不同宽度杨树农田防护林带树冠结构特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田防护林的主要功能是防止自然灾害、调节小气候、护农增产,合理的林带结构能更好地发挥其防护效益。农田防护林结构一直是农田防护林研究的热点,构建结构合理、功能协调、效益显著的防护林体系,是农田防护林学研究的主要目标。研究不同林龄、不同林带宽度防护林带树冠结构的变化,能够深入了解叶、枝条在林带结构水平、垂直空间的分布规律,对于深入了解树冠结构变化机制、不同林带宽度的林带结构变化的机制都具有重要意义,此外,分维疏透度是重要的林带结构因子,能更精确描述林带结构。然而,关于农田防护林树冠结构的研究非常缺乏,限制了树冠结构的变化对林带结构变化机理的理解,也限制了分维疏透度在调控林带结构的应用,成为该研究领域内的一个重要问题。因此,本文以中林46杨和107杨为对象,基于不同林龄、林带宽度林带,采用分级标准木测定法,研究了2个杨树无性系树冠结构变化规律,旨在为农田防护林带结构调控提供依据。主要结论为。
     (1)叶面积冠层位置对比叶面积影响显著,由上层到下层,比叶面积逐渐增加。相同林带宽度的单木比叶面积随林龄的增加而增加;相同林龄的各林带行数间单木比叶面积单行>两行>三行,三行<四行<宽林带;相同的林龄、林带宽度,单木比叶面积107杨显著高于中林46杨;不同林龄、林带宽度的单木比叶面积中林46杨为109.3-133.8 cm~2·g~(-1),107杨为135.1-157.8 cm~2·g~(-1)。冠层位置对叶面积影响显著,不同林带冠层的叶面积由内层到外层逐渐增加;单行林带冠层叶面积由上层到下层逐渐增加,而两行、三行、四行、宽林带冠层叶面积中层高于下层、上层。相同林龄,不同林带宽度的单木叶面积均随树木生长空间的降低而降低;相同林龄、林带宽度的单木叶面积中林46杨显著低于107杨。不同林龄、不同林带宽度的单木叶面积中林46杨为35.02-177.75m~2,107杨为51.11-212.94 m~2。
     (2)枝面积侧枝比枝面积随年龄级别增加而降低,随分枝级别的增加而增加。相同林龄的单木比枝面积随林木生长空间的降低而增加;相同林带宽度的单木比枝面积随林龄的增加而降低。相同林龄、林带宽度,单木比枝面积表现为中林46杨高于107杨。单木比枝面积中林46杨和107杨分别为11.14-12.79 cm~2·g~(-1)和8.72-11.62 cm~2·g~(-1)。主枝面积受冠层位置的影响,主枝面积由内层到外层逐渐降低;单行、两行林带的主枝面积从上层到下层逐渐增加,三行、四行及宽林带的主枝面积中间层高于上层和下层。各分枝级别侧枝面积随分枝级别的增加而降低。单木枝面积(主枝面积、侧枝面积、总枝面积)与单木叶面积的变化趋势一致。中林46杨、107杨的单木叶面积/树面积的平均值分别为79.25%、82.08%,单木枝面积/树面积平均值分别为13.63%、12.81%。
     (3)树冠分维度单行、两行及三行林带的树冠分维度,8年生林木高于6年生林木,而四行及宽林带情况与之相反。相同林龄的树冠分维度为单行<两行<三行<四行<宽林带。相同林龄和林带宽度的107杨树冠分维度略高于中林46杨。基于叶量计算的树冠分维度,中林46杨各林带宽度值为2.05-2.39,107杨值为2.18-2.51。
     (4)林带面积指数林分叶面积指数与单木叶面积的变化趋势相似。相同林龄、不同林带宽
     度的林分枝面积指数、枝干面积指数及总树面积指数变化趋势不明显。相同林带宽度的林分面积(叶、枝、枝干、树)指数均随林龄的增加而增加;相同林龄、林带宽度,林分面积指数中林46杨均低于107杨。
     (5)林带分维疏透度将基于枝、叶、干生物量计算的林带分维度作为有叶期的分维度(D_(f有)),基于枝、干生物量计算的林带分维度作为无叶期的分维度(D_(f无)),而对应的林带分维疏透度(β_f)为,有叶期:β_(f有)=3- D_(f有)、无叶期:β_f无=3-D_(f无)。建立了林带分维疏透度(β_f)和透光疏透(β)的函数模型(β_f = aβ~b)、与林带固定长度胸高断面积(G,m~2/50m)及相对枝下高(h0)的模型(β_f =a+bln G+ch_0),与林带叶面积、枝面积、枝干面积、总树面积指数的关系模型:β_f =a+bln( x)+cln(x2 )+dln(x~3)。为定量描述林带结构及对林带结构的调控提供了依据。
Shelterbelt is an ecosystem for guarding against natural disasters, adjusting local space micro-climate and improving crops production. It can provide the better preventive function with reasonable forest structure. The structure of shelterbelt is a hot topic in the study of shelterbelt, the main goal of study for shelterbelt is to build shelterbelt system with reasonable structure, functional harmony and remarkable benefit.
     It could know the variation of leaf and branch characters, tree crown, and shelterbelts to reaseach crown structre in Poplar shelterbelt. Fractal porosity is important index desribed shelterbelt structure and can characterized the structure of shelterbelt more accurately. However, the research about tree crown was just few at present, so, fractal porosity was limited to regulate and manage shelterbelt.
     to regulate optical porosity of shelterbelt. The optical porosity of shelterbelt was two dimensions index, however, there was deficiency to use the optical porosity express the structure of shelterbelt. With the developing of technical, fractal geometry can characterized the structure of shelterbelt more accurately. It can regulate the structure of shelterbelt and improve protect effect in plain.
     In this study, Populus×euramericana (Dode) Guinier CL.“zhonglin 46”and Populus×euramericana cv.“74/76”shelterbelts with different age and row were selected in kaifeng country. Thee crown structure were studied based on sample tree selected by different tree order. The main objectives of the paper were to regulate and manage the structrre of shelterbelt. The mainly conclusions as follow:
     (1) Leaf area Specific leaf area(SLA) was significantly affected by the position in the crown. SLA increased from the top to the bottom of the crown. SAL on individual tree increased with increasing tree age in the same width of shelterbelt, and the order of SLA on individual tree in the same forest age was single row>two rows>triples rows shelterbelts, and triples rows     Leaf area (LA) was also significantly affected by position in the crown. It increased from the interior to the exterior of the crown, and it increased from the top to the bottom of the crown for single row shelterbelt, while, it was higher in the middle than that in the upper and the lower of the crown for two rows, triple rows, four rows and many rows shelterbelts. In addition, LA on individual trees reduced with reducing growth space in the same forest age and row, raised with older forest age in the same row, and it was significantly lower in Pדzhonglin 46”tree than that in P×euramericana cv.“74/76”tree in the same forest age and row. It ranged from 35.02 to 177.75 m~2 for Pדzhonglin 46”stands, and it varied from 45.35 to 212.94 m~2 for P×euramericana cv.“74/76”stands.
     (2) Branch surface area Specific shoot area(SSA) decreased with successively older age classes and increased with sequentially higher branching classes. SSA of individual tree increased with reducing growth space in the same forest age. Furthermore, it decreased with older forest age in the same row. SSA of individual tree in P×euramericana cv.“74/76”tree was higher than in Pדzhonglin 46”tree in the same type. SSA of individual tree in Pדzhonglin 46 and P×euramericana cv.“74/76”shelterbelts ranged from 11.14 to 12.79 cm~2·g~(-1)and 8.72 to 11.92 cm~2·g~(-1), respectively.
     Primary branch axis surface area was also significantly influenced by canopy position, and it decreased from the inner to the exterior. But it increased from the top to the bottom in triple rows, four rows and many rows shelterbelts. Lateral shoot surface area decreased with branching order. Moreover, the variation modes for total, primary branch axis, and lateral shoot surface area in individual tree were all the similar as that of LA in a tree. The LA/tree area of Pדzhonglin 46”trees and P×euramericana cv.“74/76”tree were 79.25% and 82.08%, respectively. The branch surface area/tree area of a tree for Pדzhonglin 46”trees and P×euramericana cv.“74/76”tree were 13.63% and 12.81%, respectively.
     (3) Fractal dimension of the crown The fractal dimension of the crown for 8-year-old tree was greater than that for 6-year-old tree from single, two, and triple rows shelterbelt, conversely, fractal dimension of the crown for 8-year-old tree was lower than that for 6-year-old tree for four rows and more rows shelterbelt. The order of the fractal dimension of the crown in the same forest age was single row     (4) Shelterbelt structure characters The variation of LAI of stand and LA in a tree was similarly. the variation of branchwood area index, wood area index, and tree area index of stands were also the same, and they all hadn’t remarkably tendency in the same forest age and row, all increased with older shelterbelt age in the same row, and that of Pדzhonglin46”shelterbelt were all lower than that of P×euramericana cv.“74/76”shelterbelt in the same forest age and row.
     (5) fractal porosity model of Shelterbelt Fractal dimension of Shelterbelt in leafed period(D_(f有)) was calculate based on total (branch, leaf, and stem) biomass, and that in leafless period(D_(f无)) was calculate based on branch and stem biomass. Fractal porosity implies occupancy of stands gap to forest volume. Fractal porosity in leafed period and leafless equalβ_(f有)=3-D_(f有) andβ_f无)=3- D_(f无) , respectively. Some equations describing the fractal porosity of shelterbelt were developed. Fractal porosity could be described by fractal dimension using the power function model (β_f =αβb) and could be described by stand basal area and relative height to live branch (β_f =α+blnG+ch0). In addition, some equations for describing the relationship between fractal porosity and LAI, BAI ,WAI ,and TAI were developed
     (βf =a+bln( x)+cln(x~2 )+dln(x~3)). The above model could were used to regulate forest structure.
引文
[1]陈军,李春平,关文彬,等.林地小钻杨树冠的分维结构[J].林业科学,2006,42(12):6-12.
    [2]樊巍.农林复合系统的林网对冬小麦水分利用效率影响的研究[J].林业科学,2000,36(4):16-20.
    [3]方升佐,徐锡增,唐罗忠.水杉人工林树冠结构及生物生产力的研究[J].应用生态学报,1995,6(3):225-230.
    [4]方升佐,徐锡增,吕士行,等.中短轮伐期杨树纸浆林LAI及生物生产力的研究[J].应用生态学报,1998,9(3):225-230.
    [5]关德新,朱廷曜.树冠结构参数及附近风场特征的风洞模拟研究[J].应用生态学报,2000,11(2):202-204.
    [6]贾炜玮.樟子松人工林枝条生长及节子大小模型研究[D].东北林业大学,哈尔滨.2006.
    [7]姜凤歧,周新华,付梦华,等.林带疏透度模型及其应用[J].应用生态学报,1994,5(3):251-255.
    [8]姜凤歧,朱教君,曾德慧,等.防护林经营学[M].北京,中国林业出版社,2003.
    [9]蒋有绪,臧润国.海南岛尖峰岭树木园热带树木基本构筑型的初步分析[J].资源科学, 1999, 21(4):80 -84.
    [10]巨关升.辽西地区杨树人工林生长规律和树冠结构的研究[D].北京:中国林业科学研究院,2001.
    [11]康立新,季永华,张日连,等.农田林网主林带透风系数和疏透度关系探讨[J].江苏林业科技,1992,(1):12-16.
    [12]李火根,黄敏仁.杨树新无性系冠层特性及叶片的空间分布[J].应用生态学报,1998,9(4):345-348.
    [13]李火根,黄仁敏.杨树新无性系冠层特性与生长关系研究[J].林业科学,1999, 35(5):34-37.
    [14]李火根,黄敏仁,王明庥. 3种冠型分维数求算法在杨树无性系中的应用[J].南京林业大学学报(自然科学版),2005, 29(6):11-14.
    [15]李火根,潘惠新,严相进,等.杨树树冠分维数与生长的相关关系[J].南京林业大学学报(自然科学版),2005, 29(2):43-46.
    [16]李相军,李殿柱,耿振荣,等.开封土壤[M].北京,海洋出版社,1991.
    [17]梁军,徐锡增,吕士行. I-69杨生长过程分析和生长阶段划分[J].林业科学研究,2000,13(4): 343-348.
    [18]廖彩霞,李凤日.樟子松人工林树冠表面积及体积预估模型的研究[J].植物研究,2007,27(4):478-483.
    [19]刘兆刚,舒扬,李凤日.樟子松人工林一级枝条基径和枝长模型的研究[J].植物研究,2008,28(2):244-248.
    [20]刘兆刚,刘继明,李凤日,等.樟子松人工林树冠结构的分形分析[J].植物研究,2005,25(4): 465-470.
    [21]马克明,祖元刚,刘志刚,等.植被格局的分形特征[J].植物生态学报,2000, 24(l):111-117.
    [22]马泽清,刘琪碌,曾慧卿,等.南方人工林叶面积指数的摄影测量[J].生态学报,2008,28(5):1971-1980.
    [23]宁波.樟子松人工林结构动态及生物量的研究[D].东北林业大学,哈尔滨,2007.
    [24]万猛,潘存德,王梅,等.农田防护林林带疏透度数字化测定方法及其应用[J].干旱区地理,2005,28(1):120-123.
    [25]王广欣,樊巍.农田林网内土壤水分变化动态的研究[A].黄淮平原综合防护林体系生态经济效益的研究[C]北京:北京农业大学出版社,1990,78-84.
    [26]王述礼,朱廷耀,孔繁智,等.宝力地区农田防护林气象效应分析(2)林网内气候特征[A ].东北西部内蒙古东部防护林研究[c].向开馥驻点,第一集,1989,东北林业大学出版社,204-211.
    [27]王希群,马履一,贾忠奎,等.叶面积指数的研究和应用进展.生态学杂志,2005,24(5):537-541.
    [28]吴晓成,张秋良,臧润国,等.额尔齐斯河天然杨树林叶面积指数及比叶面积的研究[J].西北林学院学报,2009,24(4):10-15.
    [29]肖锐,李凤日,刘兆刚.樟子松人工林分枝结构的分析[J].植物研究,2006,26(4):490-496.
    [30]叶万辉.树体结构研究的历史发展和现状[J].世界林业研究,1995,(3):22-27.
    [31]余雪标,徐大平,龙腾,等.连栽桉树人工林生长特性和树冠结构特征[J].林业科学,2000,36(专刊1):137-142.
    [32]臧润国,蒋有绪.热带树木构筑学研究概述[J].林业科学,1998,34 (5):112-119.
    [33]张劲松,孟平,宋兆明等.我国平原农区复合农林业小气候效应研究概述[J].中国农业气象,2004, 25(3):52-62.
    [34]张小全,赵茂盛,徐德应.杉木中龄林树冠叶面积密度空间分布及季节变化[J].林业科学研究,1999a,12(6):612-619.
    [35]赵茂盛.杉木人工林冠层结构及其对光传输的影响[D].北京:中国林业科学研究院,1998.17- 38.
    [36]周新华,姜凤歧,朱教君.数字图像处理法确定林带疏透度随即误差研究[J].应用生态学报,1991,2(3):193-201.
    [37]朱春权,雷静品,刘晓东,等.集约与粗放经营杨树人工林树冠结构的研究[J].林业科学,2000,36(2):60-68.
    [38]朱廷耀,关德新.农田防护林生态工程学[M]北京:中国林业出版社,2001.
    [39]朱廷曜,关德新,吴家兵,等.论林带防风效应结构参数及其应用[J].林业科学,2004,40(4):9-14.
    [40] Ackerly D D, Reich P B. Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts[J]. Am. J. Bot., 1999, 86(9):1272–1281.
    [41] Baldwin Jr. C V., Peterson K D. Predicting the crown shape of loblolly pine trees[J]. Can. J. For. Res., 1997, 27(1):102–107杨.
    [42] Baldwin B C, Peterson K D, Burkhart H E, et al. Equations for estimating loblolly pine branch and foliage weight[J]. Can. J. For. Res., 1997, 27(6):918–927
    [43] Bechtold W A. Crown-diameter prediction models for 87 species of stand grown trees in the eastern United States[J]. Southern Journal of Applied Forestry, 2003, 27(4):269–278.
    [44] Bechtold W A. Largest-crown-width prediction models for 53 species in the western United States[J]. Western Journal of Applied Forestry, 2004, 19(4):245–251.
    [45] Behera S K.,Srivastava P.,Pathre U V,et al. An indirect method of estimating leaf area index in Jatropha curcas L. using LAI-2000 Plant Canopy Analyzer[J]. Agricultural and Forest Meteorology, 2010, 150(2):307-311.
    [46] Beekhuis J. Crown depth of radiata pine in relation to stand density and height[J]. N. Z. J. For., 1965,10(1):43-61.
    [47] Belcher D W., Holdaway M R., Brand G J. A description of STEMS: the stand and tree evaluation modeling system[C]. USDA Forest Service Gen. Tech. Rept. NC-, 1982, 79.
    [48] Bell A D., Roberts D., Smith A. Branching patterns: the simulation of plant architecture[J]. J Theor Biol. 1979, 81(2):351-375.
    [49] Berezovskava FS., Karev G P., Kisliuk O S., et al. A fractal approach to computer-analytical modeling of tree crowns[J]. Trees, 1997, 11(6):323-327.
    [50] Bidlake W R., Black R A. Vertical distribution of leaf area in Larix occidentalis: a comparison of two estimation techniques[J]. Can.J.For.Res., 1989, 19(9):1131-1136.
    [51] Bier H. Bending properties of structural timber from a 28-year-old stand of New Zealand Pinus radiate[J]. N. Zeal. J. For. Sci. 1985, 15:233-250.
    [52] Biging G S., Wensel L C. Estimation of the crown form for six conifer species of northern California[J]. Can. J. For. Res., 1990, 20 (8):1137-1142.
    [53] Biging G S., Dobbertin M. A comparison of distance dependent competition measures for height and basal area growth of individual conifer trees[J]. Forest Science, 1992, 38(3):695-720.
    [54] Biging, G S., Gill, S J. Stochastic models for conifer tree crown profiles[J]. Forest Science, 1997, 43 (1):25–34.
    [55] Bosc A, Grancourt A D., Loustou D. Variability of stem and branch maintenance respiration in a Pinus pinaster tree[J]. Tree Physiol, 2003, 23(4):227–236.
    [56] Bragg D C. A local basal area adjustment for crown width prediction[J]. Northern Journal of Applied Forestry, 2001, 18(1): 22–28.
    [57] Brazier J D., Mobbs I.D. The influence of planting distance on structural wood yields of unthinned Sitka spruce[J]. Forestry, 1993, 66(4):333-352.
    [58] Bréda N. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies[J]. J Exp Bot .2003, 54(392):2403–2417.
    [59] Briggs D., Ingaramo L., Turnblom E. Number and diameter of breast-height region branches in a Douglas-fir spacing trial and linkage to log quality[J]. Forest Products Journal, 2007, 57(9): 28-34.
    [60] Campo F C., Marshall P., LeMay V., et al. A crown profile model for Pinus radiata D. Don in northwestern Spain[J]. Forest Ecology and Management, 2009, 257(12):2370–2379.
    [61] Cannell M G R., Last F T. Tree physiohy and yield improvement[M]. Academic press, London. 1976.
    [62] Chen J M., Black T A. Measuring leaf area index of plant canopies with branch architecture[J]. Agric.For.Meteoro., 1991,57(1):1-12.
    [63] Cole D M.,Jensen C E. Models for describing Vertical crown development of lodgepole pine stands[Z]. USDA For. Ser. Res. Pa., INT, 1982, 292:10.
    [64] Colin F., Houllier F. Branchiness of Norway spruce in northeastern France: predicting the main crown characteristics from usual tree measurements[J].Ann. For. Sci., 1992, 49:511-538.
    [65] Corona P. Studying tree crown architecture by fractal analysis[J]. Italia Forestale E Montana 1991, 46 (4): 291–307.
    [66] Dean T J., Roberts S D., Gilmore D W., et al. An evaluation of the uniform stress hypothesis based onstem geometry in selected North American conifers[J]. Trees, 2002, 16(8): 559–568.
    [67] DeBell J D., Tappeiner J C., Krahmer R L. Branch diameter of Western hemlock: Effects of precommercial thinning and implications for log grades[J]. West. J. Appl. For., 1994, 9(3):88-90.
    [68] Doruska P F., Burkhart H E. Modeling the diameter and locational distribution of branches within the crowns of loblolly pine trees in unthinned plantations[J]. Can. J. Forest Res., 1994, 24:2362-2376.
    [69] Doruska P F., Mays J E. Crown profile modeling of loblolly pine by nonparametric regression analysis[J]. Forest Science, 1998, 4 (3):445–453.
    [70] Doster R H., James D A. Home range size and foraging habitat of red-cockaded woodpeckers in the Ouachita Mountains of Arkansas[J]. Wilson Bull, 1998, 110(1):110–117.
    [71] Dyer M E, Burkhart H E. Compatible crown ratio and crown height models[J]. Can. J. Forest Res., 1987, 17(6): 572–574.
    [72] Fahey T D., Cahill J M. Snellgrove, T.A., et al. Lumber and veneer recovery from intensively managed young growth Douglas fir[Z]. USDA For. Serv. Res. Pap. PNW-RP-437. Portland, Oregon, 1991, 25.
    [73] Falconer K. Fractal geometry: mathematical foundations and applications[M]. John Wiley&Sons Ltd, England. 1991.
    [74] Fassnacht K S, Gower S T, Norman J M, et al. A comparison of optical and direct methods for estimating foliage surface area index in forests[J]. Agric For Meteorol, 1994, 71(1-2):183–207.
    [75] Fernández M P., Norero A. Relation between length and diameter of Pinus radiata branches. Scandinavian Journal of Forest Research, 2006, 21(2):124-129.
    [76] Ford E D., Avery A., Ford R. Simulation of branch growth in the Pinaceae: interactions of morphology, phenology, foliage productivity, and the requirement for structural support, on the export of carbon[J]. Journal of Theoretical Biology, 1990, 146:15–36.
    [77] Ford R., Ford E D. Structure and basic equations of a simulator for branch growth in the Pinaceae[J]. Journal of Theoretical Biology, 1990, 146(1): 1–13.
    [78] Garber S M., Monserud R A., Maguire D A. Crown recession patterns in three conifer species of the northern Rocky Mountains[J]. Forest science, 2008, 54(6):633-646.
    [79] Gavrikov V L., Karlin I V. A dynamic model of tree terminal growth[J]. Can. J. For. Res., 1992, 23(2):326–329.
    [80] Gholz H L. Environmental limits on above-ground net primary production, leaf area, and biomass in vegetation zones of the Pacific North West[J]. Ecology, 1982, 63(2):469-481.
    [81] Gholz H L., Ewel K C., Teskey R O. Water and forest productivity[J]. Forest Ecology and Management, 1990, 30(1-4):1-18.
    [82] Gholz H L, Vogel S A, Cropper. Dynamics of canopy structure and light interception in Pinus elliottii stands, North Florida[J]. Eclo. Monogr., 1991,6(1):33-51.
    [83] Gill S J. Stochastic Models of Tree Crown Profiles[D]. Berkeley, CA, University of CA, 1997.
    [84] Gill S J., Biging G S., Murphy E C. Modeling conifer tree crown radius and estimating canopy cover[J]. Forest Ecology and Management, 2000,126(3): 405–416.
    [85] Gill S J., Biging G S. Autoregressive moving average (ARMA) models of conifer crown profiles[J].Journal of Agricultural, Biological and Environmental Statistics, 2002a, 7(4):558-573.
    [86] Gill S J., BigingG S. Autoregressive moving average models of crown profiles for two California hardwood species[J]. Ecological Modelling, 2002b, 152(2-3):213–226.
    [87] Gower S T., Kucharik C J., Norman J M. Direct and indirect estimation of leaf area index,fapar and net primary production of terrestrial ecosystems[J].Remote Sensing of Environment, 1999,70(1):29-51.
    [88] Grace J C., Jarvis P G., Norman J M. Modelling the interception of solar radiant energy in intensively managed stands[J]. New Zealand Journal of Forest Science, 1987, 17(2/3): 193–209.
    [89] Grote R. Estimation of crown radii and crown projection area from stem size and tree position[J]. Ann. Forest Science, 2003, 60 (5): 393-402.
    [90] Hale S. Managing light to enable natural regeneration in British conifer forests[Z]. Forestry Commission Information, Forestry Commission, Edinburgh. 2004.
    [91] Halldin S. Leaf and bark area distribution in a pine forest[A]. In:Hutchinson BA, Hicks BB (eds) The forest–atmosphere interaction: proceedings of the forest environmental measurements conference[C]. D. Reidel, Boston, MA, 1985:39–58.
    [92] Hann D W. An adjustable predictor of crown profile for stand-grown Douglas-fir trees[J]. Forest Science, 1999, 45(2):217–225.
    [93] Hari P., Heikinheimo P., M?kel? A., et al. Structure、Radiation and photosynthetic production in Coniferous stands[C]. University of Helsinki, Depterment of silviculture Research Notes, 1985, 54:1-233.
    [94] Hasenauer H. Monserud R A. A crown ratio model for Austrian forests[J]. Forest Ecology and Management, 1996, 84: 49–60.
    [95] Hashimoto R. Analysis of the morphology and structure of crowns in a young sugi (Cryptomeriu- juponicu) stand [J]. Tree Physiology, 1990, 6: 119-134.
    [96] Hashimoto R. Canopy development in young sugi (Cryptomeriu japonica) stands in relation to changes with age in crown morphology and structure[J]. Tree Physiology, 1991, 8:129-143.
    [97] Heisler G M., DeWalle D R. Effects of windbreak of structure on wind flow[J]. Agriculture ecosystem &Enviroment, 1988, 22/23:41-69.
    [98] Honda H. Description of the form of trees by the parameters of the tree like body: effects of the branching angle and the branch length in the shape of the tree like body[J]. Journal of Theoretical Biology, 1971, 31:331–338.
    [99] Hynynen J. Predicting tree crown ratio for unthinned and thinned Scots pine stands[J]. Can. J. For. Res. 1995, 25(1): 57–62.
    [100] Inglis C S., Cleland M R. Predicting final branch size in thinned radiata pine stands[R]. FRI Bulletin NO. 3. Forest Res. Inst., Rotorua, New Zealand, 1982:17.
    [101] Ingram S W., Nadkarni N M. Composition and distribution of epiphytic organic matter in a neotropical cloud forest[J], Costa Rica.Biotropica, 1993, 25:370–383.
    [102] Ishii H., Clement J P., C. Shaw D C. Branch growth and crown form in old coastal Douglas-fir[J]. Forest Ecology and Management, 2000, 131(1-3):81-91.
    [103] Ishii H., Ford E D., Boscolo M E., et al. Variation in specific needle area of old-growth Douglas-fir in relation to needle age, within-crown position and epicormic shoot production[J]. Tree Physiology, 2002, 22:31–40.
    [104] Ishii H., McDowell N. Age-related development of crown structure in coastal Douglas-fir trees[J]. Forest Ecology and Management, 2002, 169:257–270.
    [105] Jack S B., Long J N. Forest production and the organization of foliage within crowns and canopies[J]. Forest ecology and management, 1992, 49(3-4):233-245.
    [106] Jennings D T., Diamond J B., Whatt B A. Population densities of spiders (Araneae) and spruce budworms (Lepidptera tortricidae) on foliage of balsam fir and red spruce in east-central Maine[J]. J. Arachnol., 1990, 18:181-193. [107杨] Jonckheere I., Fleck S., Nackaerts K., et a1. Review of methods for in situ leaf area index determination.Part I. Theories sensors and hemispherical photography[J]. Agricultural and Forest Meteorology,2004,121(12):19-35.
    [108] Jones D D. The budworm site model[A]. In: Norton GA, Holling CS (eds). Pest management: proceedings of an international conference[C]. Pergamon Press, New York, NY, 1979:91–156.
    [109] K?ndler G. Die Ermittlung von Bestandesparametern als Eingangsgr?Вen für Interzeptionsmodelle mit Hilfe aerophotogrammetrischer Verfahren. Mitteilungen der Forstlichen Versuchs- und Forschungsanstalt. Heft Freiburg, 1986,127.
    [110] Keim R F. Attenuation of rainfall by forest canopies[D]. Oregon State University, Corvallis, OR, 2004.
    [111] Kenney W A. A method of for estimating windbreak porosity using digitized photographic silhouettes[J]. Agricultural and Forest Meteroloty, 1987, 39: 91-94.
    [112] Kershaw J A., Maguire D A., Han D W. Longevity and duration of radial growth in Douglas-fir branches[J]. Can. J. For. Res., 1990, 20:1690-1695.
    [113] Kershaw Jr J A., Maguire D A. Crown structure in western hemlock,Douglas-fir, and grand fir in western Washington: horizontal distribution of foliage within branches[J].Can.J.For.Res., 1996,26(1):128-142.
    [114] Keyes C R., O’Hara K L. Quantifying stand targets for silvicultural prevention of crown fires[J]. Western Journal of Applied Forestry 2002, 17, 101–109.
    [115] Kilpel?inen A., Routa J., Peltola H., et al. Effects of genetic entry and competition on above ground biomass production of Norway spruce grown in southern Finland. Forest ecological and management, 2010, 259(12):2327-2332.
    [116] Kinerson R J., Higginbotham K O., Chapman R C. Dynamics of foliage distribution within a forest canopy[J].J.Appl.Ecol.,1974,11,247-353.
    [117] Küppers M. Ecological significance of above-ground architectural patterns in woody plants: A question of cost-benefit relationships[J]. Trends in Ecology and Evolution, 1989, 4(12):375-379.
    [118] Kucharik C J., Norman J M., Gower S T. Measurements of branch area and adjusting leaf area index indirect measurements[J]. Agric. For. Meteorol., 1998, 91:69–88.
    [119] Kurttio O., Kellomake S. Structure of young Pinus sylvestris: branching and its dependence on treesize[J]. Scand. J. For. Res., 1990, 5: 169-176.
    [120] Kuuluvainen T. Crown architecture and stemwood production in Norway spruce (Picea abies (L.) Karst.)[J]. Tree Physiology, 1988, 4(4):337-346.
    [121] Kuuluvainen T. Relationships between crown projected area and components of above-ground biomass in Norway spruce trees in even-aged stands: Empirical results and their interpretation. Forest Ecology and Management, 1991, 40(3-4):243-260.
    [122] Landsberg J J., Kaufmann M R., Binkley D., et al. Evaluating progress toward closed forest models based on fluxes of carbon, water and land nutrients[J]. Tree Physiology, 1991, 9:1-15.
    [123] Larocque G R., Marshall P L. Evaluating the impact of competition using relative growth rate in red pine (Pinus resinosa Ait.) stands[J]. Forest ecological and management, 1993, 58(1-2):65-83.
    [124] Larson B C. Stem form development of forest trees[J]. Forest Science Monograph, 1963, 5: 1–42.
    [125] Li F R., Yong H M., Kim J H. Dlameter and Length Growth of primary Branches in a Larix olgensis plantation[J]. J.Korean For.Soc.2002, 91(2):219-230.
    [126] Maguire D A., Hann D W. A stem dissection technique for dating branch mortality and reconstructing past crown recession[J]. Forest Science, 1987, 33(4):858-871.
    [127] Maguire D A., Hann D W. Constructing models for direct prediction of 5-year crown recession in southwestern Oregon Douglas-fir[J]. Can. J. For. Res. 1990, 20: 1044–1052.
    [128] Maguire D A., Hann D W. A sampling strategy for estimating past crown recession on temporary growth plots[J]. Forest Science, 1990, 36(3):549-563.
    [129] Maguire D A., Kershaw Jr J A., Hann D W. Predicting the Effects of Silvicultural Regime on Branch Size and Crown Wood Core in Douglas-Fir[J]. Forest Science, 1991, 37(5):1409-1428.
    [130] Maguire D. A., Moeur M., Bennett W S. Models for describing basal diameter and vertical distribution of primary branches in young Douglas-fir[J]. Forest Ecology and Management, 1994, 63(1):23-55.
    [131] M?kinen H. Effect of intertree competition on branch characteristics of Pinus sylvestris families[J]. Scandinavian Journal of Forest Research, 1996, 11(1-4):129-136.
    [132] M?kinen H. Effect of stand density on radial growth of branches of Scots pine in southern and central Finland[J]. Can. J. For. Res., 1999, 29(8): 1216–1224.
    [133] M?kinen H., Colin F. Predicting branch angle and branch diameter of Scots pine from usual tree measurements and stand structural information[J].Can. J. For. Res. 1998, 28(11):1686–1696.
    [134] M?kinen H., Colin F. Predicting the number, death, and self-pruning of branches in Scots pine[J]. Can. J. For. Res. 1999, 29(8):1225–1236.
    [135] Marshall D D., Johnson G P., Hann D W. Crown profile equations for stand-grown western hemlock trees in northwestern Oregon[J]. Can. J. For. Res. 2003, 33(11): 2059–2066.
    [136] Medhurst J L., Beadle C L. Crown structure and leaf area index development in thinned and unthinned Eucalyptus nitens plantations[J]. Tree Physiology, 2001, 21(12-13):989-999. [1371] Mencuccini M., Bonosi L. Leaf/sapwood area ratios in Scots pine show acclimation across Europe[J]. Can. J. For. Res., 2001, 31(3):442–456.
    [138] Meng S X., Lieffers V J., Huang S. Modeling crown volume of lodgepole pine based upon theuniform stress theory[J]. Forest Ecology and Management, 2007, 251(3):174-181.
    [139] Mitchell K J. Dynamics and simulated yield of Douglas-fir[Z]. Forest Science Monograph, 1975, 17 (4):39.
    [140] Mohren G M J. Simulation of forest growth, applied to Douglas-fir stands in the Netherlands[D]. Wageningen Agricultural University, Wageningen, The Netherlands, 1987.
    [141] Mohren G M J., Gerwen C P V., Spitters C J T. Simulation of primary production in even-aged stands of Douglas-fir[J]. Forest Ecology and Management, 1984, 9:27–49.
    [142] Moore J. Mechanical behavior of coniferous trees subjected to wind loading[D].Oregon State University, Corvallis, Oregon. 2002.
    [143] Morrison M L., Timosse I M., With K A. Development and testing of linear regression models predicting bird-habitat relationships[J]. Journal of Wildlife Management, 1987, 51:247–253.
    [144] Nepal S K., Somers G L., Caudill S H. A stochastic frontier model for fitting tree crown shape in Loblolly pine (Pinus taeda L.)[J]. Journal of Agricultural, Biological and Environmental Statistics, 1996, 1(3), 336–353.
    [145] Oker-Blom P. Photosynthetic radiation regime and canopy structure in modeled forest stands[J]. Acta Forestalia Fennica. 1986, 197: 1-44.
    [146] Oker-Blom P., Kaufmann M R., Ryan M G. Performance of canopy light interception model for conifer shoot, trees, and stands[J]. Tree Physiology.1991, 9:221–243.
    [147] Pierce V., Grubb T C. Laboratory studies of foraging in four bird species of deciduous woodland. Auk, 1981, 98(2):307–320.
    [148] Pretzsch H. Modellierung der Kronenkondurrenz von Fichte und Buche in Rein- und Mischbest?n- den[J]. Allgemeine Forest- und Jagdzeitung, 1992,163 (11–12):203–213.
    [149] Prusinkiewicz P., Hammel M., Mjolsness E. Animation of Plant Development[C]. Proceedings of SIGGRAPH 93 (Anaheim, California, August 1–6, 1993), In Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,1993:351–360.
    [150] Pulkkinen P., P?ykk? T. Inherited narrow crown form, harvest index and stem biomass production in Norway spruce, Picea abies[J]. Tree Physiology, 1990, 6(4):381-391.
    [151] Pulkkinen P. Crown structure and partitioning of aboveground biomass before the competition phase in a mixed stand of normal-crowned Norway spruce (Picea abies (L.) Karst.) and pendulous Norway spruce (Picea abies f. pendula (Lawson) Sylven). Tree Physiology, 1991, 8(4):361-370.
    [152] Raison R J., Myers B J., Benson M L. Dynamics of Pinus radiata foliage in relation to water and nitrogen stress: I. Needle production and properties[J]. Forest Ecology and Mannagement, 1992, 52(1-4):139-158.
    [153] Raulier F., Ung C.H., Ouellet D. Influence of social status on crown geometry and volume increment in regular and irregular black spruce stands[J]. Can. J. For. Res., 1996, 26(10):1742–1753.
    [154] Rautiainen M., Stenberg P. Simplified tree crown model using standard forest mensuration data for Scots pine[J]. Agricultural and Forest Meteorology, 2005, 128(1-2): 123–129.
    [155] Rautiainen M., Mottus M., Stenberg P., Ervasti S. Crown envelope shape measurements and models [J]. Silva Fennica, 2008, 42(1):19–33.
    [156] Ritchie M W., Hann D W. Equations for predicting basal area increment in Douglas-fir and grand fir[R]. Research Bulletin 51, Forest Research Lab., Oregon State University, Corvallis, Oregon. 1985.
    [157] Roeh R L., Maguire D A. Crown profile models based on branch attributes in coastal Douglas-fir. Forest Ecology and Management 1997, 96(1-2):77-100.
    [158] Sampson D A., Allen H L. Light attenuation in a 14-year-old loblolly pine stand as influenced by fertilization and irrigation[J]. Trees, 1998, 13(2):80-87.
    [159] Satterlund D R. Forest shadows: How much shelter in a shelterwood?[J]. Forest Ecology and Management, 1983, 5(1): 27-37.
    [160] Shi K., Cao Q V. Predicted leaf area growth and foliage efficiency of loblolly pine plantations[J]. Forestry ecology and management, 1997, 95(2):109-115.
    [161] Short E A.Ш, Burkhart H E. Predicting crown-height increment for thinned and unthinned loblolly pine plantation[J]. For.Sci., l992,38(3):594-610.
    [162] Spathelf P. Reconstruction of crown length of Norway spruce (Picea abies (L.) Karst.) and Silver fir (Abies alba Mill.) technique, establishment of sample methods and application in forest growth analysis[J]. Ann. For. Sci., 2003, 60: 833-842.
    [163] Stiell W M. Crown structure in plantation red pine. Canada department of forestry, forest research branch., Technical Note. 1962,122.
    [164] Suzuki T., Ohsaki K., Saito H., Yamamoto Y.: A Representation Method for Todo- Fir Shapes using Computer Graphics (Japanese)[J]. J.Jpn.Forsoc.1992, 74(6):504-508.
    [165] Tanabe S I., Toda M J., Vinokurova A V. Tree shape, forest structure and diversity of drosophilid community: comparison between boreal and temperate birch forests[J]. Ecological Research, 2001, 16(3):369–385.
    [166] Temesgen H., LeMay V., Mitchell S J. Tree crown ratio models for multi-species and multi-layered stands of southeastern British Columbia. The Forestry Chronicle, 2005, 81(1):133-141.
    [167] Tombleson J D., Grace J C., Inglis C S. Response of radiate pine branch characteristics to site and stocking[A]. In: New approaches to spacing and thinning in forestry[R]. R.N James and G.L. Tarlton eds. For. Res. Inst. Bulletin 151, Rotorua, New Zealand, 1990, 229-231.
    [168] Utsugi H. Angle distribution of foliage in individual Chamaecyparis obtusa canopies and effect of angle on diffuse light penetration[J].Trees., 1999,14(1):1-9.
    [169] Valentine H T., Ludlow A R., Furnival G M. Modeling crown rise in even-aged stands of Sitka spruce or loblolly pine[J], Forest Ecology and Management, 1994, 39(1-3):189-197.
    [170] Vose J M., Allen H L. Leaf Area, Stemwood Growth, and Nutrition Relationships in Loblolly Pine[J]. Forest Science, 1988, 34(3):547-563.
    [171] Vose J M., Dougherty P M., Long J N., et al. Factors influencing the amount and distribution of leaf area of pine stands[J]. Ecological Bulletins (Copenhagen) 1994, 43:102-114.
    [172] Vose J M., Sullian N., Clinton B D., et al. Vertical leaf area distribution, light transmittance, and application of the Beer-Lambent law in four mature hardwood stands in South Applachian[J]. Can.J.For.Res., 1995,25(7):1036-1045.
    [173] Wang Y P., Jarvis P G., Benson M L. Two-dimensional needle-area density distribution within thecrowns of Pinus radiate[J]. Forest Ecology and Management, 1990, 32(2-4):217-237.
    [174] Watt M S., Moore J R., McKinlay B. The influence of wind on branch characteristics of Pinus radiate[J]. Trees, 2005, 19(1):58-65.
    [175] Weiskittel A R., Maguire D A. Branch surface area and its vertical distribution in coastal Douglas fir[J]. Trees, 2006, 20(6): 657-667.
    [176] Weiskittel A R., Maguire D A., Monserud R A. Modeling crown structural responses to competing vegetation control, thinning, fertilization, and Swiss needle cast in coastal Douglas-fir of the Pacific Northwest USA[J]. Forest Ecology and Management, 2007a, 245(1-3):96-109.
    [177] Weiskittel A R., Maguire D A., Monserud R A. Response of branch growth and mortality to silvicultural treatments in coastal Douglas-fir plantations: Implications for predicting tree growth[J]. Forest Ecology and Management, 2007b, 251(3): 182-194.
    [178] Weiskittel A R., Seymour R S., Hofmeyer P V, et al. Modelling primary branch frenquency and size for five confier species in Maine USA[J]. Forest Ecology and Management, 2010, 259(10): 1912-1921.
    [179] Werger M J A., Zukrigl K., Vanderkleij A. Struktur einiger Laubw?lder im nieder?sterr -eichischen Weinviertel[J]. Flora. 1984, 175(1):31-44.
    [180] Whittaker R H., Woodwell G M. Surface area relations of woody plants and forest communities[J]. Am J Bot., 1967, 54(8):931–939.
    [181] William E M. Number of Branchlets on Red Pine in Young Plantations[J]. Forest science, 1965, 11(1):42-49.
    [182] Wilson J S., Oliver C D. Stability and density management in Douglas-fir plantations[J]. Can. J. For. Res., 2000, 30(6): 910–920.
    [183] Xiao C W, Janssens I A., Curiel Yuste J., et al. Variation of specific leaf area and upscaling to leaf area index in mature Scots pine[J]. Trees, 2006, 20(3): 304-310.
    [184] Xu M G., Harrington T B. Foliage biomass distribution of loblolly pine as affected by tree dominance, crown size, and stand characteristics[J]. Can. J. For. Res. 1998, 28(6): 887–892.
    [185] Zeide B. Fractal analysis of foliage distribution in loblolly pine crowns[J]. Can. J. For. Res., 1998, 28(1): 106–114.
    [186] Zeide B., Gresham, C A. Fractal dimensions of tree crowns in three loblolly pine plantations of coastal South Carolina[J]. Can. J. For. Res., 1991, 21 (8):1208–1212.
    [187] Zeide B., Pfeifer P A. method for estimation of fractal dimension of tree crowns[J]. Forest Science, 1991, 37 (5):1253–1265.
    [188] Zhu J J., Matsuzaki T., Yutaka G. et al. Estamition of Optical Stratification Porosity(OSP) in a Pine Coastal Forest with Different Thinning Intensities Using Hemispherical Photographic Silhouettes[J]. Bulletin of Faculty of Agriculture, Niigata University, 2000, 53(1):55-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700