大豆低聚糖与白粉病的遗传分析及相关基因分子标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆低聚糖是碳水化合物的一类,约占大豆籽粒干物质的10%左右,主要包括蔗糖、水苏糖、棉籽糖以及微量的葡萄糖、果糖。大豆品种间各低聚糖组分含量差异较大。大豆低聚糖除能提高种子的耐脱水性,还是重要的双歧功能因子之一,具有对人体有益的生理功能,是一种很有发展前景的功能性食品。根据不同大豆食品加工的要求,培育专用优质耐逆性强的大豆品种已成为重要的育种目标之一。本论文利用现代分子生物学技术,对五种大豆低聚糖进行了QTL定位,通过分子标记辅助选择,加快大豆低聚糖专用加工品种选育进程。
     大豆白粉病是由真菌所引起的一种世界性常见病害,寄主被白粉菌侵染后,呼吸作用明星增强,蒸腾强度增加,光合效率则降低,严重阻碍植物正常生长发育。白粉病为多循环病害,病害的潜育期短,一个生长季节可繁殖多代,并且繁殖率高,传播速度快。在合适气候和环境条件下,有可能大范围发生且流行快,严重影响大豆生产,并造成巨大的经济损失。选育抗病品种是最有效的防治措施之一,通过抗病基因的分子标记,可辅助选择抗白粉病品种(系),提高抗病育种效率。
     本研究对糖分、蛋白、脂肪、磷含量及籽粒大小等12类特异性类型的25个大豆品种(系),进行五种低聚糖含量测定,探讨不同类型的大豆品种低聚糖含量变异趋势。以抗大豆白粉病、小粒(百粒重8克)、高水苏糖大豆品系V97-3000为母本,以感大豆白粉病、大粒(百粒重20克)、低水苏糖大豆品系V99-5089为父本,配制杂交组合,构建F2代分离群体。研究五种大豆低聚糖、百粒重相关QTL及大豆白粉病遗传分析及相关基因的分子标记。本论文包括以下3方面研究内容:
     1.不同类型大豆品种低聚糖含量分析及亲本筛选
     本研究采用HLPC方法,测定12类具有不同质量性状特性的25个大豆品种(系)的低聚糖组分。研究结果表明籽粒的果糖含量极低;葡萄糖、棉籽糖含量较低;蔗糖、水苏糖含量较多,为籽粒中低聚糖组分的主要贮存态。在5种低聚糖中,水苏糖含量变异范围最大。根据5种低聚糖及总糖含量将23个供试材料聚为5类,通过类间低聚糖含量比较,筛选到3份特异材料:第2类群中的SS02-15464为低亚麻酸、高水苏糖材料,利于作为功能食品加工原料;第1类群的V97-3000为高水苏糖材料;第5类群的V99-5089为低水苏糖材料。结合构建群体亲本选择原则,选择在籽粒大小、抗感白粉病及水苏糖含量等方面有差异的V97-3000及V99-5089作为亲本,构建F2群体进行大豆低聚糖组分相关QTL定位及抗白粉病分子标记研究。
     2.大豆低聚糖组分及百粒重QTL定位研究
     本研究利用1015对SSR标记,根据父母本基因型筛选到106个多态标记。利用多态SSR检测F2群体基因型,根据带型信息构建了标记间的连锁图,得到19个连锁群,包含81个标记。利用公共图谱信息,将未连锁的标记,整合为含有106个标记,20个连锁群的遗传图谱。
     利用Qgene及WinQTLCart2.5定位到一致的大豆低聚糖组分相关QTL位点共11个:其中1个葡萄糖含量QTL,命名为QTL-1G,位于E连锁群上,相关标记为Satt598;3个果糖含量QTL,命名为QTL-1F、QTL-2F、QTL-3F,分别位于连锁群E、D2和G上,相关分子标记分别为satt598, satt372和satt324;2个蔗糖含量QTL,命名为,QTL-1Su、QTL-2Su,相关标记为satt680,satt270;棉籽糖含量QTL位点2个,命名为QTL-1R,相关标记为satt150,QTL-2R相关标记为satt478、satt282;水苏糖含量QTL位点1个,命名为QTL-1St,相关标记为satt635、satt353;2个总低聚糖含量QTL,命名为QTL-1TS、QTL-1TS,相关分子标记分别为satt150、satt313。水苏糖含量QTL的效应值最大,且加性效应为正向,此位点为主效QTL位点。
     定位到3个百粒重QTL,命名为QTL-1SW、QTL-2SW、QTL-3SW,分别位于连锁群D1a、C1和L上,相关分子标记为satt531,satt565和satt166。
     3.大豆抗白粉病的遗传研究及抗病基因的分子标记
     本研究利用白粉病菌接种鉴定53个F2:3家系,采用卡方检验验证F2代抗病基因的分离比例规律,得到抗白粉病基因在F2代的分离比例为1:2:1,符合质量性状基因的分离规律,表明大豆抗白粉病为质量性状,由单基因或寡基因控制。
     本研究筛选到与抗白粉病基因相关的标记分别为Satt547.Sat_396和Sat_393。利用Mapmaker3.0软件,对抗病基因及相关多态分子标记进行作图,将抗白粉病基因定位在连锁群J上,在Satt547及Sat396之间。在J连锁群上三个标记及抗白粉病基因(PM resistance gene)的顺序为:Satt547-PM resistance gene-Sat_396-Sat_393; Satt547与PM resistance gene间的遗传距离为3.1cM;PM resistance gene与Sat396间的遗传距离为27.5cM;PM resistance gene与Sat393的遗传距离为35.6cM。Satt547与Sat393二标记标记间的遗传距离为66.2cM。此区段存在抗病基因簇,因此本研究推测定位的抗白粉病基因具有NBD-LRR保守结构域。
     本研究利用在水苏糖含量、籽粒大小、抗白粉病等性状有显著差异的育种材料为亲本,构建后代群体,进行相关性状的遗传分析。通过SSR检测,获得了相关的QTL及分子标记,为低聚糖及抗白粉病大豆育种奠定了基础。
Soy oligosaccharides is a kind of carbohydrates, accounting for about10%of the dry matter in soybean, mainly including the sucrose, stachyose, raffinose, and trace amounts of glucose and fructose. There are significant differences in oligosaccharides among different type soybean varieties. Soy oligos could improve the desiccation-tolerance of soybean seed. The bifidus factor in soy oligosaccharides is beneficial for human physiological function and will be more popular as soy food. According to various requirements of soybean food processing, the special soybean varieties have been bred. The five types of soy oligosaccharides were mapped on QTL in this paper by modern molecular biology technology. The special processing variety of soy oligosaccharides has been speeding up by assisted molecular marker selection.
     Powdery mildew of soybean is a common disease spread worldwide infected by fungus. The transpiration was enhanced and the respiration was weakened when the host was infected. The photosynthetic efficiency was reduced and the plant normal growth was hindered seriously. Powdery mildew was circular diseases, that several generations could be reproduced in one season. The reproductive rate of powdery mildew and the propagation speed were high. In appropriate climate and environment conditions, soybean powdery mildew could occur and spread broadly. The soybean production could be influenced and cause huge economic losses. Powdery mildew resistant variety is the most economic and efficiency method. According assisted molecular marker selection and mining powdery mildew resistance gene can improve the efficiency of resistance breeding.
     Five kinds of oligosaccharides of25soybean cultivars with12types of quality traits property(sugar, protein, oil, phosphorus and seed size etc.) were determined to study the variation trend of oligosaccharides content. The parental lines V97-3000(high stachyose, small seed, powdery mildew resistance) and V99-5089(low stachyose, large seed, powdery mildew susceptible), were selected according to their stachyose contents and disease resistance to produce F2population. The DNA from the single plant of F2population will be used for QTL mapping of oligosaccharides, seed size and powdery mildew resistance, genetic analysis of soybean powdery mildew and related gene molecular markers. The study included mainly the following three aspects.
     1. The oligosaccharides content analysis of different type of soybean varieties and parents selecting.
     In this study, HLPC methods were used to determine oligosaccharides contents of25soybean cultivars (lines) with12different quality traits property. The results showed that the content of seed fructose was extremely low; the glucose and the raffinose were relatively lower; but sucrose and stachyose were higher than the others.Tt's the main storage state of oligosaccharides components in the seeds. The stachyose content had biggest variance among the5oligosaccharides. Based on the contents of5different oligosaccharides and total content,23cultivars were clustered into5groups; By way of the oligosaccharides comparing among classes, we screened3excellent germplasms: SS02-15464in the second cluster, which had lower linolenic acid content and higher stachyose, can be used as processing stuff for functional foods; V97-3000of the first cluster had higher stachyose content; V99-5089from the fifth cluster had lower stachyose content; According to the principles of parental selection in the construction of segregation population, V97-3000and V99-5089having difference in seed size and stachyose content, powdery mildew resistance, were selected to be the crossing parents to establish F2population, and to map soybean oligosaccharides components QTL and identify the molecular markers linked to the powdery mildew resistant gene.
     2. Mapping oligosaccharides components and100-seed weight QTL in soyben
     In this study,106polymorphic markers were screened out of the1015randomly selected SSR markers based on difference of parental genotypes. Polymorphic SSR markers were to be detected the genotypes of F2population, and a genetic linkage map between markers including19linkage groups,82SSR markers were constructed on the basis of the marker pattern information. By use of the public genetic map abroad, not linked markers integrated into a genetic linkage map including20linkage groups with106SSR markers.
     Utilizing Qgene and WinQTLCart2.5softwares,11soybean oligosaccharides components QTL were mapped consistently:where one glucose content QTL, which was designated as QTL-1G and located in E linkage group, was linked with Satt598marker; three fructose content QTL, which were designated as QTL-1F、QTL-2F、QTL-3F and located in E, D2, G linkage groups, were linked with Satt598, Satt372, Satt324markers respectively; two sucrose content QTL, which were designated as QTL-1Su, QTL-2Su, were linked with Satt680, Satt270respectively; two raffinose content QTL, among them one was designated as QTL-1R which was linked with Satt150and the another one QTL-2R was linked with Satt478, Satt282; one stachyose content QTL, which was designated as QTL-1St, were linked with Satt635, Satt353markers; two total oligosaccharides content which was designated as QTL-1TS, were linked with Satt150, Satt313markers. The effective value of stachyose content QTL was biggest, morevoer the additive effect was positive and this locus was major QTL.
     Three100-seed weight QTL, which were designated as QTL-1SW, QTL-2SW, QTL-3SW and located in Dla, C1, and L linkage groups, were linked with Satt531, Satt565and Satt166marker respectively.
     3. The genetic research on soybean resistance to powdery mildew and molecular tagging of resistance genes
     Powdery mildew was identified by the53F2.3lines in this study. The rule for separation ratio of F2disease-resistance genes was checked by chi-square test, and the ratio was1:2:1, which accords with separation rules for genes of qualitative character. Therefore, it indicated that soybean resistance against powdery mildew is a qualitative character, and controlled by single gene or oligogene.
     The markers related with resistant gene to powdery mildew were screened, including Satt547, Sat_396and Sat_393. By Mapmaker3.0, taking disease-resistance genes and related polymorphism molecular marker for mapping, powdery mildew resistance gene (PM resistance gene) was located in J linkage group, and between Satt547and Sat_396. The sequence for three markers and PM resistance gene in J linkage group was Satt547-PM resistance gene-Sat_396-Sat_393. The genetic distances between Satt547and PM resistance gene is3.1cM; PM resistance gene and Sat_393is27.5cM; Satt547and Sat_393is35.6cM, in which includes resistance genes cluster. Accordingly, in this study, it is speculated that the mapped PM resistance gene contains conserved NBD-LRR domain
     In this study, breeding materials with significant difference in stachyose content, seed size, resistance to powdery mildew and other characters are used to build progeny generation, going on genetic analysis of related properties. Through SSR detection, related QTL and molecular markers were obtained, laying a foundation for oligosaccharides and breeding soybean varieties with resistance to powdery mildew.
引文
[1]Horbwicz M, Obendorfr L. Seed desiccation tolerance and storability:Dependence on flatulence producing oligosaccharides and cyclitols review and survey [J].Seed Sci Res,1994, 4:385-405.
    [2]Wager J R, Carson J F, Beeker R, Gumbmann M R, Danhof J E. Comparative flatulence activity of beans and bean fractions for man and rat [J]. J Nutr,1977,107:68-72.
    [3]马莺.大豆低聚糖的提取及酶改性的研究[D].哈尔滨:东北农业大学,2000.
    [4]Ayre B G, Keller F,Turgeon R. Symplastic continuity between companion cells and the t ranslocation stream. Long distance transport is controlled by retention and retrieval mechanisms in the phloem [J]. Plant Physiology,2003,131:1518-1528.
    [5]Sprenger N, Keller F. Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans:the roles of two distinct galactinol synthases [J]. The Plant Journal, 2000,21:249-258.
    [6]Pennycooke J C, Jones M L, Stushnoff C. Down regulating a galactosidase enhances freezing tolerance in transgenic petunia [J]. Plant Physiology,2003,133:901-909.
    [7]郑建仙,耿立萍.功能性低聚糖析论.食品与发酵工业,1997,23(1):39-46.
    [8]王跃强,孙国娟,崔洁,崔承弼,马凤鸣.不同大豆品种的抗氧化性研究[J].现代农业科技,2011,20:358-359.
    [9]Kermode A R, Approaches to elucidate the basis of deiccation_tolerance in seeds[J]. Seed Science Research,1997,7:75-95.
    [10]Leprince O, Hendry G A, Mckersie B D. The mechanism of desiccation tolerance in developing seeds. Seed Science Research,1993,3:231-246.
    [11]Ooms J J J, Leon Kloosterziel K M D, Koornneef M, Karssen C M. Aquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana [J]. Plant Physiol,1993,102: 1185-1191.
    [12]Brenac P, Horbowicz M, Downer S M, Dickerman A M, Smith M E, Obendorf R L. Raffinose accumulation related to desiccation tolerance during maize seed development and maturation [J]. JPlant Physiol,1997,150:481-488.
    [13]Koster K L, Leopold A C. Sugars and desiccation tolerance in seeds [J]. Plant Physiol,1988, 88:829-832.
    [14]Kuo T M, Vanmiddlesworth J F, Wolf W J. Cotent of raffinose oligosaccharides and sucrose in various plant seeds [J]. Journal of Agricutural and Food Chemistry,1988,36:32-36.
    [15]Dure L S, Crouch M, Harada J, Ho T H D, Mundy J, Quatrano R, Tamas T, Sung Z R. Common amino acid sequence domains among the LEA proteins of higher plants [J]. Paint Molecular Biology,1989,12:475-486.
    [16]Crowe J H, Crowe L M, Carpenter J F, Rudolph A S, Aurell Wistrom C, Spargo B J, Anchordoguy T J. Interactions of sugars with membranes [J].1988,947(2):367-84.
    [17]Franks F, Hatley R H M, Mathias E H. Materials science and the production of shelf_stable biologicals [J]. Bio Pharm,1991,4:38-42,55.
    [18]Crowe J H, Hoekstra F A, Nguyen K H N, Crowe LM. Is vitrification involved in depression of the phase transition temperature in dry phospholipids [J]. Biochimica et Biophysica Acta, 1996,1280:187-196.
    [19]Sun W Q, Leopold A C, Crowe L M, Crowe J H. Stability of dry liposomes in sugar glasses [J]. Biophysical Journal,1996,70:1769-1776.
    [20]葛文光.大豆低聚糖的生理特性与在食品中的应用[J].食品科学,1989,9:23-28.
    [21]叶桂安,杨希山,郑跃杰,刘利民,潘令嘉.双歧杆菌及肠致病性大肠杆菌粘附的细胞膜通透性研究[J].2000,12(3):132-133.
    [22]方伟辉.大豆糖蜜分离及低聚糖成分生物净化的研究[D].无锡:江南大学,2004.
    [23]王晓,张孝范.保健功能因子大豆低聚糖及其开发.西部粮油科技,1999,24(1):31-33.
    [24]Chandalia M, Garg A, Lutjohann D, Von Bergmann K, Grundy S M, Brinkley L J. Beneficial effects of high dietary fiber intake in patients with type 2 DiabetesMellitus [J]. The New England of journal of medicine,2000,342(19):1392-1398.
    [25]Redondo-Cuenca A, Villanueva-Suarez M J, Rodriguez-Sevilla M D, Mateos-Aparicio I. Chemical composition and dietary fibre of yellow and green commercial soybeans (Glycine max) [J]. Food Chemistry,2007,101(3):1216-1222.
    [26]Reynolds K, Chin A, Lees K A, Nguyen A, Bujnowski D, He J. A Meta-Analysis of the Effect of Soybean Protein Supplementation on Serum Lipids [J]. The American journal of cardiology, 2006,98(5):633-640.
    [27]Chen W, Duizer L, Corredig M, Goff H D. Addition of soluble soybean polysaccharides to dairy products as a source of dietary fiber [J]. Journal of Food Science,2010,75(6):478-84.
    [28]Hansson G C, Karlsson H. Gas chromatography and gas chromatography-mass spectrometry of glycoprotein oligosaccharides [J]. In:Hounsell EF, ed. Methods in Molecular Biology, 1993, Vol.14. Glycoprotein Analysis in Biomedicine. Totowa:Humana Press, pp.47-54.
    [29]黄贤校,谷克仁,赵一凡.大豆低聚糖研究概况[J].粮食与食品工业.2006,13(3):27-29.
    [30]白英.肉苁蓉低聚糖的分离纯化及组成分析[J].食品科技,2006,31(4):32-33.
    [31]薛连海.气相色谱法测定大豆中低聚糖含量[M].分析化学.2003,31(3):382-382.
    [32]李健,刘宁,吴艳华,齐守国.低聚糖分析技术研究[J].哈尔滨商业大学学报(自然科学版),2003,19(1):75-79.
    [33]杨云,弓建红,冯卫生,马相斌.大枣中性多糖的化学研究[J].时珍国医国药,2005,16(12):1215-1216.
    [34]Dunmire D L, Otto S E. High pressure liquid chromatographic determination of sugars in various food products [J]. Journal of the Association of Official Analytical Chemists.1979, 62(1):176-185.
    [35]Knudsen I M. High-performance liquid chromatographic determination of oligosaccharides in leguminous seeds [J]. Journal of the Science of Food and Agriculture,1986,37(6):560-566.
    [36]Macrae R, Zand-Moghaddam A. The determination of the component oligosaccharides of lupinseeds by high pressure liquid chromatography [J]. Journal of the Science of Food and Agriculture.1978,29(12):1083-1086.
    [37]Scott F W, Hatina G. High performance liquid chromatographic determination of sugars, starch and oligosaccharides in infant formulas using resin-based, fixed-ion columns [J]. Journal of Food Science,1988,53(1):264-269.
    [38]曹志军,宋世廉,李玉振.高压掖相色谱法测定大豆中的低聚糖[J].食品与发酵工业,1990,5:36-43.
    [39]Onigbinde A O, Akinyele I O. Oligosaccharide Content of 20 Varieties of Cowpeas in Nigeria [J]. Journal of Food Science,1983,48(4):1250-1251.
    [40]Johansen H N, Glits(?) V, Knudsen K E B. Influence of Extraction Solvent and Temperature on the Quantitative Determination of Oligosaccharides from Plant Materials by High-Performance Liquid Chromatography [J]. Journal of Agricultural and Food Chemistry, 1996,44(6):1470-1474.
    [41]李玲,许多,赵国良.大豆中生物活性物质的分离与分析的研究(1)-用ODS柱高效液相色谱法测定大豆中的低聚糖[J].食品与发酵工业,1995,3:44-47.
    [42]Delente J, Ladenburg K. Quantitative determination of the oligosaccharides in defatted soybean meal by gas-liquid chromatography [J]. Food Sci,1972,37:372-374.
    [43]Janauer G A, Englmaier P. Multi-step time program for the rapid gas-liquid chromatography of carbohydrate [J]. Journal of chromatography,1978,153:539-542.
    [44]Morgan S, Milos N. Separation of complex oligosaccharide mixtures by capillary electrophoresis in the open-tubular format. Analytical Chemistry,1994,66:1134-1140.
    [45]Milose V N. End-label free-solution capillary electronphoresis of highly charged ologosacchsrides. Analytical Chemistry,1995,67:4205-4209.
    [46]郝岩平,姜金斗,杨秀茹.HPLC法测定食品中大豆低聚糖的含量[J].中国甜菜糖业,2003,1:8-11.
    [47]张延坤,张东样,刘国忠,邓峰.高效液相色谱法测定大豆低聚糖[J].食品工业,2000,2:45-46.
    [48]王玉军,纪伟东,李永平.大豆低聚糖粉中棉籽糖和水苏糖的测定方法研究[J].大豆科技,2010,(4):23-25.
    [49]谭玉朋,李科,兰芹英,蒋湘宁,盖颖.植物组织中低聚糖乙酰化及毛细管气相色谱分析[J].植物学报,2011,46(3):319-323.
    [50]Plant A R, Moore K G. a-D-mannosidase and a-D-galactosidase from protein bodies of Lupinus angustifolius cotyledons [J]. Phy-tochemistry,1982,21:985-989.
    [51]Herman E M, Shannon L M. Accumulation and subcellular localization of a-galactosidase-hemagglutinin in developing soybean cotyledons [J]. Plant Physiol,1985,77: 886-890.
    [52]Bachmann M, Keller F. Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptants.L [J]. Plantphysiol,1995,109:991-998.
    [53]Keller F. Galactiol synthase is an extravacuolar enzyme in tubers of Japanese artichoke [J]. Plant Physiol,1992,99:1251-1253.
    [54]Greutert H, Keller F. Further evidence for stachyose and sucrose-proton antiporters on the tonoplast of Japanese artichoke tubers [J]. Plant Physiol,1993,101:1317-1322.
    [55]Leprince O, Bronchart R, Deltour R. Changes in starch and soluble sugars in relation to the acquisition of desiccation tolerance during maturation of Brassica campestris seed [J]. Plant Ceel and Enviroment,1990,13:539-546.
    [56]李芳,王晓峰.植物中棉子糖系列寡糖代谢及其调控关键酶研究进展[J].西北植物学报, 2008,28(4):0852-0859.
    [57]Peterbauer T, Richter A. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds [J]. Seed Sci,2001,11:185-197.
    [58]Zhang Y SH, Huang SH ZH, Fu J R. Progress in study on raffinose family oligosaccharides in seeds [J]. Chinese Bulletin of Botany,2001,18(1):16-22.
    [59]Ovcharov K E, Koshelev Y P. Sugar content in corn seeds of different viability [J]. Sov Plant Physiol,1974,21:805-808.
    [60]Bruni F, Leopold A C. Glass transitions in soybean seed:relevance to anhydrous biology [J]. Plant Physiol,1991,96:660-663.
    [61]Xu L, Bao W K, He Y H. Changes of storage substance in seeds and storage physiology [J]. Seed,2003, (5):60-63.
    [62]Bernal-Lugo I, Leopold A C. Changes in soluble carbohydrates during seed storage [J]. Plant Physiol,1992,98(3):1207-1210.
    [63]Karen L K, Carl L. Sugars and desiccation tolerance in seeds [J]. Plant Physiol,1988,88: 829-832.
    [64]Yang X Q, Jiang X CH, Fu J R. Soluble sugar and the acquisition of desiccation tolerance in peanut (Arachis hypogaea) seeds [J]. Acta Phytophysiol Sin,1998,24(2):165-170.
    [65]Zhang M, Lu Y, Wang X F. dehydration-induced intracellular solute changes and acquisition of plant desiccation tolerance [J]. Plant Physiology and Molecular Biology,2007,33(1):9-17.
    [66]Mitchell D E, Madore M A. Patterns of assimilate production and translocation in muskmelon (Cucumis meloL.) [J]. Plant Physiol,1992,99:966-971.
    [67]Pollock C J, Lloyd E J, Stoddard J L, Thomas H. Growth, photosynthesis and assimilate partitioning in Lolium temulentum esposed to chilling temperatures [J]. Physiol Plant,1983,59: 257-262.
    [68]Imanishi H T, Suzuki T, Masuda K, Harada T. Accumulation of raffinose and stachyose in shoot apices of Lonicera caerulea L. during cold acclimation [J]. Scientia Horticulture,1998, 72(3):255-263.
    [69]Loewus F A, Murthy P P N. Myo-inositol metabolism in plants [J]. Plant Sci,2000,150: 130-139.
    [70]Bachhawat N, Mande S C. Complex evolution of the inositol-1-phosphate synthase gene among archaea and eubacteria [J].Trends Genet,2000,16:111-113.
    [71]Hitz W D, Carlson T J, Kerr P S, Sebastian S A. Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds [J]. Plant Physiology,2002,128:650-660.
    [72]Keller R, Brearley C A, Trethewey R N, Muller-rober B. Reduced inositol content and altered morphology in transgenic potato plants inhibited for 1 D-myo-inositol 3-phosphate synthase [J]. The Plant Journal,1998,16:403-410.
    [73]Karner U, Peterbauer T, Raboy V, Jones D A, Hedley C L, Richter A. Myo-inositol and sucrose concentrations affect the accumulation of raffinose family oligosaccharides in seeds [J]. Experimental Botany,2004,55(405):1981-1987.
    [74]Arnaud L, Denis R C, Shaun W P, Felix K, Sagadevan G M, Jennifer A T, Jill M F. Protection mechanisms in the resurrection plant Xerophyta viscosa:cloning, expression, characterisation and role of XvINO1, a gene coding for a myo-inositol 1-phosphate synthase [J]. Functional Plant Biology,2008,35(1):26-39.
    [75]Lackey K H, Pope P M, Johnson M D. Expression of 11-myoinositol-l-phosphate synthase in organelles [J] Plant Physiol,2003,132(4):2240-2247.
    [76]Majumder A L, Johnson M D, Henry S A.1 L-myo-inositol-1-phosphate synthase [J]. Biochem Biophys Acta,1997,1348:245-256.
    [77]Majumder A L, Chatterjee A, Ghosh D K, Majee M. Diversification and evolution of L-myo-inositol 1-phosphate synthase [J]. FEBS Letts,2003,533:3-10.
    [78]Johnson M D, Henry S A. Biosynthesis of inositol in yeast:primary structure of myo-inositol 1-phosphate synthase (EC5.5.1.4) and functional analysis of its structural gene, the INO1 locus [J]. Journal of Biological Chemistry,1989,264:1274-1283.
    [79]Smart C C, Fleming A J. A plant gene with homology to D-myo-inositol-3-phosphate synthase is rapidly and spatially up-regulated during an abscisic-acid-induced morphogenic response in Spirodela polyrrhiza [J]. Plant,1993,4:279-293.
    [80]Johnson M D. The Arabidopsis thalianamyo-inositol-1-phosphate synthase (EC 5.5.1.4) [J]. Plant Physiol,1994,105:1023-1024.
    [81]Abu-abied M, Holland D. The gene c-inol from Citrus paradise is highly homologous toturl andinol from yeast and Spirodela encoding for myo-inositol phosphate synthase [J]. Plant Physiol,1994,106(4):1689.
    [82]Hara K, Yagi M, Koizumi N, Kusano T, Sano H. Screening of wound-responsive genes identifies an immediate-early expressed gene encoding a highly charged protein in mechanically wounded tobacco plants [J]. Plant Cell Physiol,2000,41:684-691.
    [83]Sang-hee P, Jong-LL K. Characterization of recombinant drosophila melanogaster myo-inositol-1-phosphate synthase expressed in Escherichia coli [J]. Microbiology,2004,42: 20-24.
    [84]Graves J A, Henry S A. Regulation of the yeast INO1 gene:the products of the INO2, INO4 and OPI1 regulatory genes are not required for repression in response to inositol [J]. Genetics, 2000,154:1485-1495.
    [85]Lopes J M, Hirsch J P, Chorgo P A, Schulze K L, Henry S A. Analysis of sequences in the INO1 promoter that are involved in its regulation by phospholipid precursors [J]. Nucleic acids research,1991,19(7):1687-1693.
    [86]Song Y Q, Yang Q. Cloning and expression of the cDNA of myo-inositol 1 phosphate synthase-like protein gene from Arabidopsis thaliana [J]. Harbin Institute of Technology,2005, 37(12):1641-1643.
    [87]Larson S R, Raboy V. Linkage mapping of maize and barley myo-inositol 1-phosphate synthase DNA sequences:correspondence with a low phytic acid mutation [J]. Theor Appl Genet,1999,99:27-36.
    [88]Johnson M D, Burk D. Isozymes of 1-L-myo-inositol-l-phosphate synthase from Arabidopsis [J]. Plant Physiol,1995,109:721-723.
    [89]Johnson M D, Sussex I M.1-L-myo-inositol 1-phosphate synthase from Arabidopsis thaliana [J]. Plant Physiol,1995,107:613-619.
    [90]Smith P T, Kuo T M, Crawford C G. Purification and characterization of galactinol synthase from mature zucchini squash leaves [J]. Plant Physiol,1991,96:693-698.
    [91]Frydman R B, Neufeld E F. Synthesis of galactosylinositol by extracts from peas [J]. Biochem Biophys Res Commun,1963,12:121-125.
    [92]Handley L W, Pharr D M, Mcfeeters R F. Relationship between galactinol synthase activity and sugar composition of leaves and seeds of several crop species [J]. Journal of the American Society of Horticulture Science,1983,108:600-605.
    [93]Saravitz D M, Pharr D M, Carter T E. Galactinol synthase activity and soluble sugars in developing seeds of four soybean genotypes [J]. Plant Physiol,1987,83:185-189.
    [94]Lowell C A, Kuo T S. Oligosaccharide metabolism and accumulation in developing soybean seeds [J]. Crop Science,1989,29:459-465.
    [95]Cunningham S M, Nadeau P, Castonguay Y, Laberge S, Volenec J J. Raffinose and stachyose accumulation, galactinol synthase expression,and winter injury of contrasting alfalfa germplasms [J]. Crop Science,2003,43:562-570.
    [96]Downie B, Gurusinghe S, et al. Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented [J]. Plant Physiology,2003,131:1347-1359.
    [97]Volk G M, Haritatos E E, Turgeon R. Galactinol synthase gene expression in melon [J]. Journal of the American Society for Horticultural Science,2003,128:8-15.
    [98]Zhao T Y, Meeley R B, Downie B. Aberrant processing of a maize GALACTINOL SYNTHASE transcript is caused by heat stress [J]. Plant Science,2003,165:245-256.
    [99]Peterbauer T, Lahuta L B, Blochi A, Mucha J, et al. Analysis of the raffinose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition [J]. Plant Physiology,2001,127:1764-1772.
    [100]Liu J J, Odegard W, De lumen B O. Galactinol synthase from kidney bean cotyledon and zucchini leaf [J]. Plant Physiol,1995,109:505-511.
    [101]Pharr D M, Sox H N, Locy R D, Huber S C. Partial characterization of the galactinol forming enzyme from leaves of Cucumissativus L [J]. Plant Sci Lett,1981,23:25-33.
    [102]Handley L W, Pharr D M. Ion stimulation, UDP inhibition and effects of sulfhydryl reagents on the activity of galactinol synthase from leaves of cucumber, Cucumis sativus L [J]. Z P flanzenphysiol,1982,108:447-455.
    [103]Taji T, Ohsumi C, Iuchi S, et al. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance inArabidopsis thaliana [J]. The Plant Journal,2002, 29(4):417-426.
    [104]Felix K. Galactinol synthase is an extravacuolar enzyme in tubers of Japanese artichoke (Stachys sieboldii) [J]. Plant Physiol,1992,99(3):1251-1253.
    [105]Liu J J, Krenz D C, Galvez A F, De L B O. Galactinol synthase (GS):increased enzyme activity and levels of mRNA due to cold and desiccation [J]. Plant Sci,1998,134:11-20.
    [106]Takahashi R, Joshee N, Kitagawa Y. Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice [J]. Plant Mol Biol,1994,26:339-352.
    [107]Sprenger N, Keller F. Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans:the roles of two distinct galactinol synthases [J]. The Plant Journal, 2000,21:249-258.
    [108]Iuchi S, Kobayashi M, Yamaguchi-shinozaki K, Shinozaki K. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under waoter stress in drought-tolerant cowpea [J]. Plant Physiol,2000,123:553-562.
    [109]Peterbauer T, Mach L, Mucha J, Richter A. Functional expression of a cDNA encoding pea (Pisum sativum L.) raffinose synthase, partial purification of the enzyme from maturing seeds, and steady-state kinetic analysis of raffinose synthesis [J]. Planta,2002,215(5):839-846.
    [110]Osumi C, Nozaki J, Kida T. Raffinose synthase gene, method for producing raffinose, and transgenic plant [M]. US,2005.
    [111]Li S, Li T, Kim W D, Kitaoka M, Yoshida S, Nakajima M, Kobayashi H. Characterization of raffinose synthase from rice(Oryza sativaL.var.nipponbare) [J]. Biotechnology Letters,2007, 29(4):635-640.
    [112]王智,刘永秀,魏建华,邓馨.复苏植物旋苣苔棉子糖合酶基因的克隆和表达[J].植物学报,2012,47:44-54.
    [113]Peterbauer T, Mucha J, Mayer U, Popp M, Glossi J, Richter A. Stachyose synthesis in seeds of adzuki bean (Vigna angularis):molecular cloning and functional expression of stachyose synthase [J]. The Plant Journal,1999,20(5):509-518.
    [114]Holthaus U, Schmitz K. Stachyose synthesis in mature leaves ofCucumis melo.Purification and characterization of stachyose synthase (EC 2.4.1.67) [J]. Planta,1991,184(4):525-531.
    [115]Peterbauer T, Richter A. Galactosylononitol and stachyose synthesis in seeds of Adzuki bean [J]. Plant Physiol,1998,117:165-172.
    [116]Cicek M S. Genetic marker analysis of three major carbohydrates in soybean seeds. Ph.D. Dissertation. Faculty of the Virginia Polytechnic Institute and State University.2001.
    [117]Deak N A, Murphy P, Johnson L A. Compositional characteristics of protein ingredients prepared from high-sucrose/low-stachyose soybeans [J]. JAOCS,2006,83(9):803-809.
    [118]Cicek. affirmed that a solution to the flatus problem produced by the consumption of indigestible sugars would be the genetic removal of oligosaccharides by plant breeding and Marker Assisted Selection (MAS) [J].2001, The Plant Journal,2001,16(5):601-608.
    [119]Hymowitz T, Collins F I, Panczner J, Walker W M. Relationship between the content of oil, protein, and sugar in soybean seed [J]. Agron J,1972,64:613-616.
    [120]Geater C W, Fehr W R. Association of total sugar content with other seed traits of diverse soybean cultivars [J]. Crop Sci,2000,40:1552-1555.
    [121]Geater C W, Fehr W R, Wilson L A. Association of soybean seed traits with physical properties of natto [J]. Crop Sci,2000,40:1529-1534.
    [122]Kerr P S, Sebastian S A. Soybean products with improved carbohydrate composition and soybean plants [J]. U.S. patent,2000,34:1123-1132.
    [123]Maughan P J, Saghai M A, Buss G R. Identification of quantitative trait loci controlling sucrose content in soybean (Glycine max) [J]. Molecular Breeding,2000,6:105-111.
    [124]Kim H K, Kang S T, Cho J H, Choung M G, Suh D Y. Quantitative trait loci associated with oligosaccharide and sucrose content of Glycine max seeds [J]. J Plant Bio,2005,48:106-112.
    [125]Feng C, Morsy M, Giannocaro E, Zhang B, Chen P. Soybean seed sugar content and quantitative trait loci mapping [J]. Tsinghua University press,2005,438-439.
    [126]Skoneczka J A, Maroof M A S, Shang C, Buss G R. Identification of candidate gene mutation associated with low stachyose phenotype in soybean line PI200508 [J]. Crop Sci,2009,49: 249-255.
    [127]Wahl C V. Schadlinge an der Sojabohne [J]. Zeitschrift fur Planzenkrankheiten,1921,31: 194-196.
    [128]Grau C R. Powdery mildew, a sporadic but damaging disease of soybean. Proceedings of the III World Soybean Research Conference. Iowa, USA. Westview Press, Boulder.568-574.
    [129]Ferreira L P, Lehman P S, Almeida A M R. Doencas da soja no Brasil. Londrina PR. Embrapa, 1979.
    [130]Lohnes D G, Bernard R L. Inheritance of resistance to powdery mildew in soybeans [J]. Plant Dis,1992,76:964-965.
    [131]Dunleavy J M. Soybean seed yield losses caused by powdery mildew [J]. Crop Sci,1978. 18:337-339.
    [132]Lohnes D G, Nickell C D. Effects of powdery mildew alleles Rmd-c, Rmd, and rmd on yield and other characteristics in soybean [J]. Plant Dis,1994,78:299-301.
    [133]Grau C R, Laurence J A. Observations on resistance and heritability of resistance to powdery mildew of soybean [J]. Plant Dis,1975,59:458-460.
    [134]Polzin K M, Lohnes D G, Nickell C D, Shoemaker R C. Integration of Rps2, Rmd, and Rj2 into linkage group J of the soybean molecular map [J]. Hered,1994,85:300-303.
    [135]Auclair J L. Host plant resistance [C]. Elsevier, New York,1989:225-265.
    [136]Mian M A R, Hammond R B, Martin S K. New plant introductions with resistance to the soybean aphid [J]. Crop Sci,2008a,48:1055-1061.
    [137]Kang S T, Mian M A R. Genetic map of the powdery mildew resistance gene in soybean PI 243540 [J]. Genome,2010,53:400-405.
    [138]绍伯飞,胡东维,李德葆.大豆与白粉病菌相互作用的超微结构与细胞化学[J].电子显微学报,2011,20(6):744-747.
    [139]Aist J R, Bushnell W R. The fungal spore and disease initiation in plants and animals. Plenum,1991,321-345.
    [140]万安民,赵中华,吴立人.2002年我国小麦条锈病发生回顾[J].植物保护,2003,29(2):5-8.
    [141]牛永春,乔奇,吴立人.豫鲁皖三省重要小麦品种抗条锈基因推导[J].植物病理学报,2000,30(2):122-128.
    [142]Li Z F, Xia X C, Zhou X C, et al. Seedling and slow rusting resistance to stripe rust in Chinese common wheats [J]. Plant Dis,2006,90:1302-1312.
    [143]何中虎,张爱民.中国小麦育种进展[C].北京:中国科学技术出版社,2002.
    [144]Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in Chinese wheat lines Jieyan 94-1-1 and Siyan 94-1-2 [J]. Hereditas,2002, 136:212-218.
    [145]Yao G, Zhang J, Yang L, et al. Genetic mapping of two powdery mildew resistance genes in einkorn(Triticum monococcum L) accessions [J]. Theor Appl Genet,2007,114(2):351-358.
    [146]Zhou R H, Zhu Z D, Kong X Y, et al. Development of wheat near-isogenic lines for powdery mildew resistance [J]. Theor Appl Genet,110:640-648.
    [147]Singrun C H, Hsam S L, Zeller F J, et al. Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL [J]. Theor Appl Genet,2004,109:210-214.
    [148]Chantret N, Souridille P, R der M, et al. Location and mapping of the powdery mildew resistance gene MIRE and detection of a resistance QTL by bulked segregant analysis(BSA)with microsatellites in wheat [J]. Theor Appl Genet,2000,100:1217-1224.
    [149]Pogna N E, Romano N, Pogna E A, et al. Chromosomal location of powdery mildew resistance gene Td1055 in wild emmer wheat (T. dicoccoides) accessions TA1055 and TA1150 [C]. Proceedings 10th International Wheat Genetics Symposium Instiuto Sperimentale per la Cerealcoltura, Rome, Italy,2003,3:1090-1092.
    [150]Mohler V, Zeller F J, Wenzel G, et al. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell) 9 Gene MIZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1 [J]. Euphytica,2005,142:161-167.
    [151]Niu J S, Wang B Q, Wang Y H, et al. Chromosome location and microsatellite markers linked to a powdery mildew resistance gene in wheat line 'Lankao 90(6)'[J]. Plant Breeding,2008, 127:346-349.
    [152]胡铁柱,李洪杰,谢超杰等.小麦品种“唐麦4号”抗白粉病基因的分子标记与染色体定位[J].作物学报,2008,34(7):1193-1198.
    [153]唐媛,傅体华,贾明娟.SSR标记定位一个新的小麦白粉病抗性基因[J].华北农学报,2008,23(5):127-130.
    [154]Zhu Z D, Zhou R H, Kong X Y, et al. Microsatellite marker identification of a Triticum aestivum-Aegilops umbellulata substitution line with powdery mildew resistance [J]. Euphytica,2006,150:149-153.
    [155]刘素兰,王长有,王秋英等.小麦新种质N9628-2抗白粉病基因的SSR分析[J].作物学报,2008,34(1):84-88.
    [156]杨作民,唐伯让,孙其信等.小麦育种的战略问题—锈病和白粉病第二抗源的建立和利用[J].作物学报,1994,20:385-394.
    [157]Wang Z L, Li L H, He Z H, et al. Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines [J]. Plant Dis,2005,89:457-463.
    [158]Joergensen J H. Discovery characterization and exploitation of mlopowdery mildew resistance in barley [J]. Euphytica,1992,63:141-152.
    [159]Buschges R, Holricher K, Panstruga R, et al. The barley Mlogene:a novel control element of plant pathogen resistance [J]. Cell,1997,88:695-705.
    [160]严隽析,陈永萱草,Caligari P.大麦对大麦白粉病菌抗性遗传的初步研究[J].植物病理学报,1996,26(1):24.
    [161]Heath M C. Nonhost resistance and nonspecific plant defenses [J]. Curr Opin Plant Biol, 2000,3(4):315-319.
    [162]李落叶,低聚糖诱导小麦抗病性的研究[D].西北农林科技大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700