用户名: 密码: 验证码:
海洋随机粗糙表面电磁散射问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋随机粗糙表面的电磁散射仿真计算在遥感仪器参数设计、海洋参数反演、复合电磁散射等问题的研究中具有非常广泛的应用。近年来一直是专家学者们关注的热点。本文围绕一维海洋随机粗糙表面的电磁散射问题展开。着重关注现有数值方法在全尺度海洋随机粗糙表面上的计算精度和效率问题,分析不同尺度海洋表面对散射特性的影响,并在此基础上对解析模型的精度进行验证和分析。
     本文首先对右预处理广义最小余量法(GMRES-RP)中的谱加速(SA)技术提出改进以使其在大风速、高频率极大均方根高度海面计算时保持高效。进而研究分析了大范围海况和传感器参数一维海洋随机表面的电磁散射特性,在20°近垂直入射发现更为精致的散射特性;通过对仿真中包含不同程度大、中尺度信息海面的分析揭示了海表面中尺度波在大、中尺度交界区域对散射的重要影响;进一步在双尺度模型以及三尺度模型与全尺度海面数值仿真结果的对比中发现后者较前者在双站散射预测能力上有较显著改进,验证了三尺度模型将中尺度单独划分计算的必要性。研究结果同时表明,即使在非掠射角情况下,仿真中粗糙面大小至少要包含中尺度信息;
     其次提出了基于半数值半解析方法计算、完全确定的解析三尺度模型实现方式。基于GMRES-RP方法研究分析了较大范围海况和传感器参数下常用双尺度解析模型及其改进三尺度模型的双站散射与MoM结果的相对性能。研究发现,传统双尺度模型的精度受其大尺度部分计算方式的影响很大,采用数值积分比GO在某些情形下有显著改善,但尚不能在所有传感器参数和海况下与MoM结果吻合。三尺度模型与MoM的拟合则较为满意。
     再次针对主动遥感下海洋粗糙面表面可用完纯导体(PEC)假设的观点,通过较大范围的频率、风速、入射角的数值仿真给出明确结论:VV极化下PEC假设不适用。同时将基于单一密采样网格双表面积分方程的计算结果用于验证阻抗边界条件(IBC)近似的计算精度,得到IBC近似精度的描述。
     最后基于WCA模型的散射系数可由远场表达式导出,且较KA与数值方法有更好的拟合这一观察,提出使用WCA模型替代KA模型作为优化蒙特卡洛方法(OMC)的初值。实验结果显示,采用WCA模型的OMC方法在海洋散射问题的HH极化下较采用KA有显著的效率提升。
Being the essential part of remote sensing instrument design, ocean parameter inversion prob-lems, composite model scattering prediction, etc., calculation of electromagnetic scattering from ocean random rough surface has been paid plenty of attention during the past decades. This dis-sertation focused on high accurate and efficient1D full range ocean random rough surface electro-magnetic scattering problems. Based on the GMRES-RP combined with advanced SA technology, the contribution of different scales of ocean random surface was analyzed. And also the accuracy and applicability of analytical models were verified by numerical calculations.
     First of all, the original SA of GMRES-RP was modified and advanced to fit the high effi-ciency requirement of ocean rough surface with extremely large rms height. Then GMRES-RP was applied to a systematic analysis of the scattering properties with varies sensor parameters and seacondition. More refined structures were found at the incidence angle of20°than suggested in the literature. Also the contribution of intermediate-scale waves at transient incidence was vali-dated by changing the degree of intermediate and large scale waves included in the simulation. Further the necessity of advancing multi-scale models beyond the conventional two-scale model was indicated by a comparison of the two-scale model and three-scale model against numerical results where the two-scale model shows appreciable discrepancy in the forward scattering angles whereas the three scale model shows very good agreement with MoM. This study also implies the need for numerical studies to use adequately large surface length, at least to cover the intermediate waves, even for below intermediate incidence cases.
     Secondly, a three-scale model with fully determined analytical form was proposed and the va-lidity of two-scale model and this three-scale model was systematically studied based on GMRES-RP in a wide range sensor parameters and seacondition. It was found that the accuracy of two-scale model with numerical integrated KA performed better on bistatic scattering prediction than that with GO, nevertheless it failed at certain case anyhow, while the three-scale model demonstrated a wider range of application.
     Thirdly, the PEC assumption, considered to be reasonable in active remote sensing for ocean scattering in literature was found inappropriate for VV polarization scattering prediction. Also the accuracy of IBC was evaluated referring to the results of strict single dense grid two layer numerical simulation.
     Lastly, WCA model was incorporated into the newly proposed OMC method as alternative initial value, which further improved the efficiency of HH polarization calculation remarkably.
引文
[1]F. J. Wentz, D. LeVine. Algorithm theoretical basis document Aquarius level-2 radiometer algorithm: revision 1. Technical report, Aquarius Ground Segment, Goddard Space Flight Center,2008.
    [2]P. Silvestrin, M. Berger, Y. H. Kerr. J. Font. ESA's second earth explorer opportunity mission:the soil moisture and ocean salinity mission-SMOS[J]. IEEE Geosci. Remote Sens. Lett.,2001,118(11):11-14.
    [3]F. J. Wentz, T. Meissner. AMSR ocean algorithm, version 2. Technical report, Remote Sensing Systems RSS Tech. Rep. A,1999.
    [4]T. Meissner, F. Wentz. Ocean retrievals for WindSat:radiative transfer model, algorithm, validation. In Proceedings of MTS/IEEE OCEANS. IEEE,2005, volume 1,130-133.
    [5]X. Yang, X. Li, Q. Zheng, X. Gu, W. G. Pichel, Z. Li. Comparison of ocean-surface winds retrieved from QuikSCAT scatterometer and RadarSAT-1 SAR in offshore waters of the US west coast[J]. IEEE Geosci. Remote Sens. Lett.,2011,8(1):163-167.
    [6]J. Verspeek, A. Stoffelen, A. Verhoef, M. Portabella. Improved ASCAT wind retrieval using NWP ocean calibration [J]. IEEE Trans. Geosci. Remote Sens.,2012,50(7):2488-2494.
    [7]R. Singh, P. Kumar, P. K. Pal. Assimilation of Oceansat-2-scatterometer-derived surface winds in the weather research and forecasting model [J]. IEEE Trans. Geosci. Remote Sens.,2012,50(4):1015-1021.
    [8]J. Font, A. Camps, A. Borges, M. Martin-Neira, J. Boutin, N. Reul, Y. H. Kerr, A. Hahne, S. Mecklenburg. SMOS:The challenging sea surface salinity measurement from space[J]. Proc. IEEE,2010,98(5):649-665.
    [9]J. Yang, W. Huang, C. Zhou, Q. Xiao. Wave height estimation from sar imagery [J]. Chin. J. Oceanol. Limnol.,2004,22(2):157-161.
    [10]B. Zhang, W. Perrie, Y. He. Wind speed retrieval from RADARS AT-2 quad-polarization images using a new polarization ratio model [J]. J. Geophys. Res.,2011,116(C8):C08008.
    [11]J. Horstmann, H. Schiller, J. Schulz-Stellenfleth, S. Lehner. Global wind speed retrieval from SAR[J]. IEEE Trans. Geosci. Remote Sens.,2003,41(10):2277-2286.
    [12]S. H. Yueh, S. J. Dinardo, A. G. Fore. F. K. Li. Passive and active L-band microwave observations and modeling of ocean surface winds[J]. IEEE Trans. Geosci. Remote Sens.,2010,48(8):3087-3100.
    [13]董庆,郭华东.合成孔径雷达海洋遥感[M].北京:科学出版社,2005.
    [14]陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998.
    [15]李小文.全球变化研究中的遥感技术[J].地球科学信息,1988,1:28-35.
    [16]郭子祺,卢刚,王超,潘广东.海洋SAR图像小波speckle滤波及边缘信息提取[J].遥感学报,2001,5(6):163-173.
    [17]徐冠华.遥感信息科学的进展和展望[J].中国科学院,1996,1:4-14.
    [18]黄兴忠,金亚秋,殷杰羿.泡沫覆盖的随机粗糙海面的双站散射和热辐射[J].地球物理学报,1995,38(2):163-173.
    [19]蒋兴伟,林明森,刘建强.海洋二号环境动力卫星应用展望[J].卫星应用,2011,3:4-8.
    [20]N. Pinel, N. Dechamps, C. Bourlier. Modeling of the bistatic electromagnetic scattering from sea surfaces covered in oil for microwave applications[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(2):385-392.
    [21]Z. Li, Y. Q. Jin. Bistatic scattering from a fractal dynamic rough sea surface with a ship presence at low grazing-angle incidence using the GFBM/SAA[J]. Microw. Opt. Technol. Lett.,2001,31(2):146-151.
    [22]C. Qi, Z. Zhao, Z. P. Nie. Numerical approach on doppler spectrum analysis for moving targets above a time-evolving sea surface[J]. Prog. Electromagn. Res.,2013,138:351-365.
    [23]J. Li, L. X. Guo, Q. He, B. Wei. Investigation on scattering from a plasma-coated target over a rough sea surface using a multi-hybrid method[J]. Waves Random Complex Media,2012,22(3):344-355.
    [24]R. J. Burkholder, M. R. Pino, F Obelleiro. Low angle scattering from 2-D targets on a time-evolving sea surface[J]. IEEE Trans. Geosci. Remote Sens.,2002,40(5):1185-1190.
    [25]W. J. Ji, C. M. Tong. Bistatic scattering from two-dimensional dielectric ocean rough surface with a pec object partially embedded by using the G-SMCG method[J]. Prog. Electromagn. Res.,2010,105:119-139.
    [26]P. Beckmann, A. Spizzichino. The scattering of electromagnetic waves from rough surfaces[M]. Norwood, MA, Artech House,1987.
    [27]S. O. Rice. Reflection of electromagnetic waves from slightly rough surfaces[J]. Commun. Pure Appl. Math.,1951,4(2-3):351-378.
    [28]A. G. Voronovich. Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces[J]. Waves Random Media,1994,4(3):337-367.
    [29]J. W. Wright. A new model for sea clutter[J]. IEEE Trans. Antennas Propag.,1968,16(2):217-223.
    [30]M. I. Sancer. Shadow-corrected electromagnetic scattering from a randomly rough surface[J]. IEEE Trans. Antennas Propag.,1969,17(5):577-585.
    [31]G. R. Valenzuela. Depolarization of EM waves by slightly rough surfaces [J]. IEEE Trans,Antennas Propag.,1967,15(4):552-557.
    [32]闫文哲.电磁场面散射和体散射研究及其应用[D].[博士学位论文],杭州,浙江大学,2009.
    [33]S. L. Durden, J. F. Vesecky. A numerical study of the separation wavenumber in the two-scale scattering approximation ocean surface radar backscatter[J]. IEEE Trans. Geosci. Remote Sens.,1990,28(2):271-272.
    [34]J. T. Johnson, C. W. Chuang. Quantitative evaluation of ocean surface spectral model influence on sea surface backscattering. Technical report, DTIC Document,2000.
    [35]C. A. Guerin, G. Soriano, T. Elfouhaily. Weighted curvature approximation:numerical tests for 2D dielectric surfaces[J]. Waves Random Media,2004,14(3):349-363.
    [36]C. A. Guerin, G. Soriano, B. Chapron. The weighted curvature approximation in scattering from sea surfaces[J]. Waves Random Complex Media,2010,20(3):364-384.
    [37]A. G. Voronovich. Non-local small-slope approximation for wave scattering from rough surfaces[J]. Waves Random Media,1996,6(2):151-167.
    [38]S. L. Broschat, Y. Wang. A practical cross-section for scattering from rough surfaces at very low grazing angles in both the forward and backward directions[J]. Waves Random Complex Media,2009,19(3):430-454.
    [39]Y. Wang, S. L. Broschat. The SSA+for scattering from dielectric surfaces at very low grazing angles[J]. Waves Random Complex Media,2011,21(1):57-68.
    [40]T. Elfouhaily, D. R. Thompson, D. Vandemark, B. Chapron. A new bistatic model for electromagnetic scattering from perfectly conducting random surfaces[J]. Waves Random Media,1999,9(3):281-294.
    [41]C. Bourlier, N. Dechamps, G. Berginc. Comparison of asymptotic backscattering models (SSA, WCA, and LCA) from one-dimensional gaussian ocean-like surfaces[J]. IEEE Trans. Antennas Propag.,2005, 53(5):1640-1652.
    [42]T. Elfouhaily, S. Guignard, R. Awadallah, D. R. Thompson. Local and non-local curvature approximation: a new asymptotic theory for wave scattering [J]. Waves Random Media,2003,13(4):321-337.
    [43]J. V. Toporkov, G. S. Brown. Numerical study of the extended kirchhoff approach and the lowest order small slope approximation for scattering from ocean-like surfaces:Doppler analysis[J]. IEEE Trans. Antennas Propag.,2002,50(4):417-425.
    [44]R. Romeiser, A. Schmidt, W. Alpers. A three-scale composite surface model for the ocean wave-radar modulation transfer function[J]. J. Geophys. Res.,1994,99(C5):9785-9801.
    [45]W. J. Plant. A stochastic, multiscale model of microwave backscatter from the ocean[J]. J. Geophys. Res., 2002,107(C9):3120.
    [46]J.T.Johnson. Computer simulations of rough surface scattering[M]. Springer,2007.
    [47]J. V. Toporkov, R. T. Marchand, G. S. Brown. On the discretization of the integral equation describing scattering by rough conducting surfaces[J]. IEEE Trans. Antennas Propag.,1998,46(1):150-161.
    [48]J. V. Toporkov, R. S. Awadallah, G. S. Brown. Issues related to the use of a gaussian-like incident field for low-grazing-angle scattering[J]. J. Opt. Soc. Am. A-Opt. Image Sci. Vis.,1999,16(1):176-187.
    [49]D. Holliday, L. L. DeRaad, G. J. St-Cyr. Forward-backward:A new method for computing low-grazing angle scattering[J]. IEEE Trans. Antennas Propag.,1996,44(5):722-729.
    [50]D. Holliday, L. L. DeRaad, G. J. St-Cyr. Forward-backward method for scattering from imperfect con-ductors[J]. IEEE Trans. Antennas Propag.,1998,46(l):101-107.
    [51]C. C. Lu, W. C. Chew. Fast algorithm for solving hybrid integral equations[J]. Proc. Inst. Electr. Eng., Part H,1993,140(6):455-460.
    [52]L. Tsang, C. H. Chan, H. Sangani. Banded matrix iterative approach to monte-carlo simulations of scatter-ing of waves by large-scale random rough surface problems:TM case[J]. Electron. Lett.,1993,29(2):166-167.
    [53]L. Tsang, C. H. Chan, H. Sangani, A. Ishimaru, P. Phu. A banded matrix iterative approach to Monte Carlo simulations of large-scale random rough surface scattering:TE case[J]. J. Electromagn. Waves Appl.,1993,7(9):1185-1200.
    [54]L. Tsang, C. H. Chan, K. Pak, H. Sangani. Monte-Carlo simulations of large-scale problems of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method[J]. IEEE Trans. Antennas Propag.,1995,43(8):851-859.
    [55]D. J. Donohue, H. C. Ku, D. R. Thompson. Application of iterative moment-method solutions to ocean surface radar scattering[J]. IEEE Trans. Antennas Propag.,1998,46(1):121-132.
    [56]B. Liu, Z. Li, Y. Du. A fast numerical method for electromagnetic scattering from dielectric rough sur-faces[J]. IEEE Trans. Antennas Propag.,2011,59(1):180-188.
    [57]Y. Du, B. Liu. A numerical method for electromagnetic scattering from dielectric rough surfaces based on the stochastic second degree method[J]. Prog. Electromagn. Res.,2009,97:327-342.
    |58] Y. Du, Y. Luo, J. A. Kong. Electromagnetic scattering from randomly rough surfaces using the stochastic second-degree method and the sparse matrix/canonical grid algorithm[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(10):2831-2839.
    [59]H. T. Chou, J. T. Johnson. A novel acceleration algorithm for the computation of scattering from rough surfaces with the forward-backward method[J]. Radio Sci.,1998,33:1277-1288.
    [60]D. Torrungrueng, J. T. Johnson, H. T. Chou. Some issues related to the novel spectral acceleration method for the fast computation of radiation/scattering from one-dimensional extremely large scale quasi-planar structures[J], Radio Sci.,2002,37(2):1019.
    [61]J. C. West. Preconditioned iterative solution of scattering from rough surfaces[J]. IEEE Trans. Antennas Propag.,2000,48(6):1001-1002.
    [62]F. Chen. A preconditioned quasi-minimal residual method for electrically large random surface scattering of remote sensing[J]. Int. J. Remote Sens,1999,20(13):2627-2636.
    [63]P. Naenna, J. T. Johnson. A physically-based preconditioner for quasi-planar scattering problems[J]. IEEE Trans. Antennas Propag.,2008,56(8):2421-2426.
    [64]H. C. Ku, R. S. Awadallah, R. L. McDonald, N. E. Woods. Fast and accurate algorithm for electromagnetic scattering from 1-D dielectric ocean surfaces[J]. IEEE Trans. Antennas Propag.,2006,54(8):2381-2391.
    [65]G. Yang, Y. Du. A robust preconditioned GMRES method for electromagnetic scattering from dielectric rough surfaces[J]. IEEE Trans. Geosci. Remote Sens.,2012,50(9):3396-3408.
    [66]Q. Li, C. H. Chan, L. Tsang. Monte Carlo simulations of wave scattering from lossy dielectric random rough surfaces using the physics-based two-grid method and the canonical-grid method[J]. IEEE Trans. Antennas Propag.,1999,47(4):752-763.
    [67]Z. X. Li, Y. Q. Jin. Bistatic scattering and transmitting through a fractal rough surface with high per-mittivity using the physics-based two-grid method in conjunction with the forward-backward method and spectrum acceleration algorithm[J]. IEEE Trans. Antennas Propag.,2002,50(9):1323-1327.
    [68]Q. Li, L. Tsang, K. S. Pak, C. H. Chan. Bistatic scattering and emissivities of random rough dielectric lossy surfaces with the physics-based two-grid method in conjunction with the sparse-matrix canonical grid method[J]. IEEE Trans. Antennas Propag.,2000,48(1):1-11.
    [69]K. Pak, L. Tsang, J. T. Johnson. Numerical simulations and backscattering enhancement of electromag-netic waves from two-dimensional dielectric random rough surfaces with the sparse-matrix canonical grid method[J]. J. Opt. Soc. Am. A-Opt. Image Sci. Vis.,1997,14(7):1515-1529.
    [70]R. L. Wagner, J. Song, W. C. Chew. Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces[J]. IEEE Trans. Antennas Propag.,1997,45(2):235-245.
    [71]P. Tran. Calculation of the scattering of electromagnetic waves from a two-dimensional perfectly conduct-ing surface using the method of ordered multiple interaction [J]. Waves Random Media,1997,7(3):295-302.
    [72]P. Xu, L. Tsang. Scattering by rough surface using a hybrid technique combining the multilevel UV method with the sparse matrix canonical grid method[J]. Radio Sci.,2005,40(4).
    [73]M. Y. Xia. C. H. Chan, S. Q. Li, B. Zhang, L. Tsang. An efficient algorithm for electromagnetic scat-tering from rough surfaces using a single integral equation and multilevel sparse-matrix canonical-grid method[J]. IEEE Trans. Antennas Propag.,2003,51(6):1142-1149.
    [74]Y. Du, J. C. Shi, Z. Y. Li, J. A. Kong. Analysing EM scattering from randomly rough surfaces us-ing stochastic second-degree iterative method, sparse matrix algorithm and chebyshev approximation [J]. Electron. Lett.,2009,45(6):292-293.
    [75]D. Torrungrueng, H. T. Chou, J. T. Johnson. A novel acceleration algorithm for the computation of scattering from two-dimensional large-scale perfectly conducting random rough surfaces with the forward-backward method[J]. IEEE Trans. Geosci. Remote Sens.,2000,38(4):1656-1668.
    [76]S. Huang, L. Tsang. Electromagnetic scattering of randomly rough soil surfaces based on numerical solu-tions of maxwell equations in three-dimensional simulations using a hybrid UV/PBTG/SMCG method[J]. DEEE Trans. Geosci. Remote Sens.,2012,50(10):4025-4035.
    [77]S. Q. Li, C. H. Chan, L. Tsang, Q. Li, L. Zhou. Parallel implementation of the sparse-matrix/canonical grid method for the analysis of two-dimensional random rough surfaces (three-dimensional scattering problem) on a beowulf system[J]. IEEE Trans. Geosci. Remote Sens.,2000,38(4):1600-1608.
    [78]S. Durden, J. Vesecky. A physical radar cross-section model for a wind-driven sea with swell[J]. IEEE J. Ocean. Eng.,1985,10(4):445-451.
    [79]G. Soriano, M. Joelson, M. Saillard. Doppler spectra from a two-dimensional ocean surface at L-band[J]. IEEE Trans. Geosci. Remote Sens.,2006,44(9):2430-2437.
    [80]A. W. Bjerkaas, F. W. Riedel. Proposed model for the elevation spectrum of a wind-roughened sea surface. Technical report, DTIC Document,1979.
    [81]J. T. Johnson, R. T. Shin, J. A. Kong, L. Tsang, K. Pak. A numerical study of the composite surface model for ocean backscattering[J]. IEEE Trans. Geosci. Remote Sens.,1998,36(1):72-83.
    [82]J. T. Johnson. A numerical study of low-grazing-angle backscatter from ocean-like impedance surfaces with the canonical grid method[J]. IEEE Trans. Antennas Propag.,1998,46(1):114-120.
    [83]J. T. Johnson, R. J Burkholder, J. V. Toporkov, D. R. Lyzenga, W. J. Plant. A numerical study of the retrieval of sea surface height profiles from low grazing angle radar data[J]. IEEE Trans. Geosci. Remote Sens.,2009,47(6):1641-1650.
    [84]J. T. Johnson, J. V. Toporkov, G. S. Brown. A numerical study of backscattering from time-evolving sea surfaces:Comparison of hydrodynamic models[J]. IEEE Trans. Geosci. Remote Sens.,2001, 39(11):2411-2420.
    1851 A. R. Hayslip, J. T. Johnson, G. R. Baker. Further numerical studies of backscattering from time-evolving nonlinear sea surfaces[J]. IEEE Trans. Geosci. Remote Sens.,2003,41(10):2287-2293.
    [86]E. I. Thorsos. Acoustic scattering from a "pierson-moskowitz" sea surface[J]. J. Acoust. Soc. Am.,1990, 88:335-349.
    [87]L. Zhou, L. Tsang, V. Jandhyala, C. T. Chen. Studies on accuracy of numerical simulations of emission from rough ocean-like surfaces[J]. IEEE Trans. Geosci. Remote Sens.,2001,39(8):1757-1763.
    [88]S. Li, C. H. Chan, L. Tsang, L. Zhou. Microwave emission of rough ocean surfaces with full spatial spec-trum based on the multilevel expansion method[J]. IEEE Trans. Geosci. Remote Sens.,2002,40(3):574-582.
    [89]Y. Li, J. C. West. Low-grazing-angle scattering from 3-D breaking water wave crests[J]. IEEE Trans. Geosci. Remote Sens.,2006,44(8):2093-2101.
    [90]J. C. West, J. M. Sturm, S. J. Ja. Low-grazing scattering from breaking water waves using an impedance boundary MM/GTD approach[J]. IEEE Trans. Antennas Propag.,1998,46(l):93-100.
    [91]Z. Zhao, J. C. West. Low-grazing-angle microwave scattering from a three-dimensional spilling breaker crest:A numerical investigation[J]. IEEE Trans. Geosci. Remote Sens.,2005,43(2):286-294.
    [92]C. L. Rino, T. L. Crystal, A. K. Koide, H. D. Ngo, H. Guthart. Numerical simulation of backscatter from linear and nonlinear ocean surface realizations [J]. Radio Sci.,1991,26(1):51-71.
    [93]J. V. Toporkov, G. S. Brown. Numerical simulations of scattering from time-varying, randomly rough surfaces[J]. IEEE Trans. Geosci. Remote Sens.,2000,38(4):1616-1625.
    [94]W. Wang. Y. Zhang, M. He, C. Zhao. Doppler spectra of microwave scattering fields from nonlinear ocean-ic surface at moderate-and low-grazing angles[J]. IEEE Trans. Geosci. Remote Sens.,2012,50(4):1104-1116.
    [95]F. Nouguier, C. Guerin, G. Soriano. Analytical techniques for the doppler signature of sea surfaces in the microwave regimei:Linear surfaces[J]. IEEE Trans. Geosci. Remote Sens.,2011,49(12):4856-4864.
    [96]F. Nouguier, C. Guerin, G. Soriano. Analytical techniques for the doppler signature of sea surfaces in the microwave regimeii:Nonlinear surfaces[J]. IEEE Trans. Geosci. Remote Sens.,2011,49(12):4920-4927.
    [97]D. Nie, M. Zhang, C. Wang, H. C Yin. Study of microwave backscattering from two-dimensional nonlinear surfaces of finite-depth seas[J]. IEEE Trans. Geosci. Remote Sens.,2012,50(11):4349-4357.
    [98]E. I. Thorsos. The validity of the kirchhoff approximation for rough surface scattering using a gaussian roughness spectrum[J]. J. Acoust. Soc. Am.,1988,83(1):78-92.
    [99]E. I. Thorsos, D. R. Jackson. The validity of the perturbation approximation for rough surface scattering using a gaussian roughness spectrum[J]. J. Acoust. Soc. Am.,1989,86(1):261-277.
    [100]G. Soriano, C. A. Guerin, M. Saillard. Scattering by two-dimensional rough surfaces:comparison between the method of moments, kirchhoff and small-slope approximations[J]. Waves Random Media,2002, 12(l):63-83.
    [101]L. Tsang, J. A. Kong, K.-H. Ding, C. O. Ao. Scattering of Electromagnetic Waves-Numerical Simula-tions[M], volume 2. New York:John Wiley & Sons,2001.
    [102]T. Elfouhaily, B. Chapron, K. Katsaros, D. Vandemark. A unified directional spectrum for long and short wind-driven waves[J]. J. Geophys. Res.,1997,102(C7):781-769.
    [103]S.T. McDaniel. Small-slope predictions of microwave backscatter from the seasurface[J]. Waves Random Media,2001,11 (3):343-360.
    [104]P. Wang, Y. Yao, M. P. Tulin. An efficient numerical tank for non-linear water waves, based on the multi-subdomain approach with BEM[J]. Int. J. Numer. Methods Fluids,1995,20(12):1315-1336.
    [105]C. J. Banks, C. P. Gommenginger, M. A. Srokosz, H. M. Snaith. Validating SMOS ocean surface salinity in the atlantic with argo and operational ocean model data[J]. IEEE Trans. Geosci. Remote Sens.,2012, 50(5):1688-1702.
    [106]S. Guimbard, J. Gourrion, M. Portabella, A. Turiel, C. Gabarro, J. Font. SMOS semi-empirical ocean forward model adjustment[J]. IEEE Trans. Geosci. Remote Sens.,2012,50(5):1676-1687.
    [107]Z.-S Wu, J.-P. Zhang, L.-X. Guo, P. Zhou. An improved two-scale model with volume scattering for the dynamic ocean surface[J]. Prog. Electromagn. Res.,2009,89:39-56.
    [108]N. Sajjad, A. Khenchaf, A. Coatanhay, A. Awada. An improved two-scale model for the ocean surface bistatic scattering. In IEEE IGARSS. EEEE,2008, volume 1,1387-1390.
    [109]E, Gill, W. Huang, J. Walsh. The effect of the bistatic scattering angle on the high-frequency radar cross sections of the ocean surface[J]. IEEE Geosci. Remote Sens. Lett.,2008,5(2):143-146.
    [110]H. Chen, M. Zhang, H.-C. Yin. Facet-based treatment on microwave bistatic scattering of three-dimensional sea surface with electrically large ship[J]. Prog. Electromagn. Res.,2012,123:385-405.
    [111]L. Klein, C. Swift. An improved model for the dielectric constant of sea water at microwave frequencies[J]. IEEE Trans. Antennas Propag.,1977,25(l):104-111.
    [112]F.T. Ulaby, R. K. Moore, A. K. Fung. Microwave Remote Sensing:Active and Passive, vol.Ⅱ, Volume Scattering and Emission Theory, Advanced Systems and Applications[M]. Artech House,1986.
    [113]D. P. Kasilingam, O. H. Shemdin. The validity of the composite surface model and its applications to the modulation of radar backscatter[J]. Int. J. Remote Sens.,1992,13(11):2079-2104.
    [114]J. T. Johnson, R. T. Shin, J. A. Kong, L. Tsang, K. Pak. A numerical study of ocean polarimetric thermal emission[J], IEEE Trans. Geosci. Remote Sens.,1999,37(1):8-20.
    [115]T. Elfouhaily, J. T. Johnson. A new model for rough surface scattering[J]. IEEE Trans. Geosci. Remote Sens.,2007,45(7):2300-2308.
    [116]C. H. Chan, L. Tsang, Q. Li. Monte carlo simulations of large-scale one-dimensional random rough-surface scattering at near-grazing incidence:Penetrable case[J]. IEEE Trans. Geosci. Remote Sens.,1998, 46(1):142-149.
    [117]G. Yang, Y. Du. An optimized monte carlo procedure and its application in electromagnetic scattering from rough surfaces[J]. IEEE Trans. Geosci. Remote Sens., Accepted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700