粗毛栓菌Trametes hirsuta lg-9非典型漆酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源、环境、粮食问题是人类二十一世纪所面临的三大主要问题。生物质能源的开发和利用让人们找到了化石能源的很好的替代品。生物质是地球上数量最丰富的可再生性资源,这些生物质主要由纤维素、半纤维素、木质素组成,它们能够为人类提供燃料、饲料、以及化工原料等,具有重要的开发价值。合理的利用自然界中的生物质发酵生产乙醇是目前最有应用前景的可持续发展的策略之一。而木质素的包被作用恰恰是阻碍生物质转化产乙醇的主要瓶颈之一。研究木质素的降解机理对于解决该问题有着重要的意义。造纸、印染等行业的污水中的有机污染物主要是木质素的小分子片断,以及木质素单体的衍生物及稠环类芳香族化合物。木质素是一种高聚芳香族化合物,木质素在自然界中的降解不产生毒性,而工业产生中的芳香族化合物有着在自然界中的难降解性和毒性,使得芳香族化合物的污染成为人们的主要研究对象。
     漆酶有着很好的底物广泛性(典型的单酚、双酚、多酚、苯胺、甲氧基酚以及细胞色素C等)。漆酶氧化的过程中伴随着还原氧气生成水。漆酶还能够直接氧化一些小分子物质生成自由基,自由基能够引发一系列的氧化反应。漆酶是木质素代谢过程中的一个主要酶,绝大多数漆酶不能够直接氧化非酚型芳香族化合物,这使得漆酶在木素代谢的研究中被人们所忽略。介体发现以后,人们对漆酶有了一个新的认识,漆酶的氧化机理和应用研究也越来越受到人们的重视。漆酶能够利用氧气为电子受体氧化芳香族化合物的特性以及具有很强的底物专一性和底物广泛性,使得漆酶被广泛应用于纸浆造纸、造纸污水处理、印染污水处理、食品饮料行业以及有机合成中。
     在本论文从分离菌株出发,并对菌株进行了鉴定和酶的纯化及酶学性质研究。主要工作如下:
     1.高效产漆酶的菌株的分离及鉴定。
     从本实验室菌株库、院菌种室以及选择性购买、筛选得到一株高效产漆酶的菌种,该菌株生长迅速,能够高效生产漆酶。经过形态学,及子实体形态观察,结合ITS序列分析,鉴定该菌株为Trametes hirsuta lg-9,并对该菌株进行了保藏,其保藏编号为:CGMCC No.2422。
     2.影响该菌株产酶的因素及C/N比值进行研究
     我们通过正交试验、全因子试验、最陡爬坡和响应面分析对影响T. hirsuta lg-9产漆酶的因素进行了分析(其策略如图1所示),结果表明C/N比值在漆酶发酵生产中有很大的影响。优化最佳碳源和氮源的值为C=10.31 g l-1和N=1.32 gl-1,而通常氮源的添加量是2.5 g l-1。优化结果可以指导性的在发酵过程中合理的少添加氮源,有效的降低发酵成本。优化结果表明T. hirsuta lg-9产漆酶发酵时需要较低的氮源,产漆酶发生在稳定期之后,这很好了支持了白腐菌在缺乏氮源时大量产生的观点。
     图1实验条件优化流程图
     3. Trametes hirsuta lg-9漆酶纯化和酶学性质的研究
     我们通过传统的方法对该漆酶进行了分离纯化和性质的研究工作(流程如图2),根据T. hirsuta lg-9漆酶的性质和光谱学特征,可以把它归类为白漆酶。
     图2漆酶的分离纯化步骤这类缺少600 nm处光吸收的漆酶也被叫做黄漆酶(特征吸收光谱如图3所示)。该漆酶的分子量大概为90 kDa;该漆酶等电点与已报道的其它漆酶的等电点接近,大约为4.3;金属离子测定表明,T. hirsuta lg-9漆酶中不含有铁离子和锌离子,每分子蛋白质中含有2.86±0.21分子铜离子和0.82±0.27分子锰离子;该蛋白质的N末端氨基酸序列为AIGPTADLTQSQA; ABTS作为底物的最适pH与DMP作为底物时基本一致,最适pH值在2.5左右;该漆酶的表现出许多比普通漆酶应用前景更好的特征,如热稳定性高,同时最适pH值低,有一定的理论研究价值。该漆酶的最适反应温度为85℃,虽然在最适反应温度的时候不太稳定,
     图3纯化漆酶的全波段扫描图谱但是75℃时的半衰期达到70 min。此外,该漆酶能够在不存在介体的情况下氧化非酚型化合物甲基红和稠环化合物茜素红,具有重要的应用前景和理论研究价值。T. hirsuta lg-9漆酶的氧化特性仅在少量黄漆酶中有类似报道。
     在研究过程中,发现不同浓度的草酸对漆酶氧化不同类型的底物的影响是不同的,并且该漆酶能够在没有介体的存在情况下氧化非酚型的芳香族底物,于是对它们进行了更加深入的研究。
     4.有机物对漆酶活性测定的影响
     我们以草酸和EDTA Na2作为影响因素,利用T. hirsuta lg-9和R. vernificera的不同漆酶以及ABTS和DMP的不同底物进行对照实验,可以得出,无论草酸还是EDTA Na2都能够通过影响漆酶与底物的结合以及反应体系的pH值来影响漆酶的酶活性测定,而不是传统的认为的能够螯合漆酶的T1铜离子来影响漆酶的活性。大多数腐生真菌的生境pH值在4.0左右,而大多数漆酶的抑制剂的测定也集中在4.0左右,因此EDTA Na2对漆酶测定缓冲体系的pH值的影响要小于其它酸性有机溶剂。而大多数漆酶有一个钟罩型的pH依赖曲线。这就是为什么草酸比EDTA Na2更能够有效地影响漆酶的酶活性测定。这个实验结果能够对已经发表的部分文献起一定的解释作用。同时也能够指导我们在考虑抑制物对酶活性测定的影响的时候应当考虑酶活性的pH依赖性和添加物的酸碱性以及缓冲体系的缓冲能力。
     5.漆酶氧化机制的研究及其在染料脱色中的应用
     在本章的研究中,我们通过紫外可见光谱对漆酶氧化甲基红进行了实时监测,并通过高压液相进行了产物的分离,后通过质谱对产物进行了鉴定,提出了可能的漆酶直接氧化甲基红的机制(图4)。
     由于甲基红不能够被氧化产生酚型自由基,因此非典型性漆酶氧化甲基红的机制与普通漆酶的氧化是不同的。紫外可见分光光度计的检测表明甲基红随着处理时间的延长是不断减少的。高压液相的结果也表明,至少有三种产物产生。根据高压液相质谱连用鉴定产物的结构,可以推测,非典型性漆酶的氧化机制跟普通漆酶类似,但是其氧化机制却是不同。两种氧化方式的断裂位点是一致的,但是产物却存在一定差别。反应过程中没有检测到醌型化合物。根据氧化产物和已经发表的文献推测,漆酶能够直接氧化甲基红,引起染料的脱甲基化,
     图4T. hirsuta lg-9漆酶氧化甲基红的可能机制类似反应在漆酶介体系统催化以及漆酶超声波处理的反应中报道过。氧化产生的苯胺基能够进一步被漆酶氧化。然后非典型性漆酶能够攻击叠氮连接,并引起一系列的反应。根据已经发表文献的观点,Leontievsky等人认为黄漆酶是普通漆酶被木质素代谢过程中的产物修饰,从而漆酶与降解产物构成漆酶及介体系统,而白漆酶是普通漆酶的T1铜离子位点被其它过渡态金属代替生成的。T1铜离子位点是漆酶氧化电子传递链的起始位点,它对漆酶的氧化还原电势起着关键作用,而T. hirsuta lg-9的漆酶应属于白漆酶。T. hirsuta lg-9漆酶的氧化特性是由于该漆酶中含有一个Mn离子造成的。
     通过部分因子实验、最陡爬坡和响应面分析对影响脱色的条件进行了优化,并通过二项式进行拟合。其拟合方程为:Y=+78.09+2.22X1-2.59X2+2.54X4+0.32X1X2-1.18X1X4-2.93X2X4-1.35X12-14.84X22-3.07X42
     经方差分析检验,该方程有效。根据方程和响应面分析的结果,可以求得对应的真实反应条件为:CEnzyme=1.8 U l-1,pH=4.93和Time=130.23 min。根据拟合得到的二项式,可以得知,最佳脱色值是79.41%。通过实验进行了验证,发现脱色率平均值约80%,与预测值的差别小于5%,表明模型是合适的,可以有效的指导实验。
The people should seek solutions to the energy, environmental, and food challenges in the 21st century. The biofuel is a good candidate for fossil fuel. Biomass is the most abundant renewable resource in the world. The biomass is mainly composed of cellulose, hemicellulose and lignin, and it is of good use in fuel, silage, and chemical materials. Generation Liquid Biofuels from Biomass is one of the key strategies for sustainable development. Lignin is one of the key barriers to the utilization of biomass. The research on the degradation of lignin is signification to the application of biomass. The contaminations in pulp and dyes waste water are main small molecular lignin, the derivate of the monomer of lignin, and polyphenols. Lignin is mainly composed with three vinyl alcohols. The degradation of lignin does not make any pollution to the nature, while the most of the industry pollutions are aromatic substances.
     Laccases have a wide range of substrates (typically mono-, di-, and polyphenols, aromatic amines, methoxyphenols and ascorbate). This oxidation is coupled to the four-electron reduction of dioxygen to water molecules. Laccases also generate free radicals, which mediate a variety of subsequent reactions. Laccase is a main enzyme in the degradation of lignin. But it was ignored for a long time because it could not directly oxidize non phenol compounds. The discovery of the mediator attracts more attentions of the researchers. Laccases have great biotechnological potential because of their broad substrate specificity. They can be used in the paper industry, the food industry, in dye or stain bleaching, bioremediation, plant fibre modification, ethanol production, biosensors, biofuel cells, organic synthesis, and drug synthesis
     In our study, we isolated and characterized a fungus. The laccase was purified and characterized. The main jobs are as follows:
     I. Isolation and characterization of laccase production fungus
     Trametes hirsuta lg-9 (CGMCC No.2422) was isolated from Mengshan Mountain (in Shandong Province, China) and characterized by our laboratory. This fungus can secrete more laccases than the other fungi in our lab, school and those were purchased from China General Microbiological Culture Collection Center (CGMCC). The fungus grows faster. The fungus was characterized as T. hirsuta lg-9 according to its' morphology and ITS. The fungus was kept in CGMCC and the number was CGMCC No.2422.
     Ⅱ. The laccase production influence factors and the influence of C/N
     We analyzed the laccase production influence factors of the fungus T. hirsuta lg-9 with the method of orthogonal experimental design, factorial design, steepest ascent, and response surface methodology (Fig.1). A quadratic model was obtained using the design expert, and the model was proved to be validated. According to the model, the maximum production of laccase was obtained at the concentration of 10.31 g l-1 glucose and 1.32 g l-1 ammonium dibasic phosphate, and the C/N ratio
     Fig.1 the protocol of experiment condition optimization was 343.67 mM (glucose-C):19.99 mM (NH4+-N). The maximum laccase activity was about 16.56 U ml-1. We could reduce the nitrogen source in the laccase fermentation to reduce the cost according to the optimization. The result indicated that the secretion of laccase could be induced by the nitrogen starvation.
     Ⅲ. Purification and characterization of the laccase
     The purification of the laccase was carried according to the common method (Fig. 2). The characterization of the laccase was well studied. We classified the laccase from T. hirsuta lg-9 as a novel "white" laccase because of its atypical spectrum. White laccases lack absorption at 600 nm, and they also have been called "yellow"
     Fig.2 purification of laccase laccases (Fig.3). The laccase had a molecular weight of 90 kD. The isoelectric point of the enzyme was about 4.3. The metal content was determined by atomic absorption. The laccase from T. hirsuta lg-9 showed valued of 2.86±0.21 copper atoms and 0.82±0.27 manganese atoms per protein molecular. Zinc and iron was not detected. The N-terminal amino acid sequence of the purified protein was determined up to 13 amino acids as AIGPTADLTQSQA. A pH of 2.4 was optimal for the oxidation of ABTS and a pH of 2.5 was optimal for DMP. A temperature of 85℃was optimal for DMP oxidation. The half-life of this laccase was 70 min at 75℃, and 5 hours at 65℃.
     Fig.3 UV/visible spectrum of laccase from T. hirsuta lg-9
     In our study, we found that different concentration of oxalic acid can caused different inference to the laccase activity determination with different substrate, and the laccase from T. hirsuta lg-9 can directly oxidize some non-phenolic compounds. Both of them are worth further study. IV Comparative Study of the influences of organic compounds on laccase activity tests
     The influence of oxalic acid and ethylenediaminetetraacetic acid disodium salt-2-hydrate (EDTA Na2) on laccase from T. hirsuta lg-9 and Rhus vernificera in different test systems utilizing 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,6-dimethoxyphenol (DMP) as enzyme substrates were tested. Our study indicated that oxalic acid can influence the laccase activity determination mainly by changing the pH of the reaction system. The influences of both oxalic acid and EDTA on the laccase activity determination with different substrates were different. The results indicated that both oxalic acid and EDTA could influence the laccase activity determination by influencing and the binding of laccases substrates but not by chelating metal of the laccase. The organic compounds also can influence the laccase activity determination by changing the pH of the reaction system.
     V oxidation of non-phenol dye methyl red and conditions optimization
     UV-Vis spectrophotometry was used for process monitoring of the oxidation products of methyl red. High performance liquid chromatography (HPLC) was used for detecting the products. Additionally, the structures of products were elucidated with electrospray injection mass spectroscopy. Probably degradation mechanism of the azo dye methyl red oxidized by the atypical laccase directly had been proposed (Fig.4).
     As methyl red can not be oxidized to generate a phenolic radical, the oxidation mechanism of the atypical laccase to oxidize non-phenolic methyl red may be also different from the oxidation mechanism of phenolic azo dyes with common laccase. UV-Vis spectrophotometry was used for process monitoring of the oxidation products of methyl red. The results of UV-Vis spectrophotometry indicated the productions of methyl red increased with the oxidation time running. HPLC was used for detecting the products. The results of HPLC indicate the quantities of the products are no less than three. Additionally, the structures of products were elucidated with electrospray injection mass spectroscopy. The structures of products indicate the oxidation mechanisms of the atypical laccase and common laccase are similar but different. The cleavage sites of them are the same, while the products are different. There were no quinones detected. We speculate the atypical laccase can directly attack the dye, which causes the N-demethylation of the dye. Similar reactions have been reported in decolorization by laccase-mediator system and laccase-ultrasound treatment. The formed amino-group can be further oxidized by laccase. Then, the atypical laccase attack the azo linkage, which induces a variety of subsequent reactions. Leontievsky et al. proposed that yellow laccases were formed by modification of blue laccases by mediators, so they can directly oxidize non-phenolic compound and hydroxy polyaromatic dye. The white laccases are formed by the replace of T1 Cu with other transition metals. The T1 site functions as the primary electron acceptor and is important to the redox potential of laccase. The laccase from T. hirsuta lg-9 may belong to white laccase which may be formed by the replace of T1 Cu with Mn. This is probably the main reason of direct oxidation of methyl red. Fig.4 The probably reaction scheme of methyl red directly oxidized by the atypical laccase from T. hirsuta lg-9
     Factorial design, steepest ascent design and central composite design were successfully applied to optimize the decolorization conditions of methyl red. The equations given below are based on the statistical analysis of the experimental data.
     The results of analysis of variance (ANOVA) imply the model is significant. We can calculate the value of Y was maximum when the algebraic solutions were X1= 0.66, X2=-0.11 and X4= 0.34. These values correspond to the uncoded value of CEnzyme= 1.8 U l-1, pH= 4.93 and Time= 130.23 min. The maximum predicated decolorization of methyl red was 79.41%. These optimum values were checked with experiments. The actual values of the methyl red decolorization were at an average of 80%. The error was less than 5%, and the model is significant.
引文
A. Potthast T.R., Chen C.L., Gratzl J.S. a novel method for the conversion of benzyl alcohols to benzaldehydes by laccase-catalyzed oxidation. Journal of Molecular Catalysis A:Chemical 1996,108:5-9.
    Abadulla E., Tzanov T., Costa S., Robra K.H., Cavaco-Paulo A., Gubitz G.M. Decolorization and Detoxification of Textile Dyes with a Laccase from Trametes hirsuta.2000,3357-3362:The American Society for Microbiology.
    Adler E. Lignin chemistry-past, present and future. Wood science and technology.1977,11: 169-218.
    Adler E, Brunow G, Lundquist K. Investigation of the acid-catalysed alkylation of lignins by means of NMR spectroscopic methods. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood 1987,41:199-207.
    Aktas N., Tanyolac A.. Reaction conditions for laccase catalyzed polymerization of catechol. Bioresource Technology 2003,87:209-214.
    Alexandre G, Zhulin IB. Laccases are widespread in bacteria. Trends in Biotechnology 2000,18: 41-42.
    Antje Potthast T.R, Chen C.L., and Gratzl J.S. Selective Enzymatic Oxidation of Aromatic Methyl Groups to Aldehydes. Journal of organic chemistry.1995,60:4320-4321.
    Arakane Y., Muthukrishnan S., Beeman R.W., Kanost M.R. and Kramer K.J. Laccase is the phenoloxidase gene required for beetle cuticle tanning. Proceedings of the National Academy of Sciences.2005,102:11337-11342.
    Arantes V. and Milagres A.. The effect of a catecholate chelator as a redox agent in Fenton-based reactions on degradation of lignin-model substrates and on COD removal from effluent of an ECF kraft pulp mill. Journal of hazardous materials.2007,141:273-279.
    Baiocco P., Barreca A.M., Fabbrini M., Galli C. and Gentili P. Promoting laccase activity towards non-phenolic substrates:a mechanistic investigation with some laccase-mediator systems. Organic & Biomolecular Chemistry.2003,1:191-197.
    Bajpai P., Anand A., Sharma N., Mishra S.P., Bajpai P.K. and Lachenal D. enzymes improve ECF bleaching of pulp. Bioresources 2006,1:34-43.
    Baldrian P. Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme. Applied Microbiology and Biotechnology 2004,63:560-563.
    Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiology Review 2006,30: 215-242.
    Bao W, O'Malley D.M., Whetten R., Sederoff R.R. A Laccase Associated with Lignification in Loblolly Pine Xylem. science 1993,260:672-674.
    Baratto L., Candido A., Marzorati M., Sagui F., Riva S., Danieli B. Laccase-mediated oxidation of natural glycosides. Journal of Molecular Catalysis B:Enzymatic 2006,39:3-8.
    Beloqui A., Pita M., Polaina J., Martinez-Arias A., Golyshina O.V., Zumarraga M., Yakimov M.M., Garcia-Arellano H., Alcalde M., Fernandez V.M.. Novel Polyphenol Oxidase Mined from a Metagenome Expression Library of Bovine Rumen. The Journal of Biological Chemistry 2006,281:22933-22942.
    Bento I, Martins L.O., Gato Lopes G., Armenia Carrondo M., Lindley P.F.. Dioxygen reduction by multi-copper oxidases; a structural perspective. Dalton Trans.2005,3507-3513.
    Berka R.M., Schneider P., Golightly E.J., Brown S.H., Madden M., Brown K.M., Halkier T., Mondorf K., Xu F. Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Applied and Environmental Microbiology 1997,63:3151-3157.
    Bhattacharya S.S., Banerjee R. Laccase mediated biodegradation of 2,4-dichlorophenol using response surface methodology. Chemosphere 2008,73:81-85.
    Bohlin C., Persson P., Gorton L., Lundquist K., Jonsson L.J. Product profiles in enzymic and non-enzymic oxidations of the lignin model compound erythro-1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol. Journal of Molecular Catalysis B:Enzymatic 2005,35:100-107.
    Bohmer S., Messner K., Srebotnik E. Oxidation of Phenanthrene by a Fungal Laccase in the Presence of 1-Hydroxybenzotriazole and Unsaturated Lipids. Biochemical and Biophysical Research Communications 1998,244:233-238.
    Boidin J. Recherche de la tyrosinase et de la lacease chez les basidiomycetes en culture pure. Milieux differentiels. Interet systematique. Rev. Mycol 1951,16:173.
    Boominathan K., D'Souza T., Naidu P., Dosoretz C., Reddy C. Temporal expression of the major lignin peroxidase genes of Phanerochaete chrysosporium. Applied and environmental microbiology.1993,59:3946-3950.
    Bourbonnais R., Paice M.G.. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Letters 1990,267:99-102.
    Brenna O., Bianchi E. immobilised laccase for phenolic removal in must and wine. Biotechnology Letters 1994,16:35-40.
    Bulter T., Alcalde M., Sieber V., Meinhold P., Schlachtbauer C., Arnold F.H. Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Applied and Environmental Microbiology 2003,69:987-995.
    Burton S.G.. Laccases and Phenol Oxidases in Organic Synthesis-a Review. Current Organic Chemistry 2003,7:1317-1331.
    Buswell J.A., Cai Y., Chang S.t. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS Microbiology Letters 1995,128:81-87.
    Camarero S., Ibarra D., Martinez M.J., Martinez A.T.. Lignin-Derived Compounds as Efficient Laccase Mediators for Decolorization of Different Types of Recalcitrant Dyes. The American Society for Microbiology.2004 1775-1784:
    Cantarella G., Galli C., Gentili P. Free radical versus electron-transfer routes of oxidation of hydrocarbons by laccase/mediator systems:Catalytic or stoichiometric procedures. Journal of Molecular Catalysis B:Enzymatic.2003,22:135-144.
    Capanema E., Balakshin M., Kadla J. Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. Journal of Agricultural and Food Chemistry 2005,53:9639-9649.
    Caparros-Ruiz D., Fornale S., Civardi L., Puigdomenech P., Rigau J. Isolation and characterisation of a family of laccases in maize. Plant Science 2006,171:217-225.
    Ceylan H., Kubilay S., Aktas N., Sahiner N. An approach for prediction of optimum reaction conditions for laccase-catalyzed bio-transformation of 1-naphthol by response surface methodology (RSM). Bioresource Technology.2008,99:2025-2031.
    Chefetz B., Chen Y., Hadar Y. Purification and characterization of laccase from Chaetomium thermophilium and its role in humification. Applied and Environmental Microbiology 1998, 64:3175-3179.
    Chen C-L, Potthast A., Rosenau T., Gratzl J.S., Kirkman A.G., Nagai D., Miyakoshi T. Laccase-catalyzed oxidation of 1-(3,4-dimethoxyphenyl)-1-propene using ABTS as mediator. Journal of Molecular Catalysis B:Enzymatic 2000,8:213-219.
    Childs R.E., Bardsley W.G. The steady-state kinetics of peroxidase with 2, 2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochemistry Jounal 1975,145:93-103.
    Chivukula M, Renganathan V.1995a. Phenolic Azo Dye Oxidation by Laccase from Pyricularia oryzae. Applied and Environmental Microbiology 61:4374-4377.
    Chivukula M., Renganathan V.. Phenolic Azo Dye Oxidation by Laccase from Pyricularia oryzae. Applied and Environmental Microbiology 1995b,61:4374-4377.
    Chivukula M., Spadaro J., Renganathan V. Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry 1995,34:7765-7772.
    Christiernin M.. Lignin composition in cambial tissues of poplar. Plant Physiology et Biochemistry 2006,44:700-706.
    Chung K-T, Stevens S.E., Cerniglia C.E.. The Reduction of Azo Dyes by the Intestinal Microflora. Critical Reviews in Microbiology.1992,18:175-190.
    Ciecholewski S., Hammer E., Manda K., Bose G., Nguyen V.T.H., Langer P., Schauer F. Laccase-catalyzed carbon-carbon bond formation:oxidative dimerization of salicylic esters by air in aqueous solution. Tetrahedron.2005,61:4615-4619.
    Colberg P. Anaerobic microbial degradation of cellulose, lignin, oligolignols, and monoaromatic lignin derivatives. Biology of anaerobic microorganisms.1988,333-372.
    Cole A.P., Root D.E., Mukherjee P., Solomon E.I., Stack T.D. A trinuclear intermediate in the copper-mediated reduction of 02:four electrons from three coppers. Science 1996,273: 1848-1850.
    Couto S.R. Decolouration of industrial azo dyes by crude laccase from Trametes hirsuta. Journal of Hazardous Materials 2007,148:768-770.
    Croteau R., Kutchan T., Lewis N. Natural products (secondary metabolites). Biochemistry and molecular biology of plants:2000,1250-1318.
    Das N., Chakraborty T.K., Mukherjee M. Purification and characterization of laccase-1 from Pleurotus florida. Folia Microbiologica (Praha) 2000,45:447-451.
    Davin L.B., Lewis N.G. Lignin primary structures and dirigent sites. Current Opinion in Biotechnology.2005,16:407-415.
    de Obeso M., Caparros-Ruiz D., Vignols F., Puigdomenech P., Rigau J. Characterisation of maize peroxidases having differential patterns of mRNA accumulation in relation to lignifying tissues. Genetics 2003,309:23-33.
    Dedeyan B., Klonowska A., Tagger S., Tron T., Iacazio G, Gil G, Le Petit J. Biochemical and Molecular Characterization of a Laccase from Marasmius quercophilus. The American Society for Microbiology 2000,925-929:
    Dong J.L., Zhang Y.Z. Purification and characterization of two laccase isoenzymes from a ligninolytic fungus Trametes gallica. Preparative Biochemistry and Biotechnology 2004,34: 179-194.
    Ducros V., Brzozowski A.M., Wilson K.S., Brown S.H., Ostergaard P., Schneider P., Yaver D.S., Pedersen A.H., Davies G.J. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution. Natre Structural Biology.1998,5:310-316.
    Dumonceaux T., Bartholomew K., Charles T., Moukha S., Archibald F. Cloning and sequencing of a gene encoding cellobiose dehydrogenase from Trametes versicolorl. Gene 1998,10: 211-219.
    Durao P., Bento I., Fernandes A.T., Melo E.P., Lindley P.F., Martins L.O. Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis:structural, biochemical, enzymatic and stability studies. Journal of Biological Inorganic Chemistry 2006,11:514-526.
    Eggert C., Temp U., Eriksson K.E. The lign inolytic system of the white rot fungus Pycnoporus cinnabarinus:purification and characterization of the laccase. Applied and Environmental Microbiology 1996,62:1151-1158.
    Elegir G., Daina S., Zoia L., Bestetti G., Orlandi M. Laccase mediator system:Oxidation of recalcitrant lignin model structures present in residual kraft lignin. Enzyme and Microbial Technology 2005,37:340-346.
    Enguita F.J., Martins L.O., Henriques A.O., Carrondo M.A.. Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. The Journal of Biological Chemistry 2003,278:19416-19425.
    Enguita F.J., Marcal D., Martins L.O., Grenha R., Henriques A.O., Lindley P.F., Carrondo M.A. Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. The Journal of Biological Chemistry2004,279:23472-23476.
    Erkurt E.A., Unyayar A., Kumbur H.. Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochemistry 2007,42:1429-1435.
    Evtuguin D., Pascoal C., Silva A., Domingues P., Amado F., Robert D., Faix O. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. Journal of agricultural and food chemistry(Print) 2001,49:4252-4261.
    F. X, Kulys JJ, Duke K, Li K, Krikstopaitis K, Deussen HJ, Abbate E, Galinyte V, Schneider P.. Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds. Applied and
    Environmental Microbiology 2000,66:2052-2056.
    Fabbrini M, Galli C, Gentili P. Comparing the catalytic efficiency of some mediators of laccase. Journal of Molecular Catalysis B:Enzymatic 2002,16:231-240.
    Fabbrini M, Galli C, Gentili P, Macchitella D. An oxidation of alcohols by oxygen with the enzyme laccase and mediation by TEMPO. Tetrahedron Letters 2001,42:7551-7553.
    Fang J, Liu W, Gao PJ. Cellobiose Dehydrogenase fromSchizophyllum commune:Purification and Study of Some Catalytic, Inactivation, and Cellulose-Binding Properties. Archives of Biochemistry and Biophysics 1998,353:37-46.
    Fang J, Huang F, Gao P.. Optimization of cellobiose dehydrogenase production by Schizophyllum commune and effect of the enzyme on kraft pulp bleaching by ligninases. Process Biochemistry.1999a,34:957-961.
    Fang J, Liu W, Gao P. Cellobiose Dehydrogenase Inhibition of Polymerization of Phenolic Compounds and Enhancing Lignin Degradation by Lignina. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 1999b,31:415-419.
    Farnet A, Criquet S, Cigna M, Gil G, Ferr(?)| E. Purification of a laccase from Marasmius quercophilus induced with ferulic acid:reactivity towards natural and xenobiotic aromatic compounds. Enzyme and Microbial Technology 2004,34:549-554.
    Faure D, Bouillant ML, Bally R. Isolation of Azospirillum lipoferum 4T Tn5 Mutants Affected in Melanization and Laccase Activity. Applied and Environmental Microbiology.1994,60: 3413-3415.
    Francesca d'Acunzo PBaCG. A study of the oxidation of ethers with the enzyme laccase under mediation by two N-OH-type compounds. New Jounal of Chemistry.2003,27:329-332.
    Fritz-Langhals E, Kunath B. Synthesis of aromatic aldehydes by laccase-mediator assisted oxidation. Tetrahedron Letters 1998,39:5955-5956.
    Fu SY, Yu H-s, Buswell JA. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Pleurotus sajor-caju. FEMS Microbiology Letters 1997,147: 133-137.
    Fukushima Y, Kirk T.K. Laccase component of the Ceriporiopsis subvermispora lignin-degrading system. The American Society for Microbiology.1995,872-876.
    Galli C, Gentili P. Chemical messengers:mediated oxidations with the enzyme laccase. Journal of Physical Organic Chemistry 2004,17:973-977.
    Gellerstedt G. Chemical degradation methods:permanganate oxidation. Methods in Lignin Chemistry, Timell TE, ed, Springer-Verlag, Berlin:1992 322.
    Gelo-Pujic M, Kim HH, Butlin NG, Palmore GT. Electrochemical studies of a truncated laccase produced in Pichia pastoris. Applied and Environmental Microbiology.1999,65:5515-5521.
    Go i M, Ruttenberg K, Eglinton T. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature 1997,389:275-278.
    Gonzalez JM, Whitman WB, Hodson RE, Moran MA. Identifying numerically abundant culturable bacteria from complex communities:an example from a lignin enrichment culture. Applied and Environmental Microbiology 1996,62:4433-4440.
    Gonzalez JM, Mayer F, Moran MA, Hodson RE, Whitman WB. Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. International Journal of Systematic Bacteriology.1997,47:369-376.
    Grass G, Rensing C. CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochemical and Biophysical Research Communications 2001,286:902-908.
    Guangyu Wang JLI, Jiafu Lei, Shuanyou Dai, Sara W. Wu. China's Forestry Reforms. Science 2007,318:1556-1557.
    Guillen F, Munoz C, Gomez-Toribio V, Martinez AT, Jesus Martinez M.. Oxygen activation during oxidation of methoxyhydroquinones by laccase from Pleurotus eryngii. Applied and Environmental Microbiology.2000,66:170-175.
    Guo M, Lu F, Pu J, Bai D, Du L. Molecular cloning of the cDNA encoding laccase from Trametes versicolor and heterologous expression in Pichia methanolica. Appl Microbiol Biotechnol 2005,69:178-183.
    Gupta V.K, Minocha A.K, Jain N.. Batch and continuous studies on treatment of pulp mill wastewater by Aeromonas formicans. Journal of Chemical Technology and Biotechnology 2001,76:547-552.
    Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat ure Structural Biology 2002,9:601-605.
    Hammel K. Fungal degradation of lignin. Driven by nature:plant litter quality and decomposition. CAB International, Wallingford1997,33-45.
    Han MJ, Choi HT, Song HG. Purification and characterization of laccase from the white rot fungus Trametes versicolor. Journal of Microbiology 2005,43:555-560.
    Harkin JM, Obst JR. Syringaldazine, an effective reagent for detecting laccase and peroxidase in fungi. Cellular and Molecular Life Sciences (CMLS) 1973,29:381-387.
    Hong YZ, Zhou HM, Tu XM, Li JF, Xiao YZ. Cloning of a Laccase Gene from a Novel Basidiomycete Trametes sp.420 and Its Heterologous Expression in Pichia pastoris. Current Microbiology 2007,54:260-265.
    Hu M, Zhang W, Lu X, Gao P.. Purification and characteristics of a low-molecular-weight peptide possessing oxidative capacity for phenol from Phanerochaete chrysosporium. Science in China Series C:Life Sciences 2006,49:243-250.
    Hu M, Zhang W, Wu Y, Gao P, Lu X. Characteristics and function of a low-molecular-weight compound with reductive activity from Phanerochaete chrysosporium in lignin biodegradation. Bioresource Technology 2009,100:2077-2081.
    Huang F, Fang J., Gao P.J., Chen J.C.. Synergistic effects of cellobiose dehydrogenase and manganese-dependent peroxidases during lignin degradation Chinese Science Bulletin 2001,46:1956-1961.
    Hullo MF, Moszer I, Danchin A, Martin-Verstraete I. CotA of Bacillus subtilis is a copper-dependent laccase. Journal of Bacteriology 2001,183:5426-5430.
    Huttermann A, Mai C, Kharazipour A. Modification of lignin for the production of new compounded materials. Applied Microbiology and Biotechnology 2001,55:387-394.
    Itoh N, Katsube Y, Yamamoto K, Nakajima N, Yoshida K. Laccase-catalyzed conversion of green tea catechins in the presence of gallic acid to epitheaflagallin and epitheaflagallin 3-O-gallate. Tetrahedron 2007,63:9488-9492.
    Jadhav JP, Parshetti GK, Kalme SD, Govindwar SP. Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463. Chemosphere 2007,68:394-400.
    Ji G.L., Zhang H.B., Huang F., Huang X.R.. Effects of nonionic surfactant Triton X-100 on the laccase-catalyzed conversion of bisphenol A. Journal of Environmental Sciences.2009,21: 1486-1490.
    Johannes C, Majcherczyk A.. Laccase activity tests and laccase inhibitors. Journal of Biotechnology 2000a,78:193-199.
    Johannes C., Majcherczyk A.. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Applied and Environmental Microbiology.2000b, 66:524-528.
    Johannes C., Majcherczyk A., Huttermann A. Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system. Journal of Biotechnology.1998, 61:151-156.
    Jolivalt C, Madzak C, Brault A, Caminade E, Malosse C, Mougin C. Expression of laccase Ⅲb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Applied Microbiology and Biotechnology 2005,66:450-456.
    Jordaan J, Leukes W.D. Isolation of a thermostable laccase with DMAB and MBTH oxidative coupling activity from a mesophilic white rot fungus. Enzyme and Microbial Technology 2003,33:212-219.
    Jordaan J, Pletschke BI, Leukes WD. Purification and partial characterization of a thermostable laccase from an unidentified basidiomycete. Enzyme and Microbial Technology 2004,34: 635-641.
    Kaal E.E.J., Field J.A, Joyce T.W. Increasing ligninolytic enzyme activities in several white-rot Basidiomycetes by nitrogen-sufficient media. Bioresource Technology 1995,53:133-139.
    Kajita S., Sugawara S., Miyazaki Y, Nakamura M., Katayama Y., Shishido K, Iimura Y. Overproduction of recombinant laccase using a homologous expression system in Coriolus versicolor. Applied Microbiology and Biotechnology 2004,66:194-199.
    Karamyshev AV, Shleev SV, Koroleva OV, Yaropolov AI, Sakharov IY. Laccase-catalyzed synthesis of conducting polyaniline. Enzyme and Microbial Technology 2003,33:556-564.
    Kawai S, Iwatsuki M, Nakagawa M, Inagaki M, Hamabe A, Ohashi H. An alternative [beta]-ether cleavage pathway for a non-phenolic [beta]-O-4 lignin model dimer catalyzed by a laccase-mediator system. Enzyme and Microbial Technology 2004,35:154-160.
    Kiiskinen LL, Saloheimo M. Molecular cloning and expression in Saccharomyces cerevisiae of a laccase gene from the ascomycete Melanocarpus albomyces. Applied and Environmental Microbiology 2004,70:137-144.
    Kiiskinen LL, Kruus K, Bailey M, Ylosmaki E, Siika-Aho M, Saloheimo M. Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology 2004,150:3065-3074.
    Kim S-Y, An J-Y, Kim B-W. The effects of reductant and carbon source on the microbial decolorization of azo dyes in an anaerobic sludge process. Dyes and Pigments2008,76: 256-263.
    Koroleva OV, Gavrilova VP, Yavmetdinov IS, Shleev SV, Stepanova EV. Isolation and Study of Some Properties of Laccase from the Basidiomycetes Cerrena maxima. Biochemistry.2001, 618-622:
    Kuhnigk T, Konig H.1997. Degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites. Journal of Basical Microbiology 37: 205-211.
    K bahti BK, Tanyola A.. Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye:Optimization through response surface methodology. Journal of Hazardous Materials 2008,151:422-431.
    Laemmli UK. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970,227:680-685.
    Laurance JPWSaWF. ENVIRONMENTAL SCIENCE:How Green Are Biofuels?. Science 2008, 319:43-44.
    Leitner C, Hess J, Galhaup C, Ludwig R, Nidetzky B, Kulbe KD, Haltrich D. Purification and characterization of a laccase from the white-rot fungus Trametes multicolor. Applied Biochemistry and Biotechnology 2002,98-100:497-507.
    Leontievsky A, Myasoedova N, Pozdnyakova N, Golovleva L.'Yellow'laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Letters 1997, 413:446-448.
    Leontievsky AA, Myasoedova NM, Baskunov BP, Pozdnyakova NN, Vares T, Kalkkinen N, Hatakka AI, Golovleva LA. Reactions of blue and yellow fungal laccases with lignin model compounds. Biochemistry (Mosc) 1999,64:1150-1156.
    Li D, Li N, Ma B, Mayfield M, Gold M. Characterization of genes encoding two manganese peroxidases from the lignin-degrading fungus Dichomitus squalensl. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1999,1434:356-364.
    Litthauer D, van Vuuren MJ, van Tonder A, Wolfaardt FW. Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC 108). Enzyme and Microbial Technology 2007,40:563-568.
    Liu J, Shen X, Gao P. Short-fibre formation during cellulose degradation by cellulolytic fungi. Biotechnology Letters 1996,18:1235-1240.
    Liu W, Chao Y, Liu S, Bao H, Qian S. Molecular cloning and characterization of a laccase gene from the basidiomycete Fome lignosus and expression in Pichia pastoris. Applied Microbiology and Biotechnology 2003,63:174-181.
    Liu Z-h, Shao M, Cai R-x, Shen P. Online kinetic studies on intermediates of laccase-catalyzed reaction in reversed micelle. Journal of Colloid and Interface Science 2006,294:122-128.
    Lopez-Cruz JI, Viniegra-Gonzalez G, Hernandez-Arana A. Thermostability of native and pegylated Myceliophthora thermophila laccase in aqueous and mixed solvents. Bioconjugate Chemistry 2006,7:1093-1098.
    Lorenzo M, Moldes D, Rodri'guez Couto S, Sanroman MA. Inhibition of laccase activity from Trametes versicolor by heavy metals and organic compounds. Chemosphere 2005,60: 1124-1128.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein Measurement with the folin phenol reagent. The Journal of Biological Chemistry 1951,193:265-275.
    Machczynski MC, Vijgenboom E, Samyn B, Canters GW. Characterization of SLAC:a small laccase from Streptomyces coelicolor with unprecedented activity. Protein Science 2004,13: 2388-2397.
    Majcherczyk A, Johannes C. Radical mediated indirect oxidation of a PEG-coupled polycyclic aromatic hydrocarbon (PAH) model compound by fungal laccase. Biochimica et Biophysica Acta (BBA)-General Subjects 2000,1474:157-162.
    Majcherczyk A, Johannes C, Huttermann A. Oxidation of aromatic alcohols by laccase from Trametes versicolor mediated by the 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) cation radical and dication. Applied Microbiology and Biotechnology 1999,51:267-276.
    Marjasvaara A, Torvinen M, Vainiotalo P. Laccase-catalyzed mediated oxidation of benzyl alcohol: the role of TEMPO and formation of products including benzonitrile studied by nanoelectrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Journal of Mass Spectrometry 2004,39:1139-1146.
    Marques De Souza CG, Peralta RM. Purification and characterization of the main laccase produced by the white-rot fungus Pleurotus pulmonarius on wheat bran solid state medium. Journal of Basical Microbiology 2003,43:278-286.
    Mattia Marzorati BD, Dietmar Haltrich and Sergio Riva. Selective laccase-mediated oxidation of sugars derivatives. Green Chemistry 2005,7:310-315.
    Mayer AM, Staples RC. Laccase:new functions for an old enzyme. Phytochemistry 2002,60: 551-565.
    Meentemeyer V. Macroclimate the Lignin Control of Litter Decomposition Rates. Ecology 1978, 59:465-472.
    Melillo JM, Aber JD, Muratore JF. Nitrogen and Lignin Control of Hardwood Leaf Litter Decomposition Dynamics. Ecology 1982,63:621-626.
    Mester T, Field JA. Characterization of a Novel Manganese Peroxidase-Lignin Peroxidase Hybrid Isozyme Produced by Bjerkandera Species Strain BOS55 in the Absence of Manganese. The Journal of Biological Chemistry 1998,273:15412-15417.
    Methe BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W. et. al. Genome of Geobacter sulfurreducens:metal reduction in subsurface environments. Science 2003,302:1967-1969.
    Mikolasch A, Hammer E, Jonas U, Popowski K, Stielow A, Schauer F. Synthesis of 3-(3,4-dihydroxyphenyl)-propionic acid derivatives by N-coupling of amines using laccase. Tetrahedron 2002,58:7589-7593.
    Mikolasch A, Niedermeyer THJ, Lalk M, Witt S, et al. Novel penicillins synthesized by biotransformation using laccase from Trametes spec. Chemical & Pharmaceutical Bulltin (Tokyo) 2006,54:632-638.
    Min K-L, Kim Y-H, Kim YW, Jung HS, Hah YC. Characterization of a Novel Laccase Produced by the Wood-Rotting Fungus Phellinus ribis. Archives of Biochemistry and Biophysics 2001, 392:279-286.
    Minussi RC, Pastore GM, Duran N. Potential applications of laccase in the food industry. Trends in Food Science & Technology.2002,13:205-216.
    Minussi RC, Rossi M, Bologna L, Rotilio D, Pastore GM, Duran N. Phenols removal in musts: Strategy for wine stabilization by laccase. Journal of Molecular Catalysis B:Enzymatic 2007, 45:102-107.
    Mishra S, Bisaria VS. Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. Applied Microbiology and Biotechnology 2006, 646-653.
    Miyazaki K. A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 2005a.,9:415-425.
    Mohorcic M, Teodorovic S, Golob V, Friedrich J. Fungal and enzymatic decolourisation of artificial textile dye baths. Chemosphere 2006,63:1709-1717.
    Montgomery DC, Runger GC. Applied statistics and probability for engineers. New York; John Wiley & Sons.2003.
    Murugesan K, Nam I-H, Kim Y-M, Chang Y-S. Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzyme and Microbial Technology 2007,40:1662-1672.
    Murugesan K, Yang I-H, Kim Y-M, Jeon J-R, Chang Y-S. Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds. Applied Microbiology and Biotechnology.2009,341-350.
    Murugesan K, Arulmani M, Nam IH, Kim YM, Chang YS, Kalaichelvan PT. Purification and characterization of laccase produced by a white rot fungus Pleurotus sajor-caju under submerged culture condition and its potential in decolorization of azo dyes. Applied Microbiology and Biotechnology 2006,72:939-946.
    Myers RH, Montgomery DC. Response Surface Methodology:Process and Product in Optimization Using Designed Experiments:John Wiley & Sons, Inc. New York, NY, USA. 1995.
    Nagai M, Sato T, Watanabe H, Saito K, Kawata M, Enei H. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Applied Microbiology and Biotechnology 2002,60:327-335.
    Nagai M, Kawata M, Watanabe H, Ogawa M, Saito K, Takesawa T, Kanda K, Sato T. Important role of fungal intracellular laccase for melanin synthesis:purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology 2003,149: 2455-2462.
    Naruyoshi Mita S-iT, Hiroshi Uyama,Shiro Kobayashi. Laccase-Catalyzed Oxidative Polymerization of Phenols. Macromolecular Bioscience 2003,3:253-257.
    Niemetz R, Gross GG. Oxidation of pentagalloylglucose to the ellagitannin, tellimagrandin II, by a phenol oxidase from Tellima grandiflora leaves. Phytochemistry 2003a,62:301-306.
    Niemetz R, Gross GG. Ellagitannin biosynthesis:laccase-catalyzed dimerization of tellimagrandin
    Ⅱ to cornusiin E in Tellima grandiflora. Phytochemistry 2003b,64:1197-1201.
    Niladevi KN, Prema P. Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresource Technology 2008,99:4583-4589.
    Nimz HH. Beech lignin-proposal of a constitutional scheme. Angew. Chem.1974:313-321.
    Ohkuma M. Termite symbiotic systems:efficient bio-recycling of lignocellulose. Applied Microbiology and Biotechnology 2003,61:1-9.
    Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G. A novel white laccase from Pleurotus ostreatus. The Journal of Biological Chemistry 1997,272:31301-31307.
    Parkinson NM, Conyers CM, Keen JN, MacNicoll AD, Smith I, Weaver RJ. cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis. Comparative Biochemistry and Physiology Part C 2003,134:513-520.
    Pascoal Neto C, Daniel A, Evtuguin D.. Vol., Silvestre, AJD Influence of kappa number of unbleached pulp on ECF bleachability of Eucalyptus globulus kraft pulps. Industry & Engineering Chemistry Research.2000,27-30.
    Pasti MB, Pometto AL,3rd, Nuti MP, Crawford DL. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. Applied and Environmental Microbiology 1990,56: 2213-2218.
    Pozdniakova NN, Turkovskaia OV, Iudina EN, Rodakiewicz-Nowak Y. [Yellow laccase from the fungus Pleurotus ostreatus D1:purification and characterization]. Prikl Biokhim Mikrobiol 2006,42:63-69.
    Pozdnyakova N, Turkovskaya O, Yudina E, Rodakiewicz-Nowak Y. Yellow laccase from the fungus Pleurotus ostreatus D1:Purification and characterization. Applied Biochemistry and Microbiology 2006a,42:56-61.
    Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV. Catalytic properties of yellow laccase from Pleurotus ostreatus D1. Journal of Molecular Catalysis B:Enzymatic 2004,30:19-24.
    Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV, Haber J. Oxidative degradation of polyaromatic hydrocarbons and their derivatives catalyzed directly by the yellow laccase from Pleurotus ostreatus D1. Journal of Molecular Catalysis B:Enzymatic 2006b,41: 8-15.
    Prillinger H, Esser K. The phenoloxidases of the ascomycete Podospora anserina. Molecular Genetics and Genomics 1977,156:333-345.
    Qiu W, Chen H. Solid state fermentation of a Mycelia Sterilia laccase using steam-exploded wheat straw. World Journal of Microbiology and Biotechnology 2008,24:219-224.
    Ragauskas SWaAJ. One-pot synthesis of 1,4-naphthoquinones and related structures with laccase. Green chemistry 2007,9:475-480.
    Record E, Punt PJ, Chamkha M, Labat M, van Den Hondel CA, Asther M. Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. European Journal of Biochemistry.2002,269:602-609.
    Revankar M, Lele SS. Increased production of extracellular laccase by the white rot fungus Coriolus versicolor MTCC 138. World Journal of Microbiology and Biotechnology 2006,22: 921-926.
    Riva S. Laccases:blue enzymes for green chemistry. Trends in Biotechnology 2006,24:219-226.
    Rodriguez Couto S, Toca Herrera JL. Industrial and biotechnological applications of laccases:a review. Biotechnology Advance.2006,24:500-513.
    Roy B, Dumonceaux T, Koukoulas A, Archibald F. Purification and characterization of cellobiose dehydrogenases from the white rot fungus Trametes versicolor. Applied and environmental microbiology 1996,62:4417.
    Ruijssenaars HJ, Hartmans S. A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Applied Microbiology and Biotechnology 2004,65:177-182.
    Service RF. CELLULOSIC ETHANOL:Biofuel Researchers Prepare to Reap a New Harvest Science 2007,315:1488-1491
    Sheldon RA, Arends IWCE. Catalytic oxidations mediated by metal ions and nitroxyl radicals. Journal of Molecular Catalysis A:Chemical 2006,251:200-214.
    Shiba T, Xiao L, Miyakoshi T, Chen CL. Oxidation of isoeugenol and coniferyl alcohol catalyzed by laccases isolated from Rhus vernicifera Stokes and Pycnoporus coccineus. Journal of Molecular Catalysis B:Enzymatic 2000,10:605-615.
    Shimada M, Akamtsu Y, Tokimatsu T, Mii K, Hattori T. Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. Journal of Biotechnology 1997,53:103-113.
    Shin KS, Lee YJ. Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus. Archives of Biochemistry and Biophysicss 2000,384:109-115.
    Shiyu F, Pandeng Z.. Fungal Laccase and its Application of Polymerization of 4-Phenylphenol Chemistry 2005,3.226-228.
    Shu H-Y, Chang M-C. Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes. Dyes and Pigments 2005,65:25-31.
    Suzuki T, Endo K, Ito M, Tsujibo H, Miyamoto K, Inamori Y. A thermostable laccase from Streptomyces lavendulae REN-7:purification, characterization, nucleotide sequence, and expression. Bioscience Biotechnology & Biochemistry.2003,67:2167-2175.
    Tang W, Li X, Zhao J, Yue J, Yue H, Qu Y. Effect of microbial treatment on brightness and heat-induced brightness reversion of high-yield pulps. Journal of Chemical Technology & Biotechnology 2009,84:1631-1641.
    Tauber MM, Guebitz GM, Rehorek A. Degradation of Azo Dyes by Laccase and Ultrasound Treatment. Applied and Environmental Microbiology 2005,71:2600-2607.
    Teerapatsakul C, Parra R, Bucke C, Chitradon L. Improvement of laccase production from Ganoderma sp. KU-Alk4 by medium engineering. World Journal of Microbiology and Biotechnology 2007,23:1519-1527.
    Tuomela M, Vikman M, Hatakka A, Itavaara M. Biodegradation of lignin in a compost environment:a review. Bioresource Technology 2000,72:169-183.
    Ullrich R, Huong le M, Dung NL, Hofrichter M. Laccase from the medicinal mushroom Agaricus blazei:production, purification and characterization. Applied Microbiology and
    Biotechnology 2005,67:357-363.
    Uyama H, Kobayashi S. Enzymatic Synthesis and Properties of Polymers from Polyphenols. Enzyme-Catalyzed Synthesis of Polymers.2006,51-67.
    Villasenor F, Loera O, Campero A, Viniegra-Gonzalez G. Oxidation of dibenzothiophene by laccase or hydrogen peroxide and deep desulfurization of diesel fuel by the later. Fuel Processing Technology 2004,86:49-59.
    Wang GD, Li QJ, Luo B, Chen XY. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nature Biotechnology.2004,22: 893-897.
    Wang HX, Ng TB. A novel laccase with fair thermostability from the edible wild mushroom (Albatrella dispansus). Biochemical and Biophysical Research Communications 2004,319: 381-385.
    Wang W, Gao PJ. Function and mechanism of a low-molecular-weight peptide produced by Gloeophyllum trabeum in biodegradation of cellulose. Journal of Biotechnology 2003,101: 119-130.
    Wang W. Huang F., Lu X.M., Gao P.J. Lignin degradation by a novel peptide, Gt factor, from brown rot fungus Gloeophyllum trabeum. Biotechnology Journal 2006,1:447-453.
    Wesenberg D, Kyriakides I, Agathos SN. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances 2003,22:161-187.
    Wong Y, Yu J. Laccase-catalyzed decolorization of synthetic dyes. water research 1999,33: 3512-3520.
    Wu J, Xiao YZ, Yu HQ. Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Bioresource Technology 2005,96:1357-1363.
    Xiang L, Lin Y, Yu P, Su L, Mao L. Laccase-catalyzed oxidation and intramolecular cyclization of dopamine:A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors. Electrochimica Acta 2007,52:4144-4152.
    Xiao YZ, Tu XM, Wang J, Zhang M, Cheng Q, Zeng WY, Shi YY Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2. Applied Microbiology and Biotechnology 2003,60:700-707.
    Xiao YZ, Hong YZ, Li JF, Hang J, Tong PG, Fang W, Zhou CZ. Cloning of novel laccase isozyme genes from Trametes sp. AH28-2 and analyses of their differential expression. Applied Microbiology and Biotechnology 2006,71:493-501.
    Xu F. Oxidation of Phenols, Anilines, and Benzenethiols by Fungal Laccases:Correlation between Activity and Redox Potentials as Well as Halide Inhibition. Biochemistry 1996a.35: 7608-7614.
    Xu F. Effects of Redox Potential and Hydroxide Inhibition on the pH Activity Profile of Fungal Laccases. The Journal of Biological Chemistry 1997,272:924-928.
    Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EL. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1996,1292:303-311.
    Xu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer AE, Solomon EI. Site-directed mutations in fungal laccase:effect on redox potential, activity and pH profile. Biochem istry Journal 1998,334 (Pt 1):63-70.
    Yang W, Liu J, Wang W, Zhang Y, Gao P. Function of a low molecular peptide generated by cellulolytic fungi for the degradation of native cellulose. Biotechnology Letters 2004,26: 1799-1802.
    Yang XQ, Zhao XX, Liu CY, Zheng Y, Qian SJ. Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochemistry 2009,44:1185-1189.
    Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Halkier T, Mondorf K, Dalboge H. Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Applied and Environmental Microbiology 1996,62:834-841.
    Yinbo Q, Zhu M, Liu K, Bao X, Lin J.. Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China. Biotechnology Journal 2006,1:1235-1240.
    Zhang X, Eigendorf G, Stebbing DW, Mansfield SD, Saddler JN. Degradation of trilinolein by laccase enzymes. Archives of Biochemistry and Biophysics 2002,405:44-54.
    Zhang X, Wang Y, Wang L, Chen G, Liu W, Gao P. Site-directed mutagenesis of manganese peroxidase from Phanerochaete chrysosporium in an in vitro expression system. Journal of Biotechnology 2009,139:176-178.
    Zheng W, Li Q, Su L, Yan Y, Zhang J, Mao L. Direct electrochemistry of multi-copper oxidases at carbon nanotubes noncovalently functionalized with cellulose derivatives. Electroanalysis 2006,18:587-594.
    Zhou G, Liu S, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J. Old-growth forests can accumulate carbon in soils. Science 2006,314:1417.
    段新源,卢雪梅,王蔚,高培基.黄孢原毛平革菌合成漆酶能力的研究.山东大学学报(理学版):2002.37:91-94.
    付时雨,詹怀宇,余惠生.漆酶/介体催化体系中介体的反应性能.中国造纸2001.20:1-8.
    钱世钧 钞亚鹏.真菌漆酶及其应用.生物工程进展2001.21:23-28.
    高培基,许平.资源环境微生物技术.北京:化学工业出版社.2004.
    黄慧艳 张晓昱.漆酶在食品工业中的研究与应用进展.食品科技4..2003.
    胡明,卢雪梅,高培基等.黄孢原毛平革菌产生的具有氧化性活力低分子肽类物质的分离纯化与性质鉴定.中国科学(C辑).2006,36(1):43-50.
    黄峰,高培基,陈嘉翔.应用循环式液-液萃取法分离及鉴定木素生物降解物质.中国科学(E辑).2000,1(30):91-96.
    黄峰,方靖,高培基等.纤维二糖脱氢酶对锰过氧化物酶降解木素的促进作用.科学通报.2001,46(18):1956-1961.
    货新强,崔克明,李正理.杜仲次生木质部分化过程中木质素与半纤维素组分在细胞壁中分布的动态变化.植物学报.2001,43(9):899-904.
    康从宝 李刘曲.一株白腐菌产生的漆酶对rb亮蓝的脱色作用.应用与环境生物学报:
    2002.298-301.
    李杨段 刘方高.杂色云芝组成型漆酶I的纯化和底物专一性.中国生物化学与分子生物学 报:2002.737-740.
    李慧蓉.白腐真菌生物学和生物技术.北京:化学工业出版社.2005.
    王蔚,高培基.密粘褶菌胞外低分子量多肽在纤维素降解中作用的研究.微生物学报.2002a,42(2):220-225.
    王蔚,胡玮,高培基.密粘褶菌Gloeophyllum trabeum胞外低分子量多肽的分离纯化、部分性质和形成羟基自由基HO·的研究.中国生物化学与分子生物学报.2002b,18(2):202-208.
    王蔚,张齐翔,高培基.褐腐真菌纤维素降解初期产生羟基自由基HO.的普遍性研究.菌物系统.2003,22(1):137-143.
    闫文超,黄峰,高培基等.对白腐菌胞外小分子物质的初步研究.中国造纸学报.2003,18(2):47-53.
    杨炜华,刘洁,张颖舒,高培基.真菌产生的短肽对天然纤维材料的降解作用.自然科学进展.2004,14:1230-1235.
    赵听,王冬,高培基等.纤维素微生物及纤维素酶技术(第三版).1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700