.谢华,常汝镇,曹永生,张明辉,冯忠孚,邱丽娟.利用中国秋大豆(Glycine max (L.) Merr)筛选SSR核心位点的研究.中国农业科学,2003,36(4):360-366.
    59.辛秀君,于凤瑶,张代军,邱红梅,周顺启.黑龙江省近二十年来育成大豆品种品质性状变化分析.大豆科学,2010,29(1):56-60.
    60.徐豹,张明,路琴华,庄炳昌,常碧影.野生大豆中的高含硫氨基酸种质.大豆科学,1993,12(3):265-266.
    61.徐豹,赵树文,邹淑华,郑惠玉,胡志昂,王洪新.中国野生大豆种子蛋白的电泳分析:Ti和Spl各等位基因频率、地理分布与大豆起源地问题.大豆科学,1985,4(1):7-13.
    62.徐豹,郑惠玉,路琴华,赵述文,邹淑华,胡志昂.大豆起源地的三个新论据.大豆科学,1986,5(2):123-130.
    63.刘后利.作物育种研究与进展(第一集).北京:农业出版社,1993.
    64.许东河,高忠,盖钧镒,张志永,陈受宜,北岛俊二,福十泰史,阿部纯,岛本义也.中国野生大豆与栽培大豆等位酶、RFLP和RAPD标记的遗传多样性与演化趋势分析.中国农业科学,1999,32(6):16-22.
    65.许古友,邱丽娟,常汝镇,李向华,郑翠明,刘立宏,郭蓓.利用SSR标记鉴定大豆种质.中国农业科学,1999,32(增刊):40-48.
    66.闫龙,蒋春志,于向鸿,杨春燕,张孟臣.大豆粗蛋白、粗脂肪含量近红外检测模型建 立及可靠性分析.大豆科学,2008,27(5):833-837.
    67.杨春燕,姚利波,刘兵强,张孟臣.国内外大豆品质育种研究方法与最新进展.华北农学报,2009,24(增刊):75-78.
    68.杨光宇,纪锋.中国野生大豆资源的研究与利用综述Ⅰ.地理分布、化学品质性状及在育种中的利用.吉林农业科学,1999,1:12-17.
    69.姚鑫淼,张瑞英,李霞辉,程爱华,张晓波,高春霞.近红外透射光谱法(NITS)分析大豆品质的研究.大豆科学,25(4):417-424.
    70.岳德荣,谢为民.野生大豆(G. soja)抗蚜研究Ⅰ抗源筛选.吉林农业科学,1988,3:15-19.
    71.张德水,董伟,惠东威,陈受宜,庄炳昌.用栽培大豆与半野生大豆间的杂种F2群体构建基因组分子标记连锁框架图.科学通报,1997,42(12):1326-1330.
    72.张国栋,王金陵,孟庆喜.大豆种子泥膜、蔓生性和种皮色的遗传及其与蛋白质含量的关系.大豆科学,1989,8(4):315-321.
    73.张伟,王曙明,邱强,闫晓艳,彭宝,张晓霞,姜海英.从品种志分析吉林省八十五年来大豆育成品种产量和品质的演变.大豆科学,2009,28(6):970-975.
    74.赵丽梅,董英山,刘宝,郝水,王克晶,李向华.中国一年生野生大豆(Glycine soja)核心资源构建.科学通报,2005,50(10):992-999.
    75.赵丽梅,孙寰,王曙明,王跃强,黄梅,李建平.大豆杂交种杂交豆1号选育报告.中国油料作物学报,2004,26(3):15-17.
    76.赵团结,盖钧镒.栽培大豆起源与演化研究进展.中国农业科学,2004,37(7):954-962.
    77.郑惠玉,杨光宇,韩春凤,孙运岭.利用野生大豆种质育成小粒大豆新品种吉林小粒号的选育报告.吉林农业科学,1991,3:9-11.
    78.郑永战,盖钧镒,卢为国,李卫东,周瑞宝,田少君.大豆脂肪及脂肪酸组分含量的QTL定位.作物学报,2006,32(12):1823-1830.
    79.中国农业科学院油料所主编.中国大豆品种资源目录.北京:农业出版社,1982.
    80.中国农业科学院作物品种资源所主编.中国大豆品种资源目录(续编二).北京:中国农业出版社,1996.
    81.中国农业科学院作物品种资源所主编.中国大豆品种资源目录(续编一).北京:农业出版社,1991.
    82.周新安,彭玉华,王国勋,常汝镇.中国栽培大豆品种的分类检索研究.作物品种资源,1998,1:1-4.
    83.周新安,彭玉华,王国勋,常汝镇.中国栽培大豆遗传多样性和起源中心初探.中国农业科学,1998,31(3):37-43.
    84.庄炳昌,惠东威,王玉民,顾京,徐豹,陈受宜.中国不同纬度不同进化类型大豆的RAPD分析.科学通报,1994,39(23):2178-2180.
    85.庄炳昌.中国野生大豆生物学研究.北京:科学出版社,1999.
    86. Abe J., Xu D., Suzuki Y., Kanazawa A., Shimamoto Y. Soybean germplasm pools in Asia revealed by nuclear SSRs.. Theoretical and Applied Genetics,2003,106:445-453.
    87. Apuya N.R., Frazier B.L., Keim P., Roth E.J., Lark K.G.. Restriction fragment length polymorphisms as genetic marker in soybean, Glycine max (L.) Merrill. Theoretical and Applied Genetics,1988,75:889-901.
    88. Bailey M.A., Mian M.A.R., Carter T.E., Ashley D.A., Boerma H.R.. Pod dehiscence of soybean: identification of quantitative trait loci. Journal of Heredity,1997,88:152-154.
    89. Bernard R.L. Two genes affecting stem termination in soybeans.. Crop Science,1972,12: 235-239.
    90. Blanco M., Villarroya I. NIR spectroscopy: a rapid-response analytical tool.. Trends in Analytical Chemistry,2002,21:240-250.
    91. Boerma H.R., Specht J.E.. Soybeans: improvement, production and uses. Third edition. Madison, Wisconsin:American Society of Agronomy, Crop Science Society of America, Soil Science Society of America,2004.
    92. Bolon Y.T., Joseph B., Cannon S.B., Graham M.A., Diers B.W., Farmer A.D., May G.D., Muehlbauer G.J., Specht J.E., Tu Z.J., Weeks N., Xu W.W., Shoemaker R.C., Vance C.P.. Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. BMC Plant Biology,2010,10:41-64.
    93. Bossart J.L., Prowell D.P.. Genetic estimates of population structure and gene flow: Limitations, lessons and new directions. Trends in Ecology and Evolution,1998,13:202-206.
    94. Brummer E.C., Graef G.L., Orf J., Wilcox J.R., Shoemaker R.C.. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Science,1997,37:370-377.
    95. Chapman A., Pantalone V., Ustun A., Allen F.L., Landau-Ellis D., Trigiano R.N., Gresshoff P.M.. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica,2003,129:387-393.
    96. Chen Z., Shoemaker R.C.. Four genes affecting seed traits in soybeans map to linkage group F. Journal of Heredity,1998,89:211-215.
    97. Cheng L.R., Wang Y, Zhang C.B., Wu C.X., Xu J.L., Zhu H.Y., Leng J.T., Bai Y.N., Guan R.X., Hou W.S., Zhang L.J., Han T.F.. Genetic analysis and QTL detection of reproductive period and post-flowering photoperiod responses in soybean. Theoretical and Applied Genetics,2011,123:421-429.
    98. Choi I.Y, Hyten D. L., Matukumalli L.K., Song Q.J., Chaky J.M., Quigley C.V., Chase K., Lark K.G., Reiter R.S., Yoon M.S., Hwang E.Y., Yi S.I., Young N.D., Shoemaker R.C., van Tassell C.P., Specht J.E., Cregan P.B.. A soybean transcript map:gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics,2007,176:685-696.
    99. Chung J., Babka H.L., Graef G.L., Staswick P.E., Lee D.J., Cregan P.B., Shoemaker R.C., Specht J.E.. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Science, 2003,43:1053-1067.
    100. Clark R.M., Linton E., Messing J. Doebley J.F.. Pattern of diversity in the genomic region near the maize domestication gene tb1. Proceedings of the National Academy of Science, 2004,101:700-707.
    101. Cober E.R., Voldeng H.D., Fregeau-Reid J.A.. Heritability of seed shape and seed size in soybean. Crop Science,1996,37:1767-1769.
    102. Concibido V.C., Vallee B.L., Mclaird P., Pineda N., Meyer J., Hummel L., Yang J., Wu K., Delannay X.. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theoretical and Applied Genetics,2003,106:575-582.
    103. Cregan P.B., Jarvik T., Bush A.L., Shoemaker R.C., Lark K.G., Kahler A.L., Kaya N., VanToai T.T., Lohnes D.G., Chung J., Specht J.E.. An integrated genetic linkage map of the soybean genome. Crop Science,1999,39:1464-1490.
    104. Csanadi G., Vollmann J., Stifl G., Lelley T.. Seed quality QTLs identified in a molecular map of early maturing soybean. Theoretical and Applied Genetics,2001,103:912-919.
    105. Diers B.W., Keim P., Fehr W.R., Shoemaker R.C.. RFLP analysis of soybean seed protein and oil content. Theoretical and Applied Genetics,1992,83:608-612.
    106. Dong Y.S., Zhao L.M., Liu B., Wang Z.W., Jin Z.Q., Sun H.. The genetic diversity of cultivated soybean grown in China. Theoretical and Applied Genetics,2004,108:931-936.
    107. Dong Y.S., Zhuang B.C., Zhao L.M., Sun H., He M.Y.. The genetic diversity of annual wild soybeans grown in China. Theoretical and Applied Genetics,2001,103:98-103.
    108. Fan C.C., Xing Y.Z., Mao H.L., Lu T.T., Han B., Xu C.G., Li X.H., Zhang Q.F.. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics,2006,112: 1164-1171.
    109. Fasoula V.A., Harris D.K., Boerma H.R.. Validation and designation of quantitative trait loci for seed protein, seed oil, and seed weight from two soybean populations. Crop Science,2004, 44:1218-1225.
    110. Fujita R., Ohara M., Okazaki K., Shimamoto Y. The extent of natural cross-pollination in wild soybean (Glycine soja). Journal of Heredity,1997,88:124-128.
    111. Fukuda Y. Cytogenetical studies on the wild and cultivated Manchurian soybeans (Glycine L). Japanese Journal of Botany,1933,6:489-506.
    112. Funatsuki H., Ishimoto M., Tsuji H., Kawaguchi K., Hajika M., Fujino K.. Simple sequence repeat markers linked to a major QTL controlling pod shattering in soybean. Plant Breeding, 2006,125:195-197.
    113. Funatsuki H., Kawaguchi K., Matsuba S., Sato Y, Ishimoto M.. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theoretical and Applied Genetics,2005,111:851-861.
    114. Gahrtz M., Stolz J., Sauer N.A.. Phloem-specific sucrose-H1 symporter from Plantago major L. supports the model of apoplastic phloem loading. The Plant Journal,1994,6:697-706.
    115. Gijzen M., Kuflu K., Moy P.. Gene amplification of the Hps locus in Glycine max. BMC Plant Biology,2006,6:6-15.
    116. Gijzen M., Miller S.S., Kuflu K., Buzzell R.I., Miki B.L.A.. Hydrophobic protein synthesized in the pod endocarp adheres to the seed surface. Plant Physiology,1999,120:951-959.
    117. Gijzen M., Weng C., Kuflu K., Woodrow L., Yu K., Poysa V.. Soybean seed lustre phenotype and surface protein cosegregate and map to linkage group E. Genome,2003,46:659-664.
    118. Gizlice Z., Carter T.E., Burton J.W.. Genetic base for North American public soybean cultivars released between 1947 and 1988. Crop Science,1994,34:1143-1151.
    119. Gomez-Alpizar L., Carbone I., Ristaino J.B.. An Andean origin of Phytophthora infestans inferred from mitochondrial and nuclear gene genealogies. Proceedings of the National Academy of Sciences of the United States of America,2007,104:3306-3311.
    120. Hajjar R., Hodgkin T.. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica,2007,156:1-13.
    121. Han Y.P., Teng W.L., Sun D.S., Du Y.P., Qiu L.J., Xu X.L., Li W.B.. Impact of epistasis and QTLx environment interaction on the accumulation of seed mass of soybean (Glycine max L. Merr.). Genetics Research,2008,90:481-491.
    122. Harlan J.R., de Wet M.J.. Toward a rational classification of cultivated plants. Taxon,1971,20: 509-517.
    123. Hirata T., Abe J., Shimamoto Y. Genetic structure of the Japanese soybean population. Genetic Resources and Crop Evolution,1999,46:441-453.
    124. Hirose T., Imaizumi N., Scofield G. N., Furbank R.T., Ohsugi R.. cDNA cloning and tissue specific expression of a gene for sucrose transporter from rice (Oryza sativa L.). Plant and Cell Physiology,1997,38:1389-1396.
    125. Hoeck J.A., Fehr W.R., Shoemaker R.C., Welke G.A., Johnson S.L., Cianzio S.R.. Molecular marker analysis of seed size in soybean. Crop Science,2003,43:68-74.
    126. Hwang T.Y., Sayama T., Takahashi M., Takada Y., Nakamoto Y., Funatsuki H., Hisano H., Sasamoto S., Sato S., Tabata S., Kono I., Hoshi M., Hanawa M., Yano C., Xia Z., Harada K., Kitamura K., Ishimoto M.. High-density integrated linkage map based on SSR markers in soybean. DNA Research,2009,16:213-215.
    127. Hymowitz T., Newell C.A.. Taxonomy of genus Glycine, domestication and uses of soybeans. Economic Botany,1981,35:272-288.
    128. Hyten D.L., Choi I.Y., Song Q.J., Specht J.E., Carter T.E.Jr., Shoemaker R.C., Hwang E.Y, Matukumalli L.K., Cregan P.B.. A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Science,2010,50:960-968.
    129. Hyten D.L., Pantalone V.R., Sams C.E., Saxton A.M., Landau-Ellis D., Stefaniak T.B., Schmidt M.E.. Seed quality QTL in a prominent soybean population. Theoretical and Applied Genetics,2004,109:552-561.
    130. Hyten D.L., Song Q.J., Zhu Y.L., Choi I.Y, Nelson R.L., Costa J.M., Specht J.E., Shoemaker R.C., Cregan P.B.. Impacts of genetic bottlenecks on soybean genome diversity. Proceedings of the National Academy of Sciences of the United States of America,2006,103: 16666-16671.
    131. Jun T.H., Van K., Kim M.Y., Lee S.H., Walker D.R.. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica,2008,162:179-191.
    132. Juvik G.A., Bernard R.L., Chang R., Cavins J.F.. Evaluation of the USDA wild soybean germplasm collection:maturity groups 000 to IV (PI 65.549 to PI 483.464). USDA Technical Bulletin No.1761,1989.
    133. Kabelka E.A., Diers B.W., Fehr W.R., LeRoy A.R., Baianu I.C., You T., Neece D.J., Nelson R.L.. Putative alleles for increased yield from soybean plant introductions. Crop Science, 2004,44:784-791.
    134. Keim P., Diers B.W., Olson T.C., Shoemaker R.C.. RFLP mapping in soybean:association between marker loci and variation in quantitative traits. Genetics,1990,126:735-742.
    135. Kiang Y., Chiang Y., Kaizuma N.. Genetic diversity in natural populations of wild soybean in Iwate Prefecture, Japan. Journal of Heredity,1992,83:325-329.
    136. Kim M.Y., Lee S., Van K., Kim T.H., Jeong S.C., Choi I.Y., Kim D.S., Lee Y.S., Park D., Ma J.X., Kim W.Y., Kim B.C., Park S., Lee K.A., Kim D.H., Kim K.H., Shin J.H., Jang YE., Kim K.D., Liu W.X., Chaisan T., Kang Y.J., Lee Y.H., Kim K.H., Moon J.K., Schmutz J., Jackson S.A., Bhak J., Lee S.H.. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proceedings of the National Academy of Sciences of the United States of America,2010,107:22032-22037.
    137. Kuhn C., Quick W.P., Schulz A., Riesmeier J.W., Sonnewald U., Frommer W.B.. Companion cell-specific inhibition of the potato sucrose transporter SUT1. Plant, Cell and Environment, 1996,19:1115-1123.
    138. Kuroda Y., Kaga A., Tomooka N., Vaughan A.. Population genetic structure of Japanese wild soybean(Glycine soja) based on microsatellite variation. Molecular Ecology,2006,15: 959-974.
    139. Lam H.M., Xu X., Liu X., Chen W.B., Yang G.H., Wong F.L., Li M.W., He W.M., Qin N., Wang B., Li J., Jian M., Wang J., Shao G.H., Wang J., Sun S.S.M., Zhang G.Y.. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics,2010,42:1053-1059.
    140. Lark K.G., Chase K., Adler F., Mansur L.M., Orf J.H.. Epistatic expression of quantitative trait loci (QTL) in soybean [Glycine max (L.) Merr.] determined by QTL association with RFLP alleles. Proceedings of the National Academy of Sciences of the United States of America, 1994,88:486-489.
    141. Lark, K.G., Weisemann J.M., Matthews B.F., Palmer R., Chase K., Macalma T. A genetic map of soybean (Glycine max L.) using an intraspecific cross of two cultivars:Minosy and Noir. Theoretical and Applied Genetics,1993,86:901-906.
    142. Le B.H., Wagmaister J.A., Kawashima T., Bui A.Q., Harada J.J., Goldberg R.B.. Using genomics to study legume seed development. Plant Physiology,2007,144:562-574.
    143. Lee J.D., Yu J.K., Hwang Y.H., Blake S., So Y.S., Lee GJ., Nguyen H.T., Shannon J.G.. Genetic diversity of wild soybean (Glycine soja Sieb. and Zucc.) accessions from South Korea and other countries. Crop Science,2008,48:606-616.
    144. Lee J.M., Grant D., Vallejos C.E., Shoemaker R.C.. Genome organization in dicots. II. Arabidopsis as a'bridging species' to resolve genome evolution events among legumes. Theoretical and Applied Genetics,2001,103:765-773.
    145. Lee S.H., Bailey M.A., Mian M.A.R., Carter T.E.Jr., Shipe E.R., Ashley D.A., Parrott W.A., Hussey R.S., Boerma H.R.. RFLP loci associated with soybean seed protein and oil content across populations and locations. Theoretical and Applied Genetics,1996,93:649-657.
    146. Lee S.H., Park K.Y., Lee H.S., Park E.H., Boerma H.R.. Genetic mapping of QTLs conditioning soybean sprout yield and quality. Theoretical and Applied Genetics,2001,103: 702-709.
    147. Li D., Pfeiffer T.W., Cornelius P.L.. Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Science,2008,48:571-581.
    148. Li Y.H., Guan R.X., Liu Z.X., Ma Y.S., Wang L.X., Li L.H., Lin F.Y., Luan W.J., Chen P.Y., Yan Z., Guan Y., Zhu L., Ning X.C., Smulders M.J.M, Li W., Piao R.H., Cui Y.H., Yu Z.M., Guan M., Chang R.Z., Hou A.F., Shi A.N., Zhang B., Zhu S.L., Qiu L.J.. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theoretical and Applied Genetics,2008,117:857-871.
    149. Li Y.H., Li W., Zhang C., Yang L., Chang R.Z., Gaut B.S., Qiu L.J.. Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. New Phytologist,2010,188: 242-253.
    150. Li Z.L., Nelson R.L.. RAPD marker diversity among cultivated and wild soybean accessions from four Chinese provinces. Crop Science,2002,42:1737-1742.
    151. Liu B., Watanabe S., Uchiyama T., Kong F., Kanazawa A., Xia Z., Nagamatsu A., Arai M., Yamada T., Kitamura K.. The soybean stem growth habit gene Dtl is an ortholog of Arabidopsis TERMINAL FLOWER 1. Plant Physiology,2010,153:198-210.
    152. Liu B.H., Fujita T., Yan Z.H., Sakamoto S., Xu D.H., Abe J.. QTL mapping of domestication-related traits in soybean (Glycine max). Annals of Botany,2007,100: 1027-1038.
    153. Lorieux M., Goffinet B., Perrier X., de Leon D.G., Lanaud C.. Maximum-likelihood models for mapping genetic markers showing segregation distortion.1. Backcross populations. Theoretical and Applied Genetics,1995,90:73-80.
    154. Manavalan L.P., Guttikonda S.K., Nguyen V.T., Shannon J.G., Nguyen H.T.. Evaluation of diverse soybean germplasm for root growth and architecture. Plant and Soil,2010,330: 503-514.
    155. Mano Y., Muraki M., Fujimori M., Takamizo T., Kindiger B.. AFLP-SSR maps of maize x teosinte and maize x maize: comparison of map length and segregation distortion. Plant Breeding,2005,124:432-439.
    156. Mansur L.M., Orf J.H., Chase K., Jarvik T., Cregan P.B., Lark K.G.. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Science,1996,36: 1327-1336.
    157. Maughan P.J., Maroof M.A.S., Buss G.. Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theoretical and Applied Genetics,1996,93:574-579.
    158. Mian M.A.R., Bailey M.A., Tamulonis J.P., Shipe E.R., Carter T.E.Jr., Parrott W.A., Ashley D.A., Hussey R.S., Boerma H.R.. Molecular markers associated with seed weight in two soybean populations. Theoretical and Applied Genetics,1996,93:1011-1016.
    159. Moles A.T., Ackerly D.D., Webb C.O., Tweddle J.C., Dickie J.B., Westoby M.. A brief history of seed size. Science,2005,307:576-580.
    160. Moise J.A., Han S.Y., Gudynait-Savitch L., Johnson D.A., Miki B.L.A.. Seed coats:structure, development, composition, and biotechnology. In Vitro Cellular and Developmental Biology-Plant,2005,41:620-644.
    161. Nelson R.L., Wang P.Y.. Variation and evaluation of seed shape in soybean. Crop Science, 1989,29:147-150.
    162. Nichols D.M., Glover K.D., Carlson S.R., Specht J.E., Diers B.W.. Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop Science,2006,46:834-839.
    163. Orf J.H., Chase K., Jarvik T., Mansur L., Cregan P.B., Adler F.R., Lark K.G.. Genetics of soybean agronomic traits. I. Comparison of three related recombinant inbred populations.Crop Science,1999,39:1642-1651.
    164. Palaisa K., Morgante M., Tingey S., Rafalski A.. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proceedings of the National Academy of Sciences of the United States of America,2004,101: 9885-9890.
    165. Panthee D.R., Pantalone V.R., West D.R., Saxton A.M., Sams C.E.. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Science,2005,45: 2015-2022.
    166. Paterson A.H.. What has QTL mapping taught us about plant domestication. New Phytologist, 2002,154:591-608.
    167. Qiu B.X., Arelli P.R., Sleper D.A.. RFLP markers associated with soybean cyst nematode resistance and seed composition in a Peking x Essex population. Theoretical and Applied Genetics,1999,98:356-364.
    168. Qutob D., Ma F., Peterson C.A., Bernards M.A., Gijzen M.. Structural and permeability properties of the soybean seed coat. Botany,2008,86:219-227.
    169. Riesmeier J.W., Willmitzer L., Frommer W.B.. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO Journal,1992,11: 4705-4713.
    170. Ross-Ibarra J.. Quantitative trait loci and the study of plant domestication. Genetics of Adaptation,2005,123:197-204.
    171. Salas P., Oyarzo-Llaipen J.C., Wang D., Chase K., Mansur L.. Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.). Theoretical and Applied Genetics,2006,113:1459-1466.
    172. Sauer N., Stolz J.. SUC1 and SUC2:Two sucrose transporters from Arabidopsis thaliana. Expression and characterization in baker's yeast and identification of the histidine-tagged protein. The Plant Journal,1994,6:67-77.
    173. Saxe L.A., Clark C., Lin S.F., Lumpkin T.A.. Mapping the pod-shattering trait in soybean. Soybean Genetics Newsletter,1996,23:250-253.
    174. Schmutz J., Cannon S.B., Schlueter J., Ma J.X., Mitros T., Nelson W., Hyten D.L., Song Q.J., Thelen J.J., Cheng J.L., Xu D., Hellsten U., May G.D., Yu Y., Sakurai T., Umezawa T., Bhattacharyya M.K., Sandhu D., Valliyodan B., Lindquist E., Peto M., Grant D., Shu S.Q., Goodstein D., Barry K., Futrell-Griggs M., Abernathy B., Du J.C., Tian Z.X., Zhu L.C., Gill N., Joshi T., Libault M., Sethuraman A., Zhang X.C., Shinozaki K., Nguyen H.T., Wing R.A., Cregan P.B., Specht J., Grimwood J., Rokhsar D., Stacey G., Shoemaker R.C., Jackson S.A.. Genome sequence of the palaeopolyploid soybean. Nature,2010,463:178-183.
    175. Scofield G.N., Aoki N., Hirose T., Takano M., Jenkins C.L.D., Furbank R.T.. The role of the sucrose transporter, OsSUTl, in germination and early seedling growth and development of rice plants. Journal of Experimental Botany,2007,58:483-495.
    176. Sebolt A.M., Shoemaker R.C., Diers B.W.. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Science,2000,40: 1438-1444.
    177. Shawn M.J.W., Shelp B.J., Anderson T.R., Welacky T.W., Rajcan I.. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B. Theoretical and Applied Genetics,2007,114:467-472.
    178. Shimamoto Y. Polymorphism and phylogeny of soybean based on chloroplast and mitochondrial DNA analysis.Japan Agricultural Research Quarterly,2001,35:79-84.
    179. Shoemaker R.C., Heath M.S., Skorupksa H., Delannay X., Edge M., Newell C.A.. Fertile progeny of a hybridization between soybean [Glycine max (L.) Merr.] and G. tomentella Hayata. Theoretical and Applied Genetics,1990,80:17-23.
    180. Shoemaker R.C., Specht J.E.. Integration of the soybean molecular and classical genetic linkage groups. Crop Science,1995,35:436-446.
    181. Shomura A., Izawa T., Ebana K., Ebitani T, Kanegae H., Konishi S., Yano M.. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008,40:1023-1028.
    182. Singh R.J., Nelson R.L.. Wide hybridization in soybean. In: Lijuan Qiu, eds. World soybean conference research Ⅷ abstracts for oral presentations and posters. Beijing: 2009,171-172.
    183. Singh R.J., Kollipara K.P., Hymowitz T. Backcross-derived progeny from soybean and Glycine tomentella Hayata intersubgeneric hybrids. Crop Science,1990,30:871-874.
    184. Singh R.J., Kollipara K.P., Hymowitz T.. Mortosomic alien addition lines derived from Glycine max (L.) Merr. and G. tomentella Hayata: Production, characterization, and breeding behavior. Crop Science,1998,38:1483-1488.
    185. Song Q.J., Jia G.F., Zhu Y.L., Grant D., Nelson R.T., Hwang E.Y., Hyten D.L., Cregan, P.B.. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Science,2010,50:1950-1960.
    186. Song X.J., Huang W., Shi M., Zhu M.Z., Lin H.X.. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics,2007,39:623-630.
    187. Song Q.J., Marek L.F., Shoemaker R.C., Lark K.G., Concibido V.C., Delannay X., Specht J.E., Cregan P.B.. A new integrated genetic linkage map of the soybean. Theoretical and Applied Genetics,2004,109:122-128.
    188. Specht J.E., Chase K., Macrander M., Graef G, Chung J., Markwell J.P., Germann M., Orf J.H., Lark K.G. Soybean response to water: A QTL analysis of drought tolerance. Crop Science,2001,41:493-509.
    189. Spooner D.M., McLean K., Ramsay G, Waugh R., Bryan G. A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proceedings of the National Academy of Sciences of the United States of America,2005,102: 14694-14699.
    190. Tamura K., Dudley J., Nei M., Kumar S.. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution,2007,24:1596-1599.
    191. Tanksley S.D., McCouch S.R.. Seed banks and molecular maps: unlocking genetic potential from the wild. Science,1997,277:1063-1066.
    192. Tanksley S.D., Nelson J.C.. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theoretical and Applied Genetics,1996,92:191-203.
    193. Thompson J.A., Bernard R.L., Nelson R.L.. A third allele at the soybean dtl locus. Crop Science,1997,37:757-762.
    194. Tian Z.X., Wang X.B., Lee R., Li Y.H., Specht J.E., Nelson R.L., McClean P.E., Qiu L.J., Ma J.X.. Artificial selection for determinate growth habit in soybean. Proceedings of the National Academy of Sciences of the United States of America,2010,107:8563-8568.
    195. Vollmann J., Schausberger H., Bistrich H., Lelley T.. The presence or absence of the soybean Kunitz trypsin inhibitor as a quantitative trait locus for seed protein content. Plant Breeding, 2002,121:272-274.
    196. Wang D., Arelli P.R., Shoemaker R.C., Diers B.W.. Loci underlying resistance to race 3 of soybean cyst nematode in Glycine soja plant introduction 468916. Theoretical and Applied Genetics,2001,103:561-566.
    197. Wang D., Graef G.L., Procopiuk A.M., Diers B.W.. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theoretical and Applied Genetics,2004,108:458-467.
    198. Wang J., McClean P.E., Lee R., Goos R.J., Helms T.. Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theoretical and Applied Genetics,2008,116:777-787.
    199. Wang K.J., Takahata Y.. A preliminary comparative evaluation of genetic diversity between Chinese and Japanese wild soybean(Glycine soja) germplasm pools using SSR markers. Genetic Resources and Crop Evolution,2007,54:157-165.
    200. Wang S.C., Basten C.J., Zeng Z.B.. Windows QTL Cartographer V2.5. Department of Statistics. Raleigh, NC:North Carolina State University,2007.
    201. Wang Z.M., Devos K.M., Liu C.J., Wang R.Q., Gale M.D.. Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theoretical and Applied Genetics,1998,96: 31-36.
    202. Watanabe S., Tajuddin T., Yamanaka N., Hayashi M., Harada K.. Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breeding Science,2004,54:399-407.
    203. Weber H., Borisjuk L., Heim U., Sauer N., Wobus U.. A role of sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in Faba bean seed. The Plant Cell,1997,9:895-908.
    204. Weber H., Borisjuk L., Wobus U.. Sugar import and metabolism during seed development. Trends in Plant Science,1997,2:283-290.
    205. Weng J.F., Gu S.H., Wan X.Y., Gao H., Guo T., Su N., Lei C.L., Zhang X., Cheng Z.J., Guo X.P., Wang J.L., Jiang L., Zhai H.Q., Wan J.M.. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research,2008,18: 1199-1209.
    206. Williams L.E., Lemoine R., Sauer N.. Sugar transporters in higher plants - a diversity of roles and complex regulation. Trends in Plant Science,2000,5:283-290.
    207. Winter S.M.J., Shelp B.J., Anderson T.R., Welacky T.W., Rajcan I.. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B. Theoretical and Applied Genetics,2007,114:461-472.
    208. Wu X.L., Blake S., Sleper D.A., Shannon J.G, Cregan P., Nguyen H.T.. QTL, additive and epistatic effects for SCN resistance in PI 437654. Theoretical and Applied Genetics,2009,118: 1093-1105.
    209. Xia Z.J., Tsubokura Y., Hoshi M., Hanawa M., Yano C. Okamura K., Ahmed T.A., Anai T., Watanabe S., Hayashi M., Kawai T., Hossain K.G., Masaki H., Asai K., Yamanaka N., Kubo N., Kadowaki K., Nagamura Y., Yano M., Sasaki T., Harada K.. An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using a single F2 population. DNA Research,2007,14:257-269.
    210. Xu D.H., Abe. J., Gai J.Y., Shimamoto Y. Diversity of chloroplast DNA SSRs in wild and cultivated soybeans:evidence for multiple origins of cultivated soybean. Theoretical and Applied Genetics,2002,105:645-653.
    211. Xu D.H., Gai J.Y.. Genetic diversity of wild and cultivated soybeans growing in China revealed by RAPD analysis. Plant Breeding,2003,122:503-506.
    212. Xu Y, Li H.N., Li G.J., Wang X., Cheng L.G., Zhang Y.M.. Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.). Theoretical and Applied Genetics,2011, 122:581-594.
    213. Yamanaka N., Ninomiya S., Hoshi M., Tsubokura Y., Yano M., Nagamura Y., Harada K.. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Research,2001,8:61-72.
    214. Yamanaka N., Watanabe S., Toda K., Hayashi M., Fuchigami H., Takahashi R., Harada K.. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theoretical and Applied Genetics,2005,110: 634-639.
    215. Yu H., Kiang Y.T.. Genetic variation in South Korean natural populations of wild soybean (Glycine soja). Euphytica,1993,68:213-221.
    216. Zeng Z.B., Kao C.H., Basten C.J.. Estimating the genetic architecture of quantitative traits. Genetical Research,1999,74:279-289.
    217. Zhang W.K., Wang Y.J., Luo G.Z. Zhang J.S., He C.Y, Wu X.L., Gai J.Y., Chen S.Y. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theoretical and Applied Genetics,2004,108:1131-1139.
    218. Zhu S., Walker D.R., Boerma H.R., All J.N., Parrott W.A.. Fine mapping of a major insect resistance QTL in soybean and its interaction with minor resistance QTLs. Crop Science, 2006,46:1094-1099.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700