高速公路粗粒土路堤填料流变性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于土石混填粗粒土具有良好的工程性质以及取材广泛,在湖南省高速公路路基工程中大量应用,其中红砂岩粗粒土最为常见,但是红砂岩填土路基路段存在较多与长期沉降相关的路面结构病害。针对上述存在的问题,论文结合湖南省交通科技项目“高速公路路基沉降及其对路面的影响”研究课题,以湖南省红砂岩地区高速公路红砂岩粗粒土路基填料为研究对象,研制了低应力状态下的粗粒土大型三轴流变试验仪,采用室内试验、现场试验和数值计算方法,对土石混填粗粒土路堤的流变工程性质进行了研究,主要研究内容及研究结论如下:
     (1)以湖南省内分布广泛的红砂岩土石混填路基填料为研究对象,进行了试验研究和理论分析。对干的红砂岩粗粒土及饱水的红砂岩粗粒土进行了压缩试验、剪切试验和压缩流变试验研究,并针对每组试验进行了试验前后土样的级配分选试验。试验研究说明红砂岩粗粒土符合路基填筑的技术要求,是红砂岩地区修建道路时最常用的路堤填料。
     水对红砂岩粗粒土的颗粒破碎效应影响比较大,如在流变试验中饱水土样的颗粒破碎率B_r=0.247大于干土样的B_r=0.118,饱水土样颗粒破碎率B_g=145.04,红砂岩粗粒土干土样颗粒破碎率B_g=88.44;水对红砂岩粗粒土颗粒破碎起到促进作用。受力状态明显影响红砂岩粗粒土的颗粒破碎效应和土体变形,试验研究发现流变试验的颗粒破碎效应系数>压缩试验中的颗粒破碎效应系数>剪切试验中的破碎效应系数。如干的红砂岩粗粒土土样中,压缩流变试验的B_r=0.118>压缩试验的B_r=0.085>剪切试验的Br=0.048。
     颗粒破碎效应试验研究认为红砂岩粗粒土流变机理主要在两个方面:红砂岩粗粒土粗颗粒的破碎效应和红砂岩粗粒土中细颗粒移动填充效应,两者共同作用使得土体发生流变。红砂岩粗粒土的流变过程可以划分为三个阶段。流变过程中水和应力状态是影响流变进程的最关键的因素。
     (2)针对道路工程领域中路基土体围压力的特点,研制了一套用于土石混填粗粒土路基填料流变试验的大型三轴流变试验仪(GSRT),在道路工程领域率先引进土石混填粗粒土路基填料大型三轴流变试验仪。GSRT流变仪可以进行常规粗粒土三轴试验和粗粒土三轴流变试验,GSRT流变仪所接受的试验土样尺寸为Φ=300mm,H=600mm,可直接进行最大粒径d=60mm粗粒土路基填料的流变试验。粗粒土路堤填料大型三轴流变试验仪(GSRT)压力室部件采用SZ30-4型三轴试验仪的压力室部件。GSRT流变仪轴向压力由气液平衡储能器提供,GSRT流变仪最大轴向压力为3.0MPa,采用无级调压。GSRT流变仪围压力,由水头压力提供,试验围压力分为50kPa、100kPa、150kPa、200kPa等4级。GSRT流变仪的研制,对于开展道路工程领域土石混填粗粒土路基填料的流变性质研究提供了可行的试验设备,丰富了道路工程领域土工试验设备。
     (3)以怀新高速公路K20+240里程高填路堤红砂岩粗粒土路堤填料为研究对象,在研制的GSRT粗粒土大型三轴流变试验仪上进行了试验研究。试验分析表明,应力状态,主要是应力水平和围压的大小对红砂岩粗粒土路堤填料蠕变性质影响明显,不同应力水平下,有着不同的流变特征。较小的应力水平时(S=0.1)时,蠕变曲线表现为只有弹性变形,粘滞变形可以忽略不计,认为土样在这样的应力水平下只有瞬时的弹性变形;中等应力水平时(0.2<S≤0.6),试验蠕变曲线表现为线性粘弹性流变特征;较高的应力差值下(0.8<S)的蠕变曲线出现了加速流变阶段,蠕变变形不收敛。尤其是当应力水平为S=0.1时,蠕变曲线很早就出现加速阶段,土体朝破坏趋势发展,大应力状态下土体进入塑性屈服阶段,土体表现为非线性粘塑性变形特征。
     基于红砂岩土石混合粗粒土路基填料的非线性流变特征,提出了一个基于二次多项式核函数的粘塑性体(N),用于描述粗粒土非线性粘塑性变形。将该粘塑性体与Burgers流变模型串联,建立了6元件改进的Burgers流变模型,并采用模式搜索与非线性最小二乘法确定了改进的Burgers流变模型参数。采用FLAC5.0所提供的二次开发程序接口,编写了建立的改进的Burgers流变模型计算程序。对怀新高速公路K18+160和K20+240两个红砂岩土石混填粗粒土高填路堤的流变沉降进行了计算,并将数值计算结果与实测结果进行了对比,对比结果表明数值计算值与实测值比较吻合,验证了改进的Burgers流变模型及其参数的合理性。嵌入FLAC5.0的改进的Burgers本构模型数值计算程序为土石混填粗粒土路堤长期沉降计算提供了工具。
Granular soil is used widely as highway embankment fillings in Hunan province, for its good engineering properties and extensive distribution, especially Redstone granular soil. However, the engineering practice shows that much pavement structure damage was caused by long-term rheological deformation. To solve this problem, the subject-Research on Highway Embankment Settlement with Affection on Pavement Structure was put forward by Hunan province Communication Science and Technology Development Fun. The main contents of this doctoral dissertation are the research results of this subject. In order to study the rheological properties of red stone granular soil, a series of rheological experiments were executed on the newly developed large tri-axial rheological apparatus. Laboratory experiment, in-situ tests and numerical calculation methods were synthetically adopted to analyze the soil-stone granular soil embankments' rheological deformation, and the main research contents and conclusions are as follows:
     (1) Sample tests of Redstone granular soil embankment fillings are carried out, and soil samples include dry Redstone granular soil and wet one. Experiments are consisted of compression test, direct simple shearing tests, and confining leash compressing rheological tests. In order to study the grain component percentage's changes, the sieve analysis tests for each soil samples are also carried out after these tests. The grain crushing effects of the red sandstone granular soil were studied under different stress types (compression stress, shearing stress), different load time (e.g. rheology test), and different humidity conditions (dry and wet). The tests showed that water had important effects on coarse grain crushing and final rheological values of red sandstone granular soil. For example, in the compression rheological tests, the average grain crushing rate (B_g) of wet soil samples was 145.04, while, the dry soil sample one was 88.44; the final rheological strain value of the wet soil sample was about 15.5%, while the dry soil sample one was about 9.86%. And, the tests showed that stress conditions also have great effects on coarse grain crushing rate of red sandstone granular soil. The average coarse grain crushing rate (B_g=49.14) in the confining leash compressing tests is smaller than the average coarse grain crushing rate (B_g=88.44) in rheological tests and bigger than the average coarse grain crushing rate (B_g=49.14) in the direct simple shearing tests.
     Through the tests studies and theory analysis, the rheological mechanism of the red sandstone granular soil was generalized as the coarse grain's crushing effects and the fine grain's filling effects. The rheological procedure of the red sandstone granular soil could be divided into three phases, in which water and stress conditions were two critical factors affecting rheology process.
     (2) According to the characteristic of fillings pressure in road embankments, a large tri-axial rheological apparatus (GSRT) are developed to study the rheological properties of granular soil fillings. This GSRT have four main parts, including the constant confining pressure providing part, the constant axial pressure providing part, confining pressure cell and soil sample cell, testing data measurement part. The axial pressure in GSRT is provided by the oil-gas energy depositing vessel's pressure oil with less than 5% axial pressure fluctuation during rheological tests procedure. The cell confining pressure in GSRT is provided by water head pressure in tube which could keep longtime constant during the rheological tests procedure. The confining pressure cell and soil sample cell in GSRT were directly adapted from the common large tri-axial apparatus's (SZ30-4) with the dimension (Φ=300mm, h=600mm). The axial force, the axial strain, the confining pressure, the volumetric strain, the drained water volume and the pore water pressure of the soil sample are measured. The common tri-axial tests and the tri-axial rheological tests of granular soil can be expediently executed on GSRT. The technical parameters of GSRT are as below: The constant axial pressure range with stepless free adjustment: 0~3.0MPa; The confining pressure range with four level adjustment: 50kPa, 100kPa, 150kPa, 200kPa; The granular soil samples with the large dimension (Φ=300mm, h=600mm) and large diameter grain (the maximum diameter of the grain, d_(max)=60mm) in the soil sample. This large triaxial rheological apparatus (GSRT) was firstly applied in road engineering research domain to study the granular soil embankment fillings in China. The development of GSRT presented the good testing tool for the granular soil embankment fillings' rheological properties and richen the soil test apparatus.
     (3) To study the rheological properties of granular soil embankment fillings, red stone granular soil samples were experimented on the GSRT, which were taken from the k20+240 embankment in Huaixin highway construction site.
     The experiment results showed that the stress condition, especially the principal stress level is the critical influencing factor of the rheological deformation properties. There were different rheological properties of the creep curves under different principal stress level. Under the low principal stress level (S=0.1), the granular soil showed the elastic properties, and there was no obvious rheological deformation. Under the principal stress level (0.2     Based on the nonlinear viscous plastic deformation properties of red sandstone granular soil embankment fillings, a new viscous plastic rehological component (N rehological component) is established on quadratic rehological core equation. To put this N rehological component and Burgers rehological model in series, a modified Burgers rehological model with 6 elements was set up, and the parameters of this modified model are identified by the non-linear model searching least square algorithm.
     The program of modified Burgers model was developed and applied in numerical calculation by the advanced implements in FLAC5.0, then the rehological deformation of K18+560 and K20+240 soil-stone granular soil embankments was calculated with it. The comparison of calculative deformation data and the surveyed deformation data showed that there was a good agreement between the calculative deformation and surveyed deformation. So the modified Burgers model enclosed in FLAC5.0 and parameters in this model were feasible. The modified Burgers model enclosed in FLAC5.0 offered a referenced tool for the rehological deformation calculation of highway soil-stone granular soil embankments.
引文
[1]Ellis,Sally.Sustainable highway maintenance.Highways[J],2004,04,vol73(2),17-18
    [2]张嘉凡,张慧梅.软土地基路基不均匀沉降引起路面结构附加应力[J].长安大学学报(自然科学版),2003年05月,Vol(23)3:21-26.
    [3]曹东伟,胡长顺.多年冻土区路基融沉变形的附加应力[J].重庆交通学院学报,2001,20(3):57-61.
    [4]汪双杰.多年冻土区路基路面变形及应力的数值分析[J].冰川冻土,2006年02期,19(2):22-27.
    [5]邓卫东等.路基不均匀沉降对沥青路面受力变形影响的有限元分析[J].中国公路学报,2004年1月,Vol17(1):12-15.
    [6]郭庆国著.粗粒土的工程特性及应用[M].北京:黄河水利出版社,1999.
    [7]王龙,冯德成.提高级配碎石基层使用性能的方法[J].中国公路学报,2006,04,Vol19(4),40-45.
    [8]杨建国.土石混填路堤压力灌浆试验研究[J].公路,2002,04,Vol6(2),32-35.
    [9]董云,柴贺军.土石混合料振动压实特性的试验研究[J].路基工程,2006,05,Vol2(2),23-35.
    [10]袁海清.土石混和料大型击实试验研究[J].中南公路工程,,2006,05,Vol12(6),15-18.
    [11]刘丽萍.土石混合料压实特性试验研究[J].岩石力学与工程学报,2006,01,Vol125(1),206-210.
    [12]油新华.土石混合体野外水平推剪试验研究[J].岩石力学与工程学报,2002,10,Vol125(1),1637-1540-210.
    [13]马松林.土石混合料室内振动压实研究[J].中国公路学报,2001/01,Vol114(1),5-8
    [14]邓觐宇.红砂岩的崩解特性研究[J].中南公路工程.2003,10,Vol28(3):32-35
    [15]董泽福,刘多文.红砂岩的路堤用工程性质研究[J].湖南大学学报(自然科学版),2003年6月Vol.30。No.3,p90-93
    [16]刘多文,熊承仁.红砂岩路用性质的试验研究[J].中南公路工程.2003年12月,Vol28(4):27-31
    [17]董明星,湘耒路红砂岩路堑边坡破坏机制分析[J].湖南交通科技,Vol28(1):20-21
    [18]周明安,湘耒公路红砂岩路基石料的爆破开采[J].爆破,1999,06,Vol16(2):46-51
    [19]曾更新,潭邵高速公路红砂岩路基填筑技术[J].中外公路,2002,10,Vol2(5):117-118
    [20]肖泽林,泥质红砂岩原岩强度指标的统计数字特征[J].湖南交通科技,2004,10,Vol30(2):17-19
    [21]朱珍德,邢福东,刘汉龙,张勇,南京红山窑第三系红砂岩膨胀变形性质试验研究[J]. 岩土力学,2004,07,Vol25(7):1041-1044.
    [22]王文斌,兰州地区第三系风化红砂岩工程地质特性研究[J].兰州铁道学院学报,1997,03,Vol16(1):24-28.
    [23]李永盛,加载速率对红砂岩力学效应的试验研究[J].同济大学学报,1995,06,Vol23(3):265-269
    [24]陶振宇,红砂岩真三轴压力试验与岩石强度极限统计[J].武汉水利电力大学学报,1993,08,Vol26(4):300-305.
    [25]朱珍德,张勇,李术才,陈卫忠,用数字图像相关技术进行红砂岩细观裂纹损伤特性研究[J].岩石力学与工程学报,2005,04,Vol25(7):1121-1126.
    [26]沈新慧.天生桥混凝土面板堆石坝筑坝材料特性研究[A].水利水电科学研究院科学研究论文集——第32集(结构材料、岩土与抗震工程)[C].北京:水利电力出版社,1991.65-73
    [27]工程地质手册编委会.《工程地质手册》[M].北京:中国建筑工业出版社,2007,02
    [28]蒋彭年.对“多级配砾石土反滤设计方法试验研究”的讨论——论多级配土的低谷粒径就是其区分粒径[J].1997,05,Vol19(5):110-112.
    [29]贾革续.粗粒土工程性质[D].大连理工大学博士论文,2003-05.
    [30]Marsal R J.Mechanical Properties of Rockfill Embankment Dam Engineering[M].Casagrande Volume,NewYork:Wiley,1973.109-200.
    [31]原水利电力部.《土工试验规程》(SD128-86)[M].北京:出版社,2007,02
    [32]郭庆国.关于粗粒土抗剪强度特性的试验研究[J].水利学报,1987,(5):59-66.
    [33]司洪洋.关于砂卵石混凝土面板堆石坝垫层渗流的思考[J].大坝观测与土工测试,2000,02,Vol24(2):1-4.
    [34]程展林,丁红顺.堆石料蠕变特性试验研究[J].岩土工程学报,2004,26(4):473-476
    [35]张嘎.土与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析[J].工程力学,2006,02.Vol23(2):72-78
    [36]Maranha das Neves E.Advances in rock fill structure[M],Netherlands:Kluwer Academic Publishers,1991.89-91,221-236.
    [37]Matsuoka H,Geka H.A stress-strain model for granular materials considering mechanism of fabric change[J].Soils and Foundations,1983,23(2):83-97
    [38]Parkin A K.Settlement Rate Behaviour of Some Fill Dams in Australia[A].Proceedings of 11 th ICSMFE[C].San Francisco:[s.n.],1985,2007-2010.
    [39]Fitzpatrick MD,Liggins TB,Barnett R H W.Ten Years Surveillance of Cethana Dam [A].14th ICOL D congress[C].Rio de Janeiro,Q.52,R.51,1982:847-865.4
    [40]ValanisKC.On the substance of Rivilin's remarks on the en-dochronic theory[J]. international journal of Solid sand Structures,1981,17(5):249265.
    [41]ValanisKC.Atheory of viscoplasticity without a yield surface[J].Archives of mechanics,1971,23(5).
    [42]日本土质工学会.粗粒料的现场压实[M].郭熙灵,文丹译.北京:中国水利水电出版社,1998.
    [43]韩世莲.土和碎石混合料的蠕变试验研究.岩土工程学报[J].岩土工程学报,1999,02,Vol21(2):190-194.
    [44]朱建华.漳泽水库土坝异常变形分析.[J].岩土工程学报,1994,02,Vol16(2):98-106.
    [45]刘令瑶.宽级配砾石土水力劈裂特性的研究.[J].岩土工程学报,1998,03,Vol15(4):112-116.
    [46]郭熙灵,胡辉,包承刚.堆石料颗粒破碎对剪胀性及抗剪强度的影响[J].岩土工程学报,1997,19(3):83-88.
    [47]饶锡保.粗粒含量对砾质土工程性质影响的研究[J].长江科学院院报,1999,01,Vol16(1),21-25
    [48]王协康.宽级配卵石泥沙颗粒特性的分维值及其应用[J].长江科学院院报,1999,05,Vol16(3),27-32
    [49]戴福初.松散击实火山岩坡残积土的应力应变特性及其对滑坡的意义.岩土工程学报,1999,03,Vol21(3):257-262
    [50]屈智炯.粗粒土在高土石坝的应用研究[J].水电站设计,1998,01.83-88.
    [51]张嘎.循环荷载作用下粗粒土与结构接触面变形特性的试验研究[J].岩土工程学报,2004,02,Vol26(2):254-268
    [52]张启岳,熊国文.鲁布革坝的原型观测(二)[J].水利水运科学研究,1994,04,(4)319-334
    [53]司洪洋.混凝土面板堆石坝监测(4)[J].大坝观测与土工测试,1995,05,(4):38-44
    [54]柏树田.西北口混凝土面板堆石坝筑坝材料特性的试验研究[A].水利水电科学研究院科学研究论文集,第32集(结构材料、岩土与抗震工程)[C].北京:水利电力出版社,1991.19-29.
    [55]张嘎,吴伟,张建民.粗粒土亚塑性损伤模型[J].清华大学学报(自然科学版),2006,06,vol46(6),793-796
    [56]Prevost,J.H.A simple plasticity theory for frictional cohesionless soils.Soil Dynamics and Earthquake Engineering,1985,4:9-17
    [57]吴伟.试从水泥稳定砂砾和二灰碎石路面基层技术性能和施工工艺的比较看设计的合理性[J].东北公路,1996,01,22-24
    [58]Dafalias,YF.Bounding surface plasticity(Ⅰ):Mathematical foundation and hypoplasticity.Journal of Engineering Mechanics,1986,112(9):966-98
    [59]Duncan J M,Chang C Y Nonlinear analysis of stress and strain in soils[J].Journal of the Soil Mechanics and Foundation Division,ASCE,1970,96(SM5);1629-1653.
    [60]郑颖人,沈珠江,龚晓南.广义塑性力学一岩土塑性力学原理.北京:中国建筑工业出版社,2002.
    [61]屈智炯.土的塑性力学.成都:成都科技大学出版社,1987
    [62]章根德,土的本构模型及其应用,北京:科学出版社,1995
    [63]龚晓南.土塑性力学(第二版).杭州:浙江大学出版社,1999
    [64]郭庆国.砂石滤层准则的研究与进展[J].水利水电科技进展,2002,(1):53-54.
    [65]王龙,冯德成.提高级配碎石基层使用性能的方法[J].中国公路学报,2006,04,Vol19(4),40-45.
    [66]杨建国.土石混填路堤压力灌浆试验研究[J].公路,2002,04,Vol6(2),32-35.
    [67]潘长良,陈沅江.岩石蠕变过程的不可逆热力学分析[J].中南工业大学学报,2002,vol33(5)441-444.
    [68]王来贵,王建国,何峰,曹百站.岩石试件蠕变过程中的反馈特性研究[J].沈阳建筑大学学报(自然科学版),2006,vol22(5):736-739.
    [69]袁海平,曹平,许万忠,陈沅江.岩石粘弹塑性本构关系及改进的Burgers蠕变模型[J].岩土工程学报,2006,vol28(6):796-799.
    [70]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002,21(5):632-634.
    [71]陈宗基.Structure mechanics of Clay.中国科学,1959,8(1).
    [72]Taylor,D,W.,Fundamental Problems in Visco-Plasticity.In:Recent Advances in Applied Mechanics,Academic press,New york,1966.
    [73]陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程.岩石力学与工程学报,1991,10(4):299-312
    [74]Drucker,D.C.,Gibson,R.E.,Henkel,D.J.Soil mechanics and work hardening theories of plasticity.Transactions ASCE.1957,122:338-346)
    [75]Patton T.L.,Fletcher R.C.,A theological model for fractured rock[J],of Structural Geology,1998,20(5):491-502.
    [76]Garlanger.Haefeli R.Creep problems in Soils,Snow and Ice..Mexico:Proc.3rd ICSMFE,Vol.3,1953.
    [77]Geuze ECWA,TanTjong Kie.The Mechanical Behavior of Clays.Oxford:Proc,2nd Int,congresson Rheology,1953.
    [78]Haefeli R.Creep problems in Soils,Snow and Ice..Mexico:Proc.3~(rd)ICSMFE,Vol.3,1953.
    [79]Matsuoka H,Geka H.A stress-strain model for granular materials considering mechanism of fabric change[J].Soils and Foundations,1983,23(2):83-97.
    [80]Asoka,A.(1987)Observational procedure of settlement prediction Soils and Foundation.18,87-101.
    [81]Lade,P.V.,Duncan,J.M.Elasto-plastic stress-strain theory for cohesionless soil.Journal of Geotechnical Engineering,1975,101(10):1037-1064.
    [82]Mosleh,Desai,C.S.,Faruque,M.O.Constitutive model for(geological)materials.Journal of Engineering Mechanics,1984,110(9):1391-1408
    [83]Dafalias YF.On Rate Dependence and Anisotropy in Soil constitutive Modeling.Paris:Results of the Int.Workshop on constitutive relations for soil,1982.
    [84]Borja,R.I.,Generalized creep and stress relaxation model for clays[J].Geotech.Engrg.,ASCE,1992,118(11),1765-1786.
    [85]Bjerrum L.,Seventh rankine lecture:Engineering Geoolgy of norwegian normally-consolidated matin clays as related to settlement of buildings.Geotechnique,1967,17(2):81-118.
    [86]周德培等.流变力学原理及其在岩土工程中的应用[M].西南交通大学出版社,1995.
    [87]C.C.维亚洛夫著,杜余培译.土力学流变原理[M].科学出版社,1987。
    [88]李传亮,孔祥言.多孔介质的流变模型研究.力学学报,Vol.35 No.2.
    [89]谢宁.软土非线性流变的理论试验和应用研究[博士学位论文].上海:同济大学,1993.
    [90]安关峰,高大钊.弹粘塑性3D-FEM在地基流变沉降中的应用[J].同济大学学报,2001,29(2):195-199.
    [91]孙钧,李永盛.岩石流变力学德数值方法及其工程应用[A].中国力学学会岩土力学专业委员会,第一届全国计算岩土力学研讨会论文集[C].成都:西南交通大学出版社,1987
    [92]孙钧.岩土材料流变模型及其工程应用[M].北京:建筑工业出版社,1999
    [93]刘宝琛.矿山岩石工程流变学[D].中国有色金属工业总公司,1988,10.
    [94]马明军,廖国华.二维粘弹塑性有限元程序PLANET的微机化改造[J].矿冶工程,1994,02,
    [95]黄文熙主编,土的工程性质,水利水电出版社,北京,1983年.
    [96]何广纳著,土工的若干新理论研究与应用,水利水电出版社,北京,1994
    [97]黄文熙,土的弹塑性应力—应变模型理论,清华大学学报,1978年
    [98]Nova,R,Hueckel,T.A unified approach to the modeling of liquefaction and cyclic mobility of sands.Soils and Foundations,1981,21(4):13-2
    [99]Jeferies,M.G.Nor-sand:a simple critical state model for sand.Geotechnique,1993,43(1):91-10.
    [100]Bromhead E.N,The stability of slopes.Surrey University Press,New York,1998.
    [101]Hashigushi K.Constitutive equations of granular media with anisotropic hardening. Numerial Methodsin Geomechanics(ed W Wittke),(1979)
    [102]Desai,C.S.,Faruque,M.O.Constitutive model for(geological)materials.Journal of Engineering Mechanics,1984,110(9):1391-1408.
    [103]Martin R.J.,Noel J.S.,et al,Creep and static fatigue of welded tuf from Yucca Mountain,Nevad Int.J Rock Mech.Min.Sci.,1997,34(34):382-38.
    [104]DiMaggio,EL.,Sandier,I.S.Material model for granular soils.Journal of Engineering Mechanics Division,1971,97(EM3):935-95.
    [105]Sandier,I.S.,DiMaggio,EL.,Baladi,G.Y Generalized cap model for geological materials.Journal of Geotechnical Engineering Division,1976,102(GT7):683-69.
    [106]Resende,L.,Martin,J.B.Formulation of Drucker-Prager cap model.Journal of Engineering Mechanics,1985,111(7):855-881.
    [107]Chen S.H.,Pande G.N.,Rheological model and finite element analysis of jointed rock masses reinforced by passive fully-grouted bolts.Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.1994,31(3):273-277.
    [108]Garzonio C.A.,Efects of creep phenomena in stone materials used in historical monuments.Proc of 8th of Int.Cong.on Rock Mechanics,Japan,1995,1:291-29
    [109]刘世君,徐卫压,邵建富.岩石粘弹性模型辨别及参数反演[J],水利学报,2002,(6):101-105.
    [110]许宏发,陈新万.多项式回归间接求解岩石流变力学参数德方法[J].有色金属.1994,46(4):19-22.
    [111]赵维炳.排水固结加固高速公路深厚软基工后沉降[J].水利水运工程学报,2003,01,(1)28-33
    [112]Sun Jun,LeeY.S.,A viscous elasto-plactic numerical analysis of the underground structure interacted with families of multi-laminate rock mass using FEM.Proc.of 5'h Int.Conf.On Num Meth.in Geomech.,Nagoya,.Japan,1-5,1985.
    [113]Sun Jun,The 3-D nonlinear rheological behavior of extremely weak rocks and its applications in mining construction works.Proc.1th Asian Rock Mech.Symp.,ARMS'97,Korea,1997.
    [114]Johnson.S.J.(1970)Precempression for improving foundtion soils.J.Soil Mech.and Found Div Am.Soc.Civ.Engrs,96,SM1,70-111.
    [115]Cristescu N.,ElasticNiscoplastic constitutive equations for rock.Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.1987,24(5):271-282.
    [116]沈凤生,陈慧远,潘家铮.混凝土面板堆石坝的蓄水变形分析[J].岩土工程学报,1990,12(1):74-81.
    [117]沈珠江,土石料的流变模型及其应用,南京水利科学研究院水利水运科学研究,1994年12月.
    [118]梁军,刘汉龙,高玉峰.堆石料流变参数综合辨识法[J].岩土工程界,2002,24(2):257-259.
    [119]郭兴文.堆石流变性对水布垭面板堆石坝性状影响的研究.河海大学学报,2001年5月,Vol29 No.5:p88-91
    [120]王勇,殷宗泽.一个用于面板坝流变分析的堆石流变模型[J].岩土力学,2000,21(3):227-23.
    [121]王勇,堆石流变的机理及研究方法初探,岩石力学与工程学报,2000年7月,19(4):526-530.
    [122]程展林,余剑平,丁红顺.水布垭面板堆石坝填料应力应变关系试验研究[J].长江科学院院报,1999,01,vol16(1)29-33.
    [123]周伟.高混凝土面板堆石坝流变本构模型理论及其应用[M].武汉大学博士论文,武汉大学,2004,05.
    [124]王琛,胡德金,刘浩吾等.三峡泄滩滑坡体滑动带土的蠕变试验研究[J].岩土力学,2003,24(6):1007-1010.
    [125]王德信,许庆春.基于有限单元法的拱坝体型优化设计[J].河海大学学报(自然科学版),1993,05,vol21(3)102-105.
    [126]Jain O.P.,Zamam M,Hossain M,et al.Creep constitutive modeling of rock shale and evaluation of model parameters using optimization[J].Indian Geotechnical J.1997,27(3):284-297.
    [127]沈珠江,左元明,堆石料的流变特性试验研究,第六届土力学及基础工程学术会议论文集,北京:建筑工业出版社,1991:443.
    [128]Naylor A.H.and Doran I.G,Precise Determination of Primary Consolidation,Proc.Int.Conf.on S.M.and F.E.,1948,Vol1.1.
    [129]束一鸣,杨威,武良金.河口筑堤土料的工程现场试验[J].水利水电科技进展,2004,vol24(5):34-36.
    [130]沈长松,李艳丽,郑福寿.面板堆石坝面板脱空现象成因分析及预防措施[J].河海大学学报(自然科学版),2006,vol34(6):635-639.
    [131]沈珠江,赵魁芝.堆石坝流变变形的反馈分析[J].水利学报,1998(6):1-6.
    [132]艾志雄,边秋璞,赵克全.岩土蠕变试验及应用简介[J].三峡大学学报(自然科学版),2006,08,vol28(6):528-533.
    [133]Frantziskonis,G.N.,Desai,C.S,Somasundaram,S.Constitutive modelling for nonassociative behavior.Journal of Engineering Mechanics,1986,112(9):932-94.
    [134]沈珠江,土石料的流变模型及其应用,南京水利科学研究院水利水运科学研究,1994年12月.
    [135]沈凤生,陈慧远,潘家铮.混凝土面板堆石坝的蓄水变形分析[J].岩土工程学报,1990,12(1):74-81.
    [136]王德信,许庆春.基于有限单元法的拱坝体型优化设计[J].河海大学学报(自然科学版),1993,05,vol21(3)102-105.
    [137]王琛,刘浩吾,许强.三峡泄滩滑坡滑动带土的改进Mesri蠕变模型[J].西南交通大学学报,2004,39(1):15-19.
    [138]李国英,米占宽,傅华等.混凝土面板堆石坝堆石料流变特性试验研究[J].岩土力学,2004,Vol25(11):1713-1717.
    [139]严秋荣,邓卫东.红层软岩土石混合料的长期蠕变性能模拟试验研究[J].重庆交通学院学报,2006,vol25(4):40-43.
    [140]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1979
    [141]杨挺青.粘弹性力学[M].武汉:华中理工大学出版社,1990.
    [142]周维垣.高等岩石力学[M].北京:中国水利水电出版社,1990
    [143]匡震邦.非线性连续介质力学基础[M].西安:西安交通大学出版社,1989
    [144]张淳源.粘弹性断裂力学[M].武汉:华中理工大学出版社,1994
    [145]穆霞英.蠕变力学[M].西安:西安交通大学出版社,1990
    [146]刘雄.岩石流变学概论[M].地质出版社,北京:1994.
    [147]王宝祥主编.信号与系统[M].哈尔滨工业大学出版社,2002,07
    [148]张于贤.单位阶跃函数在材料力学中的应用[J].机械,2005,vol32(7):5-9
    [149]李杰,葛善虎,丁宣浩.阶跃函数在信号分析中的应用[J].桂林电子工业学院学报,2005,vol25(5):61-65.
    [150]祝彦知,程楠.Kelvin半无限体内部作用竖向力时的解答与应用[J].强度与环境,2006,vol33(3):26-29.
    [151]梁冰,李平.孔隙压力作用下圆形巷道围岩的蠕变分析[J].力学与实践,2006,vol28(5):62-67.
    [152]祝彦知,仲政.竖向力作用在粘弹性土体内部时的解答与应用[J].应用力学学报,2006,vol23(4):534-547.
    [153]宋亚勤,张元冲,徐红玉,卢秉恒.由运动内热源引起的磁热黏弹性问题的研究[J].力学学报,2005,vol37(4):501-510.
    [154]陈宝林.最优化理论与方法[M].北京:清华大学出版社,1989
    [155]王旭,王宏等.人工神经网络原理与应用[M].沈阳:东北大学出版社,2000
    [156]金丰年.岩石的非线性流变[M].南京:河海大学出版社,1998
    [157]中国岩石力学与工程学会主编.新世纪岩石力学与工程的开拓和发展[M].北京:中国科学技术出版社,2000
    [158]陶振宇.试论岩石力学的最新进展[J].力学进展,1992,22(2):161-17
    [159]刘雄.岩石流变学概论[M].地质出版社,北京:1994.
    [160]安关峰.软土流变对隧道影响的三维有限元研究[J].土木工程学报,2001,34(5):85-89.
    [161]郑雨天.岩石力学的弹塑粘性理论基础[M].北京:煤炭工业出版社,1985
    [162]谢宁.软土非线性流变的理论试验和应用研究[博士学位论文[D].上海:同济大学,1993.
    [163]欧阳.粘弹塑性理论[M].长沙:湖南科技出版社,1985
    [164]杨绪灿,杨桂通.粘塑性力学概论[M].北京:中国铁道出版社,1985.
    [165]吴澎,周维垣.节理岩体的损伤模型及非线性有限元分析[J].岩石力学与工程学报,1988,vol7(3)22-28.
    [166]赵祖武.关于非线性蠕变问题[J].力学学报,1959,3(4):313
    [167]黄国明,黄润秋.岩石弹塑性损伤祸合本构模型[J].西安科技学院学报,1996,vol16(4):328-333。
    [168]李永和,葛修润.锚喷材料经时蠕变损伤本构方程[J].岩土力学,1997,18(4):8-12
    [169]金丰年.岩石的时间效应[D].上海:同济大学博士论文,1993
    [170]孙钧,汪炳钦.地下结构有限元法解析[M].上海:同济大学出版社,1988
    [171]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报,2006,vol25(3)433-447.
    [172]陈晓斌,张家生.红砂岩粗粒土流变机理试验研究[J].矿冶工程,2006,06,Vol26(6):16-21.
    [173]Taylor,D,W.,Fundamental Problems in Visco-Plasticity.In:Recent Advances in Applied Mechanics,Academic press,New york,1966.
    [174]Marsal R J.Mechanical Properties of Rockfill Embankment Dam Engineering[M].Casagrande Volume,NewYork:Wiley,1973.109-200.
    [175]Bjerrum L,Embankments on soft soil ground[A].Proceedings Special Conference on Performance of Earth and Earth-Supported Structure[C].[s.n.]:ASCE,1972,1-54.
    [176]Sridharan & Rao.Improved rectangular hypybola method for determination of coefficient of consolidation[J].Geotechnical Testing Journal,v 8,n 1,Mar,1985,p 37-40.
    [177]贾革续.粗粒土工程性质.大连理工大学博士论文,2003-05.
    [178]冯忠居.粗粒土路基的压实试验.长安大学学报,2004,Vol24(3):2-12
    [179]王文斌,兰州地区第三系风化红砂岩工程地质特性研究,兰州铁道学院学报,1997,03,Vol16(1):24-28
    [180]陶振宇,红砂岩真三轴压力试验与岩石强度极限统计[J].武汉水利电力大学学报,1993,08,Vol26(4):300-305.
    [181]陈有亮,孙钧,岩石的流变断裂特性,岩石力学与工程学报,1996年12月,15(1996),323-327
    [182]沈明荣,石振明,张雷,不同加载路径对岩石变形特性的影响,岩石力学与工程学 报,2003年8月,22(8):1234-1238
    [183]范庆忠,高延法,分级加载条件下岩石流变特性的试验研究,岩土工程学报,2005年11月,Vol27(11):1273-1277
    [184]喻泽红,魏红卫,邹银生.加筋红砂岩风化土强度和变形特性.岩石力学与工程学报,2005年8月,Vol.24(15):2770-2779
    [185]张振南,缪协兴,葛修润,松散岩块压实破碎规律的试验研究,岩石力学与工程学报,2005年2月,Vol.24 No.3:450-454
    [186]谢和平,彭瑞东,鞠杨,周宏伟,岩石破坏的能量分析初探,岩石力学与工程学报,2005年8月,Vol.24 No.15:2603-2608
    [187]Gamble.B.R.Stabilization of fine sands using polyvinyl acetate[J].Can Geotech J,v 8,n 2,May,1971,p 336-40
    [188]Moriwaki,TOmio.Behavior of ground anchorages in multi-layered strata[J].Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers,n 487 pt 3-26,1994,p 157-166
    [189]Chugh,Ashok.K.Natural vibration characteristics of gravity structures[J].International Journal for Numerical and Analytical Methods in Geomechanics,v 31,n 4,Apr 10,2007,p 607-648.
    [190]YANG Chun-he,DAEMEN J J K,YIN Jian-hua.Experimental investigation of creep behavior of salt rock[J].Int J Rock Mech Min Sci,1999,36(3):233-242.
    [191]赵明华,苏永华,刘晓明.湘南红砂岩崩解机理研究[J].湖南大学学报(自然科学版),2006,vol33(1):16-19.
    [192]Marsal.R.J.Effectiveness of cutoffs in earth foundations and abutments of dams[C].ASCE,Proc 4th Panamerican Conf on Soil Mech Found Eng,1971,p 237-312
    [193]郭庆国.砂石滤层准则的研究与进展[J].水利水电科技进展,2002,(1):53-54.
    [194]柏树田,崔亦昊.堆石的力学性质[J].水力发电学报,1997,(3):21-30;周晓光.堆石在高应力及实际应力路径条件下的强度与变形特性研究[R].北京:中国水利水电科学研究院,1998.65-81.
    [195]柏树田,周晓光.堆石在平面应变条件下的强度和应力-应变关系[J].岩土工程学报,1991,13(4):33-40
    [196]郭熙灵,胡辉,包承刚.堆石料颗粒破碎对剪胀性及抗剪强度的影响[J].岩土工程学报,1997,19(3):83-88.
    [197]Hardin.Crushing of soil particles[J].Journal of Geotechnical Engineering,American Society of Civil Engineers,1985,111(10):1177-1192.
    [198]Marsal R J.Mechanical Properties of Rockfill Embankment Dam Engineering[M]. Casagrande Volume,NewYork:Wiley,1973.109-200.
    [199]马君寿.钢筋混凝土面板堆石坝[M].北京:水利电力出版社,1990,19-20.
    [200]Fede,J.,1982.mechanics of particulate Materials.The Principle Elsevier,Amsterdam.
    [201]Bohac,J.,Fede,J.,Kuthan,B.,2001.Modeling of grain crushing and debonding.Proceedings of the 15th ICSMGE,Istanbul,in press.
    [202]谢拉德.土石坝建设的一些趋向[R].在中国水利电力部,1983.水利水电科学研究院,1983.
    [203]邬爱清,周火明,胡建敏等.高围压岩石三轴流变试验仪研制[J].长江科学院院报,2006,04,Vol23(4):28-31.
    [204]郭庆国.略论粗粒土三轴剪切试验类型与应用[J].大坝观测与土工测试,1981(2).
    [205]闵弘,刘小丽,魏进兵.现场室内两用大型直剪仪研制(Ⅰ):结构设计[J].岩土力学,2006,27(1):168-172.
    [206]郭庆国.关于粗粒土工程特性及分类的探讨[J].水利水电技术,1976(6).
    [207]司洪洋.粗粒土石料的命名和粗度系数[J].水利水运科学研究.1981(1).
    [208]刘杰.缺乏中间粒径砂砾石的渗透稳定性[J].水利水电科学研究院论文集(第1集).北京:中国工业出版社.
    [209]Geuze ECWA,TanTjong Kie.The Mechanical Behavior of Clays[C].Oxford:Proc,2nd Int,congresson Rheology,1953.
    [210]Matsuoka H,Geka H.A stress-strain model for granular materials considering mechanism of fabric change[J].Soils and Foundations,1983,23(2):83-97.
    [211]孔宪京,张涛,邹德高.中型动三轴仪研制及微小应变测试技术应用[J].大连理工大学学报,2005,vol45(1):79-84.
    [212]刘贞草.大粒径粗粒材料相对密度试验研究[J].土石坝工程,1987(2)
    [213]严秋荣,孙海兴,邓卫东.红层软岩土石混合填料的抗剪强度特性研究[J].公路交通技术,2005(5):31-35.
    [214]杨阴华.土石料压实和质量控制[M].北京:水利电力出版社,1992.
    [215]L.福斯布拉德.土石填方德振动压式[M].甘杰贤等译.北京:人民交通出版社,1986。
    [216]郭庆国.粗粒土的分类[J].水利水电技术,1979(6).
    [217]郭庆国.论粗粒土变形与强度特性[C].西北勘测设计研究院水利水电科学研究院论文集.西安:西安交通大学出版社,1993.
    [218]郭庆国.无粘聚性粗粒土的压实特性及压实参数[J].大坝观测与土工测试,1984(1).
    [219]Stephenson,R.J.,Relative density tests on rock Fill at Catters Dam.ASTM STP523,1973.
    [220]Frost,,R.J.Some testing experiences and charactefiscs of bouldas gravel fillin earth dam.ASTM STP523,1973.
    [221]De.Mello,V.B.B.Reflection on decision of practical significance to enbankment dam construction.17th Rankine lecture.Geotechnique,1977,vol27(3),281-354.
    [222]冯冠庆,杨阴华.堆石料最大指标密度室内试验方法的研究[J].岩土工程学报,1992(5)。
    [223]郭庆国.超径粗粒土最大干密度的近似测定方法[J].水利学报,1993(8).
    [224]史彦文.粗粒材料直剪强度模型规律[J].西北水利科技,1989(1).
    [225]张启岳,司洪洋.粗粒土大型三轴压缩试验与应力应变特性[J].水利学报,1982(9).
    [226]郭庆国.关于三轴剪切试验中饱和试验体变测定方法的讨论[J].大坝观测与土工测试,1980(2).
    [227]郭庆国.粗粒土的抗剪强度特性及其参数[J]..全国第六届土力学与基础工程技术学会议论文集,北京:中国建筑工业出版社,1991.
    [228]郭庆国.关于粗粒土应力应变特性及非线性参数的试验研究[J]..水利学报,1983(11).
    [229]冯忠居.粗粒土路基的压实试验.长安大学学报,2004,Vol24(3):2-12
    [230]张德培等.应用概率统计[M].北京:高等教育出版社,2000
    [231]马育华.试验同济.北京:农业出版社,1982.
    [232]周伟.高混凝土面板堆石坝流变本构模型理论及其应用[M].武汉大学博士论文,武汉大学,2004,05,p2-6.
    [233]韦立德,徐卫亚,朱珍德等.岩石粘弹塑性模型的研究[J].岩土力学2002,Vol23(5):583586.
    [234]邓荣贵,周德培,张倬元等一种新的岩石流变模型[J].岩石力学与工程学报,2001,Vol20(6):780-784.
    [235]徐卫亚,杨圣奇,杨松林,等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(4):531-537.
    [236]徐卫亚,杨圣奇等.绿片岩一轴流变力学特性的研究(Ⅱ):模型分析[J].岩土力学,2005,26(5):693-698
    [237]夏才初,孙均.流变试验中流变模型辨识及参数确定[J].同济大学学报,1996,24(5):498-503)
    [238]刘保国,孙均.岩体流变本构模型的辨识及其应用[J].北方交通大学学报,1998,22(4):10-14
    [239]许宏发,陈新万.多项式回归间接求解岩石流变力学参数德方法[J].有色金属.1994,46(4):19-22
    [240]李青麒.软岩流变参数的曲线拟合计算方法[J].岩石力学与工程学报,1998,17(5):559-564
    [241]彭苏萍,高云峰,彭晓波,等.淮南煤田含煤地层岩石物性参数研究[J].煤炭学报, 2004,26(2):30-35
    [242]刘世君,徐卫压,邵建富.岩石粘弹性模型辨别及参数反演[J],水利学报,2002,(6):101-105
    [243]许宏发,钱七虎,吴华杰等.确定软土流变模型参数的回归反演法[J].岩土工程学报,2003,05,Vol25(3):365-367.
    [244]赵维炳.排水固结加固高速公路深厚软基工后沉降[J].水利水运工程学报,2003,01,(1)28-33
    [245]陈炳瑞.基于模式搜索的岩石流变模型参数识别[J].岩石力学与工程学报,2005,01,Vol24(2):207-211.
    [246]李云鹏,王芝银,丁秀丽.流变荷载试验曲线的模型识别及其应用[J].石油大学学报(自然科学版),2005,04,Vol29(2):73-77.
    [247]油新华.土石混合体的随机结构模型及其应用研究[D].北方交通大学,2001.01
    [248]高宇澄.某高速公路路堑边坡FLAC数值模拟分析[J].系统仿真技术,2006,8(6):33-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700