电压敏感钠通道与捕鸟蛛毒素相互作用位点的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虎纹捕鸟蛛(Haplopelma schmidti)、敬钊缨毛蛛(Chilobrachys guangxiensis)、海南捕鸟蛛(Haplopelma hainanum)都分布于我国南方地区,属于体型较大、毒性较强且稀有的捕鸟蛛。在本实验室以前的工作中,分别从它们的粗毒中分离到了虎纹毒素-Ⅰ(HWTX-Ⅰ)、虎纹毒素-Ⅳ(HWTX-Ⅳ)、海南毒素-Ⅳ(HNTX-Ⅳ)、敬钊毒素-Ⅲ(JZTX-Ⅲ),并通过电生理实验了解这四种毒素对于电压敏感钠通道(VGSCs)具有不同的选择性及作用强度,但是具体相互作用机制仍然不清楚。本文试图利用酵母双杂交技术来部分解决这个问题。将编码毒素成熟肽的基因序列连入pGBKT7(酵母双杂交载体),将编码电压敏感钠通道膜外区的基因序列连入另一载体pGADT7。通过酵母双杂交的手段,分别检测到了以上四种毒素对hNav1.7、hNav1.5通道膜外区潜在的相互作用位点。HWTX-IV和hNav1.7的潜在的作用位点仅为通道结构域Ⅲ的S3-S4胞外连接片段(DⅢ-S3-S4)。HWTX-Ⅰ与hNav1.7的潜在的作用位点为DⅠ-S3-S4、DⅢ-S1-S2、DⅢ-S5-S6、DIV-S5-S6。HNTX-Ⅳ和hNav1.7的潜在的作用位点是DⅠ-S3-S4、DⅡ-S 1-S2、DⅢ-S 1-S2、DⅢ-S5-S6。JZTX-Ⅲ和hNav1.7的潜在的作用位点是DⅠ-S3-S4、DⅠ-S5-S6、DⅡ-S1-S2、DⅢ-S5-S6、DⅣ-S1-S2、DIV-S5-S6。进一步分析,发现JZTX-Ⅲ与hNav1.5的潜在的作用位点是DⅠ-S 1-S2、DⅡ-S3-S4、DⅢ-S3-S4。
     在本实验室以前的工作中,已经在膜片钳上检测了天然HWTX-Ⅳ对hNav1.7通道电流的抑制作用,其半数抑制量(IC50)为26 nM; JZTX-Ⅲ对hNav1.5有抑制作用,其IC50大约在300 nM附近(未发表数据)。本文中我们又在膜片钳上检测了天然的HWTX-Ⅰ, HNTX-Ⅳ, JZTX-Ⅲ对于hNav1.7通道电流的抑制能力。其中毒素HWTX-Ⅰ, HNTX-Ⅳ对于hNav1.7通道电流的IC50分别为640 nM和22nM。JZTX-Ⅲ在1μM浓度时,对hNav1.7通道电流没有明显抑制能力。这四个毒素对hNav1.7通道电流的抑制能力依次是:HNTX-Ⅳ-HWTX-Ⅳ>HWTX-Ⅰ>>JZTX-Ⅲ。
     通过综合分析酵母显色和电生理的结果我们可以得出:1)HNTX-Ⅳ和HWTX-Ⅳ对hNav1.7通道的S5-S6这些膜外区中的大部分并没有相互作用;2)虽然电生理的结果,HNTX-Ⅳ和HWTX-Ⅳ对hNav1.7电流的抑制能力十分接近,但是通过分析酵母相互作用的结果,两者的作用位点却差异明显。其中HWTX-Ⅳ能够检测到的作用位点仅有一个,而HNTX-Ⅳ有4处;3)通过分析酵母显色结果,我们发现通道hNav1.5与hNav1.7之间,很可能是由于DⅡ-S3-S4和DⅢ-S3-S4这两部分膜外区的差别,导致对JZTX-Ⅲ敏感性的不一样。
     虽然VGSCs在S1-S2、S3-S4膜外区的氨基酸在10个附近,但是在我们参看相关文献后,预测其核心序列在6个氨基酸左右,我们直接在酵母双杂交载体pGADT7的多克隆位点上插入编码随机的六个氨基酸的序列,从而组成一个随机六肽文库。我们通过2种方式构建了能够用于酵母双杂交的随机六肽文库。第一种方法是常规的,需要依赖酶切和连接的方式;而第二种方法是直接通过PCR来完成文库质粒构建的全新方法。两种方法均能得到库容量在10万左右的高质量随机六肽文库。随后对两种方法所得的文库,随机挑选20个克隆进行测序。测序结果表明:两个文库都有70%的序列是符合设计初衷的编码随机六肽的序列,并且没有一个重复序列,代表两个文库里面的复杂度良好。
     本文的另一个工作是建立了一种表达小分子生物活性多肽的方法。我们分别将编码虎纹毒素-Ⅰ(HWTX-Ⅰ),海南毒素-Ⅳ(HNTX-Ⅳ),敬钊毒素-Ⅴ(JZTX-Ⅴ)的序列通过聚合酶链式反应(PCR)手段获得,然后分别连接入表达载体pET-40b,接着转入表达菌株BL21(DE3),最后以乳糖为诱导物,来实现目的蛋白在大肠杆菌周质空间的融合表达。经过SDS-PAGE检测,均能检测到三种毒素以融合蛋白的形式表达。进一步将部分可溶的虎纹毒素-Ⅰ融合蛋白(带组氨酸标签)用镍柱纯化。纯化后的产物通过透析、除盐后,再加入肠激酶消化来释放重组的虎纹毒素-Ⅰ(rHWTX-Ⅰ),接着通过反相高效液相色谱法(RP-HPLC)来纯化rHWTX-Ⅰ。经质谱检测,rHWTX-Ⅰ的分子量和天然HWTX-Ⅰ一样,都为3750.69,表明rHWTX-Ⅰ已经形成了3对二硫键。随后通过全细胞膜片钳技术来检测rHWTX-Ⅰ的生理活性。rHWTX-Ⅰ抑制hNav1.7电流的IC50为640 nM,几乎和天然的一致(天然的HWTX-Ⅰ的IC50为630 nM)。
The spiders(Haplopelma schmidti, Chilobrachys guangxiensis, and Haplopelma hainanum) distributing in the south of China are the relatively big, venomous, and rare bird spiders. In our previous studies, huwentoxin-I (HWTX-I), huwentoxin-IV (HWTX-IV), hainantoxin-IV (HNTX-IV), and jingzhaotoxin-III (JZTX-III) have been demonstrated that they have different selectivity and inhibiting ability on voltage-gated sodium channels (VGSCs) using whole-cell patch clamp assays. However, the interaction mechanism between spider toxins and VGSCs is still unclear. Here, we tried to solve it partially using yeast two hybird assay. The coding sequences of mature peptides of toxins were inserted to the yeast two hybird vector pGBKT7, and the coding sequences of outer-membrane segments of VGSCs were ligated to another vector pGADT7. Some potential interaction sites between these toxins and VGSCs (hNav1.5 and hNav1.7) were detected using yeast two hybird assays. The potential interaction site between HWTX-IV and hNav1.7 is only at the extracellular S3-S4 linker of domain III (DIII-S3-S4). The potential interaction sites between HWTX-I and hNav1.7 are at DI-S3-S4, DIII-S1-S2, DIII-S5-S6, and DIV-S5-S6. The potential interaction sites between HNTX-IV and hNav1.7 are at DI-S3-S4, DII-S1-S2, DIII-S1-S2, and DIII-S5-S6. The potential interaction sites between JZTX-III and hNav1.7 are at DI-S3-S4, DI-S5-S6, DII-S1-S2, DIII-S5-S6, DIV-S1-S2, and DIV-S5-S6. The potential interaction sites between JZTX-III and hNav1.5 are at DⅠ-S1-S2, DⅡ-S3-S4, and DⅢ-S3-S4.
     Previous studies in our laboratory have demonstrated that IC50 value of HWTX-IV is 26 nM for wild type (WT) hNav1.7. The IC50 value of JZTX-III is approximately 300 nM for WT hNav1.5 (unpublished datas). The inhibiting abilities of HWTX-I, HNTX-IV, and JZTX-III on the WT hNav1.7 were detected using electrophsiolgy assay. It was demonstrated that the IC50 value of HWTX-I and HNTX-IV were 640 nM and 22 nM for WT hNav1.7 channel, respectively. The hNav1.7 currents almost could not be inhibited after exposure to 1μM JZTX-III. The order of inhibition ability of toxins to hNav1.7 channel is HNTX-Ⅳ≈HWTX-Ⅳ>HWTX-Ⅰ>>JZTX-Ⅲ.
     According to the results of the electrophysiology and yeast two hybrid assays, key points can be concluded as follows:1) There is almost no interaction site between the outer-membrane S5-S6 segments of hNav1.7 and HNTX-IV or HWTX-Ⅳ, respectively.2) It is indicated that the inhibition ability of HNTX-Ⅳare identical to that of HWTX-IV for the hNav1.7 channel using electrophsiolgy assay, but the yeast two hybird results demonstrate that there are significant differences between them. The potential interaction site between HWTX-IV and hNav1.7 is only one, but HWTX-IV has four potential interaction sites to hNav1.7.3) The differences of segments of DII-S3-S4 and DIII-S3-S4 between hNav1.5 and hNav1.7 might result in the different sensitivity to JZTX-III.
     Outer-membrane S1-S2 and S3-S4 segments of VGSCs are almost no more than ten amino acids. We predicted that the core motif of these short out-membrane segments was about six amino acids by the analysis of related papers. The random-6-peptide library were constructed by inserting the coding sequences of the random-6-peptide into the expression vector-pGADT7, so the library could be used for the yeast two hybrid experiments. There were two different ways to build the random-6-peptide library. The first one was the regular method using the restriction endonuclease and T4 DNA ligase as some paper mentioned. But the second way was a novel method to build the library using the site-directed insertion mutagenesis. Two random-6-peptide libraries were constructed by two different ways mentioned above. Independent clones of each random-6-peptide library was over 100,000. Twenty clones were sequenced randomly from the two libraries mentioned above, respectively. The results of sequencing demonstrated that seventy percent sequences could be used for library screening, and there was no repetitive sequence, respectively. It was indicated that the libraries were of high quality.
     An efficiency method to express the small molecular bioactive peptides was developed. The coding sequences of HWTX-I, HNTX-Ⅳ, and JZTX-V were amplified by PCR. The cloned fragment was inserted into the expression vector pET-40b, and then the constructor was transformed into E.coli strain BL21(DE3), respectively. The expression of the soluble fusion protein was auto-induced into the periplasm of E. coli by lactose in the absence of IPTG. It was demonstrated that the three kinds of fusion proteins were expressed by the analysis of SDS-PAGE assay. After a partial purification using a Ni-NTA column and dialysis, the expressed fusion protein was digested using the enterokinase to release heteroexpressed HWTX-Ⅰ(rHWTX-Ⅰ) and further purified using RP-HPLC. The molecular weight of the rHWTX-I was 3750.69 using TOF/TOF MS spectrometer assays, which is identical to that of the natural toxin isolated from the spider venom. It was indicated there was three disulfide bonds formation of the rHWTX-I. The physiological properties of the rHWTX-I was further analyzed using the whole-cell patch clamp assay. The rHWTX-I was able to block the currents generated by human Nav1.7 at an IC50 of 640 nM, similar to that of the natural huwentoxin-I, which is 630 nM.
引文
[1]Hargus NJ, Patel MK. Voltage-gated Na+ channels in neuropathic pain [J]. Expert Opin Investig Drugs.2007;16:635-46.
    [2]Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe J, Hunter JC, et al. Nomenclature of voltage-gated sodium channels [J]. Neuron.2000;28:365-8.
    [3]Goldin AL. Resurgence of sodium channel research [J]. Annu Rev Physiol.2001;63:871-94.
    [4]Amir R, Argoff CE, Bennett GJ, Cummins TR, Durieux ME, Gerner P, et al. The role of sodium channels in chronic inflammatory and neuropathic pain [J]. J Pain.2006;7:S1-29.
    [5]George AL, Jr., Knittle TJ, Tamkun MM. Molecular cloning of an atypical voltage-gated sodium channel expressed in human heart and uterus:evidence for a distinct gene family [J]. Proc Natl Acad Sci U S A.1992;89:4893-7.
    [6]Catterall WA. From ionic currents to molecular mechanisms:the structure and function of voltage-gated sodium channels [J]. Neuron.2000;26:13-25.
    [7]Li RA, Ennis IL, French RJ, Dudley SC, Jr., Tomaselli GF, Marban E. Clockwise domain arrangement of the sodium channel revealed by (mu)-conotoxin (GIIIA) docking orientation [J]. JBC. 2001;276:11072-7.
    [8]Stuhmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, et al. Structural parts involved in activation and inactivation of the sodium channel [J]. Nature.1989;339:597-603.
    [9]Chen LQ, Santarelli V, Horn R, Kallen RG. A unique role for the S4 segment of domain 4 in the inactivation of sodium channels [J]. J Gen Physiol.1996;108:549-56.
    [10]Chanda B. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation [J]. J Gen Physiol.2002;120:629-45.
    [11]Cestele S, Yarov-Yarovoy V, Qu Y, Sampieri F, Scheuer T, Catterall WA. Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin [J]. JBC. 2006;281:21332-44.
    [12]Stucky CL, Gold MS, Zhang X. Mechanisms of pain [J]. Proc Natl Acad Sci U S A.2001;98:11845-6.
    [13]Woolf CJ, Mannion RJ. Neuropathic pain:aetiology, symptoms, mechanisms, and management [J]. Lancet.1999;353:1959-64.
    [14]Lai J, Porreca F, Hunter JC, Gold MS. Voltage-gated sodium channels and hyperalgesia [J]. Annu Rev Pharmacol Toxicol. 2004;44:371-97.
    [15]Bennett GJ. Can we distinguish between inflammatory and neuro-pathic pain? [J]. Pain Res Manag.2006;11:11A-5A.
    [16]Ferrante FM, Paggioli J, Cherukuri S, Arthur GR. The analgesic response to intravenous lidocaine in the treatment of neuropathic pain [J]. Anesth Analg.1996;82:91-7.
    [17]Kastrup J, Petersen P, Dejgard A, Angelo HR, Hilsted J. Intravenous lidocaine infusion--a new treatment of chronic painful diabetic neuropathy? [J]. Pain.1987;28:69-75.
    [18]Rowbotham MC, Reisner-Keller LA. Both intravenous lidocaine and morphine reduce the pain of postherpetic neuralgia [J]. Neurology.1991;41:1024-8.
    [19]Sindrup SH, Jensen TS. Efficacy of pharmacological treatments of neuro-pathic pain:an update and effect related to mechanism of drug action [J].Pain.1999;83:389-400.
    [20]Kim CH, Oh Y, Chung JM, Chung K. The changes in expression of three subtypes of TTX sensitive sodium channels in sensory neurons after spinal nerve ligation [J]. Brain Res Mol Brain Res. 2001;95:153-61.
    [21]WAXMAN SG, KOCSIS JD, BLACK JA. Type Ⅲ Sodium Channel mRNA Is Expressed in Embryonic But Not Adult Spinal Sensory Neurons, and Is Reexpressed Following Axotomy [J]. J Neurophysiol.1994;72:466-70.
    [22]Craner MJ, Klein JP, Renganathan M, Black JA, Waxman SG. Changes of sodium channel expression in experimental painful diabetic neuropathy [J]. Ann Neurol.2002;52:786-92.
    [23]Black JA, Cummins TR, Plumpton C, Chen YH, Hormuzdiar W, Clare JJ, et al. Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons [J].J Neurophysiol.1999;82:2776-85.
    [24]"Huntington's disease:Hope through research." [EB/OL]. Retrie ved National Institute of Neurological Disorders and Stroke., March 15,2010, from http://www.ninds.nih.gov/disorders/ huntington/.
    [25]"Parkinson's Disease:Hope Through Research." [EB/OL]. Retrie ved National Institute of Neurological Disorders and Stroke, May 28,2010, from http://www.ninds.nih.gov/disorders/parkinsons_disease/detail_parkinsons_disease.htm.
    [26]Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve [J].JPhysiol.1952;117:500-44.
    [27]Armstrong CM. Sodium channels and gating currents [J]. Physiol Rev.1981;61:644-83.
    [28]Hille B. Ionic channels in excitable membranes. Current problems and biophysical approaches [J]. Biophys J. 1978;22:283-94.
    [29]Beneski DA, Catterall WA. Covalent labeling of protein com-ponents of the sodium channel with a photoactivable derivative of scorpion toxin [J]. Proc Natl Acad Sci U S A.1980;77:639-43.
    [30]Agnew WS, Moore AC, Levinson SR, Raftery MA. Identification of a large molecular weight peptide associated with a tetrodotoxin binding protein from the electroplax of Electrophorus electricus [J]. Biochem Biophys Res Commun.1980;92:860-6.
    [31]Barchi RL. Protein components of the purified sodium channel from rat skeletal muscle sarcolemma [J]. J Neurochem.1983; 40:1377-85.
    [32]Bej AK, Mahbubani MH, Atlas RM. Amplification of nucleic acids by polymerase chain reaction (PCR) and other methods and their applications [J]. Crit Rev Biochem Mol Biol.1991; 26:301-34.
    [33]Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro:the polymerase chain reaction [J]. Cold Spring Harb Symp Quant Biol.1986;51 Pt 1:263-73.
    [34]Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity [J]. Science. 1998;280:69-77.
    [35]Guy HR, Seetharamulu P. Molecular model of the action potential sodium channel [J]. Proc Natl Acad Sci U S A.1986;83:508-12.
    [36]Bosmans F, Martin-Eauclaire MF, Swartz KJ. Deconstructing voltage sensor function and pharmacology in sodium channels [J]. Nature.2008;456:202-8.
    [37]Cestele S, Qu Y, Rogers JC, Rochat H, Scheuer T, Catterall WA. Voltage sensor-trapping:enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop in domain Ⅱ [J]. Neuron.1998;21:919-31.
    [38]Yamagishi T, Li RA, Hsu K, Marban E, Tomaselli GF. Molecular architecture of the voltage-dependent Na channel:functional evidence for alpha helices in the pore [J]. J Gen Physiol. 2001;118:171-82.
    [39]Bricelj VM, Connell L, Konoki K, Macquarrie SP, Scheuer T, Catterall WA, et al. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP [J]. Nature. 2005;434:763-7.
    [40]Yang N, Horn R. Evidence for voltage-dependent S4 movement in sodium channels [J]. Neuron.1995;15:213-8.
    [41]Yang N, George AL, Jr., Horn R. Molecular basis of charge movement in voltage-gated sodium channels [J]. Neuron.1996; 16:113-22.
    [42]Coddington JA, Levi HW. Systematics and Evolution of Spiders (Araneae) [J]. Annual Review of Ecology and Systematics.1991; 22:565-92.
    [43]King GF. The wonderful world of spiders:preface to the special Toxicon issue on spider venoms [J]. Toxicon.2004;43:471-5.
    [44]Escoubas P. Molecular diversification in spider venoms:a web of comb-inatorial peptide libraries [J]. Mol Divers.2006;10:545-54.
    [45]Platnick, N.I.,2010. The World Spider Catalog, Version 11.0 [EB/OL] (updated online version available at http://research. amnh.org/iz/spiders/cat alog/COUNTS.html).
    [46]Escoubas P, Diochot S, Corzo G. Structure and pharmacology of spider venom neurotoxins [J]. Biochimie.2000;82:893-907.
    [47]Liang S. An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [=Ornithoctonus huwena (Wang)] [J]. Toxicon.2004;43:575-85.
    [48]Moczydlowski E, Olivera BM, Gray WR. Discrimination of muscle and neuronal Na-channel subtypes by binding competition between [3H]saxitoxin and mu-conotoxins. Proc Natl Acad Sci U S A [J].1986;83:5321-5.
    [49]Soong TW, Venkatesh B. Adaptive evolution of tetrodotoxin resistance in animals [J]. Trends Genet.2006;22:621-6.
    [50]Dulubova IE, Krasnoperov VG, Khvotchev MV, Pluzhnikov KA, Volkova TM, Grishin EV, et al. Cloning and structure of delta-latroinsectotoxin, a novel insect-specific member of the latrotoxin family:functional expression requires C-terminal truncation [J]. JBC.1996;271:7535-43.
    [51]Pereira LS, Silva PI, Jr., Miranda MT, Almeida IC, Naoki H, Konno K, et al. Structural and biological characterization of one antibacterial acylpolyamine isolated from the hemocytes of the spider Acanthocurria gomesiana [J]. Biochem Biophys Res Commun.2007;352:953-9.
    [52]Parks TN, Mueller AL, Artman LD, Albensi BC, Nemeth EF, Jackson H, et al. Arylamine toxins from funnel-web spider (Agelenopsis aperta) venom antagonize N-methyl-D-aspartate receptor function in mammalian brain [J]. JBC.1991;266: 21523-9.
    [53]Donevan SD, Rogawski MA. Multiple actions of arylalkylamine arthropod toxins on the N-methyl-D-aspartate receptor [J]. Neuro science.1996;70:361-75
    [54]McCormick KD, Kobayashi K, Goldin SM, Reddy NL, Meinwald J. Characterization and synthesis of a new calcium antagonist from the venom of a fishing spider [J]. Tetrahedron.1993; 49:11155-68.
    [55]Escoubas P, Sollod B, King GF. Venom landscapes:mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach [J]. Toxicon.2006;47:650-63.
    [56]Pimenta AM, Rates B, Bloch C, Jr., Gomes PC, Santoro MM, de Lima ME, et al. Electrospray ionization quadrupole time-of-flight and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometric analyses to solve micro-heterogeneity in post-translationally modified peptides from Phoneutria nigriventer (Aranea, Ctenidae) venom [J]. Rapid Commun Mass Spectrom.2005; 19:31-7.
    [57]Escoubas P, Rash L. Tarantulas:eight-legged pharmacists and combinatorial chemists [J]. Toxicon.2004;43:555-74.
    [58]Yuan C, Jin Q, Tang X, Hu W, Cao R, Yang S, et al. Proteomic and peptidomic characterization of the venom from the Chinese bird spider, Ornithoctonus huwena Wang [J]. J Proteome Res. 2007;6:2792-801.
    [59]Tang X, Zhang Y, Hu W, Xu D, Tao H, Yang X, et al. Molecular diversification of peptide toxins from the tarantula Haplopelma hainanum (Ornithoctonus hainana) venom based on transcriptomic, peptidomic, and genomic analyses [J]. J Proteome Res.9:2550-64.
    [60]陈金军.敬钊缨毛蛛毒素分子多样性和功能研究[D].湖南师范大学,2008.
    [61]SMART cDNA Library Construction Kit User Manual [M]. Clontechniques.1998.
    [62]Chen J, Deng M, He Q, Meng E, Jiang L, Liao Z, et al. Molecular diversity and evolution of cystine knot toxins of the tarantula Chilobrachys jingzhao [J]. Cell Mol Life Sci.2008;65:2431-44.
    [63]Jiang L, Peng L, Chen J, Zhang Y, Xiong X, Liang S. Molecular diversification based on analysis of expressed sequence tags from the venom glands of the Chinese bird spider Ornithoctonus huwena [J]. Toxicon.2008;51:1479-89.
    [64]Cohen L, Karbat I, Gilles N, Ilan N, Benveniste M, Gordon D, et al. Common features in the functional surface of scorpion beta-toxins and elements that confer specificity for insect and mammalian voltage-gated sodium channels [J]. JBC. 2005;280:5045-53.
    [65]刘君梁.虎纹捕鸟蛛毒素基因的克隆、表达及结构与功能关系的研究[D].湖南师范大学,2004.
    [66]Chen J, Zhang Y, Rong M, Zhao L, Jiang L, Zhang D, et al. Expression and characterization of jingzhaotoxin-34, a novel neurotoxin from the venom of the tarantula Chilobrachys jingzhao [J]. Peptides.2009;30:1042-8
    [67]Jiang L, Peng L, Zhang Y, Chen J, Zhang D, Liang S. Expression, purification and characterization of a group of lectin-like peptides from the spider Ornithoctonus huwena [J]. Peptides. 2009;30:669-74.
    [68]Yuan CH, He QY, Peng K, Diao JB, Jiang LP, Tang X, et al. Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas [J]. PLoS ONE.2008;3:e3414.
    [69]Zhang Y, Chen J, Tang X, Wang F, Jiang L, Xiong X, et al. Transcriptome analysis of the venom glands of the Chinese wolf spider Lycosa singoriensis [J]. Zoology (Jena).113:10-8.
    [70]Wang M, Guan X, Liang S. The cross channel activities of spider neurotoxin huwentoxin-I on rat dorsal root ganglion neurons [J]. Biochem Biophys Res Commun.2007;357:579-83.
    [71]Xiao Y, Tang J, Yang Y, Wang M, Hu W, Xie J, et al. Jingzhaotoxin-III, a novel spider toxin inhibiting activation of voltage-gated sodium channel in rat cardiac myocytes [J]. JBC. 2004;279:26220-6.
    [72]Xiao Y, Liang S. Inhibition of neuronal tetrodotoxin-sensitive Na+ channels by two spider toxins:hainantoxin-III and hainantoxin-Ⅳ [J]. Eur J Pharmacol.2003;477:1-7.
    [73]Peng K, Shu Q, Liu Z, Liang S. Function and solution structure of huwentoxin-IV, a potent neuronal tetrodotoxin (TTX)-sensitive sodium channel antagonist from Chinese bird spider Selenocosmia huwena [J]. JBC.2002;277:47564-71.
    [74]Xiao Y, Bingham JP, Zhu W, Moczydlowski E, Liang S, Cummins TR. Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration [J]. JBC. 2008;283:27300-13.
    [75]Wang X, Connor M, Smith R, Maciejewski MW, Howden ME, Nicholson GM, et al. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge [J]. Nat Struct Biol.2000;7:505-13.
    [76]Bohlen CJ, Priel A, Zhou S, King D, Siemens J, Julius D. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain [J]. Cell.141:834-45.
    [77]Shu Q, Huang R, Liang S. Assignment of the disulfide bonds of huwentoxin-II by Edman degradation sequencing and stepwise thiol modification [J]. Eur J Biochem.2001;268:2301-7.
    [78]Shu Q, Lu SY, Gu XC, Liang SP. The structure of spider toxin huwentoxin-II with unique disulfide linkage:evidence for structural evolution [J]. Protein Sci.2002;11:245-52.
    [79]Nicholson GM. Insect-selective spider toxins targeting voltage-gated sodium channels [J]. Toxicon.2007;49:490-512.
    [80]Hou L, Du J, Wang J, Liu Y, Sun W, Zheng Y, et al. Expression of IL-13Ralpha2 in liver cancer cells and its effect on targeted therapy of liver cancer [J]. J Cancer Res Clin Oncol.136:839-46.
    [81]Kim HP, Frankel AE, Hogge DE. A diphtheria toxin interleukin-3 fusion protein synergizes with tyrosine kinase inhibitors in killing leukemic progenitors from BCR/ABL positive acute leukemia [J]. Leuk Res 34:1035-42.
    [82]Ushkaryov YA, Volynski KE, Ashton AC. The multiple actions of black widow spider toxins and their selective use in neurosecretion studies [J]. Toxicon.2004;43:527-42.
    [83]Ashton AC, Rahman MA, Volynski KE, Manser C, Orlova EV, Matsushita H, et al. Tetramerisation of alpha-latrotoxin by divalent cations is responsible for toxin-induced non-vesicular release and contributes to the Ca(2+)-dependent vesicular exocytosis from synaptosomes [J]. Biochimie.2000;82:453-68.
    [84]Ashton AC, Volynski KE, Lelianova VG, Orlova EV, Van Renterghem C, Canepari M, et al. alpha-Latrotoxin, acting via two Ca2+-dependent pathways, triggers exocytosis of two pools of synaptic vesicles [J]. JBC.2001;276:44695-703
    [85]Orlova EV, Rahman MA, Gowen B, Volynski KE, Ashton AC, Manser C, et al. Structure of alpha-latrotoxin oligomers reveals that divalent cation-dependent tetramers form membrane pores [J]. Nat Struct Biol.2000;7:48-53.
    [86]Escoubas P, Celerier ML, Nakajima T. High-performance liquid chromat-ography matrix-assisted laser desorption/ionization time-of-flight mass spectrometry peptide fingerprinting of tarantula venoms in the genus Brachypelma:chemotaxonomic and biochemical applications [J]. Rapid Commun Mass Spectrom. 1997;11:1891-9.
    [87]Escoubas P, Whiteley BJ, Kristensen CP. Multidimensional Peptide Fingerprinting by High Performance Liquid Chromato-graphy, Capillary Zone Electrophoresis and Matrixassisted Laser Desorption/Ionization Time-off light Mass Spectrometry for the Identification of Tarantula Venom Samples [J]. Rapid Commun Mass Spectrom.1998;12:1075-84.
    [88]Escoubas P, Chamot-Rooke J, Stocklin R, Whiteley BJ, Corzo G, Genet R, et al. A comparison of matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography electrospray ionization mass spectrometry methods for the analysis of crude tarantula venoms in the Pterinochilus group [J]. Rapid Commun Mass Spectrom.1999;13:1861-8.
    [89]Davletov BA, Shamotienko OG, Lelianova VG, Grishin EV, Ushkaryov YA. Isolation and biochemical characterization of a Ca2+-independent alpha-latrotoxin-binding protein [J]. JBC 1996;271:23239-45.
    [90]Krasnoperov VG, Beavis R, Chepurny OG, Little AR, Plotnikov AN, Petrenko AG. The calcium-independent receptor of alpha-latrotoxin is not a neurexin [J]. Biochem Biophys Res Commun. 1996;227:868-75.
    [91]Ushkaryov YA, Petrenko AG, Geppert M, Sudhof TC. Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin [J]. Science.1992;257:50-6.
    [92]Lelianova VG, Davletov BA, Sterling A, Rahman MA, Grishin EV, Totty NF, et al. Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors [J].JBC.1997;272:21504-8.
    [93]Scheer HW. Interactions between alpha-latrotoxin and trivalent cations in rat striatal synaptosomal preparations [J].J Neurochem. 1989;52:1590-7.
    [94]Volynski KE, Meunier FA, Lelianova VG, Dudina EE, Volkova TM, Rahman MA, et al. Latrophilin, neurexin, and their signaling-deficient mutants facilitate alpha-latrotoxin insertion into membranes but are not involved in pore formation [J]. JBC. 2000;275:41175-83.
    [95]Volynski KE, Capogna M, Ashton AC, Thomson D, Orlova EV, Manser CF, et al. Mutant alpha-latrotoxin (LTXN4C) does not form pores and causes secretion by receptor stimulation:this action does not require neurexins [J]. JBC 2003;278:31058-66.
    [96]Ichtchenko K, Khvotchev M, Kiyatkin N, Simpson L, Sugita S, Sudhof TC. alpha-latrotoxin action probed with recombinant toxin:receptors recruit alpha-latrotoxin but do not transduce an exocytotic signal [J]. EMBO J.1998;17:6188-99.
    [97]Vaara M. New approaches in peptide antibiotics [J]. Curr Opin Pharmacol.2009;9:571-6.
    [98]Zasloff M. Antimicrobial peptides of multicellular organisms [J]. Nature.2002;415:389-95
    [99]Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs:no ESKAPE! An update from the Infectious Diseases Society of America [J]. Clin Infect Dis. 2009;48:1-12.
    [100]廖智.大鼠与猕猴硬膜外和静脉注射虎纹毒素-Ⅰ的药代动力学和组织分布研究[D].湖南师范大学,2003.
    [101]Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens:no ESKAPE [J]. J Infect Dis. 2008;197:1079-81.
    [102]Lehmann J, Retz M, Sidhu SS, Suttmann H, Sell M, Paulsen F, et al. Antitumor activity of the antimicrobial peptide magainin Ⅱ against bladder cancer cell lines [J]. Eur Urol.2006;50:141-7.
    [103]Jiang L, Chen J, Peng L, Zhang Y, Xiong X, Liang S. Genomic organization and cloning of novel genes encoding toxin-like peptides of three superfamilies from the spider Orinithoctonus huwena [J]. Peptides.2008;29:1679-84.
    [104]Shear WA, Palmer JM, Coddington JA, Bonamo PM. A devonian spinneret:early evidence of spiders and silk use [J]. Science. 1989;246:479-81.
    [105]邓星灿.虎纹捕鸟蛛毒素Ⅺ (HWTX-Ⅺ)对急性胰腺炎的治疗作用[D].湖南师范大学,2008.
    [106]Beeler GW, Reuter H. Reconstruction of the action potential of ventricular myocardial fibres [J].J Physiol.1977;268:177-210.
    [107]Stuart GJ, Sakmann B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites [J]. Nature. 1994;367:69-72.
    [108]Hartshorne RP. Purification of the saxitoxin receptor of the sodium channel from rat brain [J]. Proc Natl Acad Sci U S A. 1981;78:4620-4.
    [109]Hartshorne RP, Messner DJ, Coppersmith JC, Catterall WA. The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical beta subunits [J]. JBC.1982;257:13888-91.
    [110]Miller JA, Agnew WS, Levinson SR. Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from Electrophorus electricus:isolation and partial chemical and physical characte rization [J]. Biochemistry.1983;22:462-70.
    [111]Denac H, Mevissen M, Scholtysik G. Structure, function and pharmacology of voltage-gated sodium channels [J]. Naunyn Schmiedebergs Arch Pharmacol.2000;362:453-79.
    [112]Wood JN, Boorman JP, Okuse K, Baker MD. Voltage-gated sodium channels and pain pathways [J]. J Neurobiol.2004; 61:55-71.
    [113]Catterall WA. Cooperative activation of action potential Na+ ionophore by neurotoxins [J]. Proc Natl Acad Sci U S A.1975; 72:1782-6.
    [114]Isom LL, Catterall WA. Na+ channel subunits and Ig domains [J]. Nature.1996;383:307-8.
    [115]Messner DJ, Feller DJ, Scheuer T, Catterall WA. Functional properties of rat brain sodium channels lacking the beta 1 or beta 2 subunit [J]. JBC.1986;261:14882-90.
    [116]Moran Y, Kahn R, Cohen L, Gur M, Karbat I, Gordon D, et al. Molecular analysis of the sea anemone toxin Av3 reveals selectivity to insects and demonstrates the heterogeneity of receptor site-3 on voltage-gated Na+ channels [J]. Biochem J. 2007;406:41-8.
    [117]Silver PA, Keegan LP, Ptashne M. Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization [J]. Proc Natl Acad Sci USA.1984;81:5951-5.
    [118]Keegan L, Gill G, Ptashne M. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein [J]. Science.1986;231:699-704.
    [119]Ma J, Ptashne M. Deletion analysis of GAL4 defines two transcriptional activating segments [J]. Cell.1987;48:847-53.
    [120]Fields S, Song O. A novel genetic system to detect protein-protein interactions [J]. Nature.1989;340:245-6.
    [121]Yeast Protocols Handbook [M]. Clontechniques.2001.
    [122]Chien CT, Bartel PL, Sternglanz R, Fields S. The two-hybrid system:a method to identify and clone genes for proteins that interact with a protein of interest [J]. Proc Natl Acad Sci U S A. 1991:88:9578-82.
    [123]Bruckner A, Polge C, Lentze N, Auerbach D, Schlattner U. Yeast two-hybrid, a powerful tool for systems biology [J]. Int J Mol Sci. 2009;10:2763-88.
    [124]Derman AI, Beckwith J. Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm [J]. J Bacteriol.1991;173:7719-22.
    [125]Gilbert HF. Molecular and cellular aspects of thiol-disulfide exchange [J]. Adv Enzymol Relat Areas Mol Biol.1990; 63: 69-172.
    [126]LI Xian-kun et al. Research and Application Advances of Yeast Two-hybrid Technique [J]. Journal of Anhui Agri. Sci.2009; 37(7):2867-2869.
    [127]Vanaelst L, Barr M, Marcus S. COMPLEX-FORMATION BETWEEN RAS AND RAF AND OTHER PROTEIN-KINASES [J]. Proc Natl Acad Sci U S A.1993; 90:6213-7.
    [128]Okuse K, Malik-Hall M, Baker MD, Poon WY, Kong H, Chao MV, et al. Annexin II light chain regulates sensory neuron-specific sodium channel expression [J]. Nature.2002;417:653-6.
    [129]Vranova E, Tahtiharju S, Sriprang R, Willekens H, Heino P, Palva ET, et al. The AKT3 potassium channel protein interacts with the AtPP2CA protein phosphatase 2C [J]. J Exp Bot. 2001;52:181-2.
    [130]Grotewold E, Sainz MB, Tagliani L, Hernandez JM, Bowen B, Chandler VL. Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R [J]. Proc Natl Acad Sci USA.2000;97:13579-84.
    [131]Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S, et al. The protein-protein interaction map of Helicobacter pylori. Nature[J].2001;409:211-5.
    [132]Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae [J]. Nature.2000;403:623-7.
    [133]Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome [J]. Proc Natl Acad Sci U S A.2001;98:4569-74.
    [134]Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, et al. A map of the interactome network of the metazoan C. elegans [J]. Science.2004;303:540-3.
    [135]Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, et al. A protein interaction map of Drosophila melanogaster [J]. Science.2003;302:1727-36.
    [136]WU Zhi-Hao, WANG Jian, HE Fu-Chu. "The Application of Large-scale Yeast Two-hybrid to Study Protein-Protein Interaction." [J]. HEREDITAS.2006; 28 (12):1627-1632.
    [137]Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, et al. A human protein-protein interaction network:a resource for annotating the proteome [J]. Cell.2005;122:957-68.
    [138]LI Tie-qiang, WUYong-ying, et al." Development of Yeast Hybrid system." [J]. China Journal of Bioinfonnatics.2007;6 (1): 46-48.
    [139]Uetz P, Hughes RE. Systematic and large scale two hybrid screens [J]. Curr Opin Microbiol.2000;3:303-8.
    [140]Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, et al. Towards a proteome-scale map of the human protein-protein interaction network [J]. Nature.2005;437:1173-8.
    [141]Rual JF, Hirozane-Kishikawa T, Hao T, Bertin N, Li S, Dricot A, et al. Human ORFeome version 1.1:a platform for reverse proteomics [J]. Genome Res.2004;14:2128-35.
    [142]"Caenorhabditis elegans." [EB/OL]. Retrieved Wikipedia., from http://en.wikipedia. org/wiki/Caenorhabditis_elegans. August 15, 2010.
    [143]"Drosophila melanogaster." [EB/OL]. Retrieved Wikipedia., from http://en. wikipedia. org/wiki/Drosophila melanogaster. July 17,2010.
    [144]蒋利平.虎纹捕鸟蛛毒素的基因克隆、表达及功能研究[D].湖南师范大学,2008.
    [145]Elble R. A simple and efficient procedure for transformation of yeasts [J]. Biotechniques.1992;13:18-20.
    [146]Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XXXIX. Compendium of voltage-gated ion channels:sodium channels [J]. Pharmacol Rev.2003;55:575-8.
    [147]邓梅春.敬钊缨毛蛛毒素与虎纹捕鸟蛛毒素的结构与功能研究[D].湖南师范大学,2010.
    [148]Yang B., X. F. Mei, F. Q. Liu. Anabiosis and Cultivation of HEK-293 Cells and Cryopreservation [J]. Journal of Liaoning Medical University.2007; 28(6):01-03.
    [149]Liu H, Naismith JH. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol [J]. BMC Biotechnol.2008;8:91.
    [150]Kolmar H. Biological diversity and therapeutic potential of natural and engineered cystine knot miniproteins [J]. Curr Opin Pharmacol.2009;9:608-14.
    [151]Heitz A, Le-Nguyen D, Chiche L. Min-21 and min-23, the smallest peptides that fold like a cystine-stabilized beta-sheet motif: design, solution structure, and thermal stability [J]. Biochemistry.1999;38:10615-25.
    [152]Werle M, Kafedjiiski K, Kolmar H. Evaluation and improvement of the properties of the novel cystine-knot microprotein McoEeTI for oral administration [J]. Int J Pharm.2007;332:72-9.
    [153]Gracy J, Le-Nguyen D, Gelly JC, Kaas Q, Heitz A, Chiche L. KNOTTIN:the knottin or inhibitor cystine knot scaffold in 2007 [J].NAR.2008;36:D314-9.
    [154]Clark RJ, Daly NL. Structural plasticity of the cyclic-cystine-knot framework:implications for biological activity and drug design [J]. Biochem J.2006;394:85-93.
    [155]Vita C, Vizzavona J, Drakopoulou E, Zinn-Justin S, Gilquin B, Menez A. Novel miniproteins engineered by the transfer of active sites to small natural scaffolds [J]. Biopolymers.1998;47:93-100.
    [156]Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Drug development from marine natural products [J]. Nat Rev Drug Discov [J].2009;8:69-85.
    [157]Penzotti JL, Fozzard HA, Lipkind GM. Differences in saxito xin and tetrodo-toxin binding revealed by mutagenesis of the Na+ channel outer vestibule [J]. Biophys J.1998;75:2647-57.
    [158]Trainer VL, Brown GB, Catterall WA. Site of covalent labeling by a photo-reactive batrachotoxin derivative near transmembrane segment IS6 of the sodium channel alpha subunit [J]. JBC. 1996;271:11261-7.
    [159]Tewari-Singh N, Agarwal C, Huang J, Day BJ, White CW, Agarwal R. Efficacy of glutathione in ameliorating sulfur mustard analog-induced toxicity in cultured skin epidermal cells and in SKH-1 mouse skin in vivo [J]. J Pharmacol Exp Ther.2011;336:450-9.
    [160]Shiratori M, Kobayashi T, Shibui T. Identification of amino acids essential for antibody binding by mRNA-display using a random peptide library:an anti-human tumor protein p53 antibody as a model. Mol Biotechnol.2009;41:99-105.
    [161]Tian R, Li YN, Song EL, Gao SJ, Huang HM, Zhang L, Ma SC, Gao YH. Ligand-binding Characterization of PDZ1 Domain in ZO-by Screening Random Peptide Librar [J]. Chinese Journal of Biochemistry and Molecular Biolog.2006;22(6):484-490.
    [162]胡承香,徐祥,梁华平,王付龙,罗艳,王正国.酵母双杂交随机肽库的设计及构建[J].动物医学进展.2003,24(2):61-63.
    [163]DNA Fragment Purification Kit [M]. Toyobo.2006.
    [164]Chung CT, Miller RH. A rapid and convenient method for the preparation and storage of competent bacterial cells [J]. NAR. 1988;16:3580.
    [165]Kumar S, Tamura K, Nei M. MEGA:Molecular Evolutionary Genetics Analysis software for microcomputers [J]. Comput Appl Biosci.1994;10:189-91.
    [166]Tamura K, Dudley J, Nei M, Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Mol Biol Evol.2007;24:1596-9.
    [167]Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences [J]. Brief Bioinform.2008;9:299-306.
    [168]Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc /SS carrier DNA/PEG method [J]. Nat Protoc. 2007;2:31-4.
    [169]Studier FW. Protein production by auto-induction in high density shaking cultures [J]. Protein Expr Purif 2005;41:207-34.
    [170]Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature.1970;227:680-5.
    [171]Schagger H. Tricine-SDS-PAGE [J]. Nat Protoc.2006;1:16-22.
    [172]Kang Y, Yoon JW. Effect of modification of connecting peptide of proinsulin on its export. JBiotechnol.1994;36:45-54.
    [173]Morrs M. E.coli Codon Usage Analyzer 2.1 [EB/OL]. Retrieved from http://www.faculty.ucr.edu/-mmaduro/ codonusage/usage. htm Oct 28,2010.
    [174]Codon Usage Database [EB/OL]. Retrieved from http://www.kaz usa.or.jp/codon/.May 28,2010.
    [175]肖玉成.作用于电压门控钠通道的蜘蛛毒素的结构与功能研究[D].湖南师范大学,2004.
    [176]Okuse K, Malik-Hall M, Baker MD, Poon WY, Kong H, Chao MV, et al. Annexin II light chain regulates sensory neuron-specific sodium channel expression [J]. Nature.2002;417:653-6.
    [177]袁春华.虎纹捕鸟蛛毒素组学分析与几种蜘蛛多肽毒素的结构功能关系研究[D].湖南师范大学,2007.
    [178]彭黎.两条虎纹捕鸟蛛毒素多肽基因的克隆,表达及功能初探[D].湖南师范大学,2008.
    [179]Anangi R, Chen CY, Cheng CH, Chen YC, Chen CC, Chu YP, et al. Expression of snake venom toxins in Pichia pastoris [J]. Toxin Review.2007;26:169-87.
    [180]Escoubas P, Bernard C, Lambeau G, Lazdunski M, Darbon H. Recombinant production and solution structure of PcTx1, the specific peptide inhibitor of ASICla proton-gated cation channels [J]. Protein Sci.2003;12:1332-43.
    [181]Li M, Li LY, Wu X, Liang SP. Cloning and functional expression of a synthetic gene encoding huwentoxin-Ⅰ, a neurotoxin from the Chinese bird spider (Selenocosmia huwena) [J]. Toxicon.2000; 38:153-62.
    [182]Diao JB, Liu JL, Liang SP. Expression of Recombinant HWTX-Ⅰ Gene by pET31b Vector and Purification of Product [J]. Chinese Journal of Biochemistry and Molecular Biology.2003; 19(2):195-200.
    [183]Nie DS, Li M, Xu HM, He NJ, Liang SP. [Expression and purification of recombinant huwentoxin-I in Pichia pastoris] [J]. Sheng Wu Gong Cheng Xue Bao.2002; 18:172-7.
    [184]Ji W, Zhang X, Hu H, Chen J, Gao Y, Liang S, et al. Expression and purification of Huwentoxin-I in baculovirus system [J]. Protein Expr Purif.2005;41:454-8.
    [185]Prinz WA, Aslund F, Holmgren A, Beckwith J. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm [J]. J Biol Chem. 1997;272:15661-7.
    [186]Stewart EJ, Aslund F, Beckwith J. Disulfide bond formation in the Es-cherichia coli cytoplasm:an in vivo role reversal for the thioredoxins [J]. Embo J.1998;17:5543-50.
    [187]Liu JL, Diao JB, Tang JZ, Xie JY, LIang SP. Expression and Purification of Recombinant Huwentoxin-XI by pMAL-p2x Vector [J]. Chinese Journal of Biochemistry and Molecular Biology.2005;21:39-44.
    [188]Smith LA, Lafaye PJ, LaPenotiere HF, Spain T, Dolly JO. Cloning and functional expression of dendrotoxin K from black mamba, a K+ channel blocker [J]. Biochemistry.1993;32:5692-7.
    [189]Chen J, Song JL, Zhang S, Wang Y, Cui DF. Chaperone activity of DsbC [J]. J Biol Chem.1999;274:19601-5.
    [190]Zapun A, Missiakas D, Raina S, Creighton TE. Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli [J]. Biochemistry. 1995;34:5075-89.
    [191]Mergulhao FJ, Summers DK, Monteiro GA. Recombinant protein secretion in Escherichia coli [J]. Biotechnol Adv.2005; 23: 177-202.
    [192]Miot M, Betton JM. Protein quality control in the bacterial periplasm [J]. Microb Cell Fact.2004;3:4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700