粗糙颗粒动理学及流化床气化炉的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气固两相流动现象广泛存在于化工、电力、冶金、食品、制药等领域中,深入认识和掌握气固两相流动的内在机理和规律有着重要的实际意义。随着计算机技术和计算方法的不断发展,数值模拟已成为气固两相流动研究的主要方法之一。但是由于气固系统本身的复杂性,气固两相流动模拟的理论模型仍然有许多值得改进和提高之处。
     气固两相流动中,颗粒表面具有不同的粗糙程度,粗糙颗粒在碰撞和湍流等作用下会产生旋转运动。实验和理论模拟结果均表明颗粒旋转会影响颗粒的运动轨迹、浓度分布以及其它各种宏观和微观参数。但遗憾的是,目前颗粒动理学理论是基于光滑颗粒假设而来,在理论推导过程仅考虑颗粒的平动运动,未考虑颗粒的转动运动。基于此,有必要发展粗糙颗粒动理学并应用于气固两相流动模拟。
     本文从颗粒动理学基本原理出发建立了粗糙颗粒动理学模型。传统的颗粒动理学理论仅采用了平动拟颗粒温度来描述颗粒脉动的强弱,在本文中引入了颗粒拟总温的概念,颗粒拟总温综合表征了颗粒平动运动和颗粒旋转运动的脉动强度。结合输运理论建立了考虑颗粒旋转的颗粒相质量、动量和拟总温守恒方程。对颗粒速度分布函数采取Chapman-Enskog近似线性求解方法,求解了在同时具有平动和转动运动时的颗粒相应力、热流通量及能量耗散等参数。并在此基础上提出了颗粒相压力、颗粒相剪切粘度和颗粒相耗散等本构关系式,以及边界条件计算模型。
     应用粗糙颗粒动理学模型,数值模拟鼓泡床内的气固两相流动特性。以Yuu等和Taghipour等的实验结构尺寸和条件进行数值模拟,模拟结果显示采用粗糙颗粒动理学模型时气泡直径和床层膨胀率均增大。模拟得到了床内颗粒相时均速度和脉动速度分布与Yuu等实测结果相吻合。得到了床内时均颗粒浓度分布、速度分布以及床层膨胀率的大小接近于Taghipour等实测结果。同时通过改变切向弹性恢复系数,分析对比了不同的切向弹性恢复系数下颗粒拟总温、剪切粘度、体积粘度、颗粒压力以及热传导系数随颗粒相浓度的变化规律。
     应用粗糙颗粒动理学模型,数值模拟提升管内的气固两相流动特性。模拟结果表明提升管内颗粒浓度分布沿床层轴向上稀下浓,沿床层径向中间稀边壁浓的分布。同时在提升管内可以清楚的观测到颗粒团聚物的形成、运动及消失。在高质量流率时,模拟得到了时均颗粒径向浓度、时均颗粒径向质量流率以及床层压降的分布与Knowlton等的实验测量吻合较好。在低质量流率时,模拟得到了颗粒相浓度、速度以及质量流率的分布与Miller等实测结果相吻合。与传统颗粒动理学相比,由于粗糙颗粒动理模型考虑旋转运动造成的能量损失等原因,增加了壁面处的颗粒浓度,而在中心区域浓度降低,沿径向方向颗粒速度变小。同时分析了不同切向弹性恢复系数下提升管内浓度和速度等宏观参数的变化,以及颗粒拟总温、剪切粘度、耗散等微观参数的变化,结果表明不同的切向弹性恢复系数下模拟得到的各参数分布趋势一致。
     建立了考虑颗粒旋转的粗糙颗粒动理学-煤气化反应的气固流动-反应计算模型,数值模拟流化床煤气化反应和中心射流流化床流动-反应过程。模拟结果与他人实验测量相吻合。模拟结果表明在流化床反应器底部,气固异相燃烧反应生成大量的二氧化碳,一氧化碳和氢气等可燃气体体积浓度非常低。伴随着床层升高氧气被耗尽,还原反应开始占据主导,二氧化碳体积浓度逐渐下降,一氧化碳和氢气等气体体积浓度逐渐增加。结果表明均匀入口流化床反应器床层底部由于燃烧反应使得温度上升比较明显。在床层上部虽然还原反应吸收热量,但是由于床内气泡强烈搅动作用,使得流化床上部温度较为均匀。在中心射流流化床中,中心射流区域形成局部高温区域,边壁区域温度相对较低,床内温度分布的不均匀性有助于床内煤颗粒的氧化-还原过程。
Gas-solid two phase flows are widespread in chemical industry, electrical power, metallurgy, food, pharmacy and other fields. In-depth understand and grasp of the flow mechanism of gas and particles is important for both industrial application and fundermental theoretical studies. With the development of computer technology and computational methods, numerical simulation has become one of the most promising tools for researching gas-solid two-phase flow. However, due to the complexity of gas-solid system, theoretical models for numerical simulation of gas-solid flows are still needed in great improvement and enhancement.
     Various degrees of surface roughness of particles in the gas-solid two phase flows will cause rotation of particles. Experiemnts indicate that the rotation of particles can impact the trajectories and concentration distribution of particles, thus influence other macro and micro parameters. Unfortunately, present kinetic theory of granular flow is based on the assumption of smooth and elastic during the collision of particles, where the rotation of particles does not taken in the collisional processes into account. As a result, it is necessary to improve the kinetic theory of rough particles and its application to gas-solid two phase flows.
     On the basis of kinetic theory of gases and kinetic theory of granular flow (KTGF), the collisional kinetic theory of rough spheres is proposed considering the rotation of particles. In the traditional kinetic theory of granular flow (KTGF) only the translational granular temperature is considered to describe the translational velocity fluctuations of particles. However, the concept of pseudo-temperature of solid phase is introduced in this work to measure fluctuations of both translational and rotational motions of particles. The balance equations of mass, momentum and pseudo-temperature considering both the translational and rotational motion of articles are derived on the basis of the transport theory. The Chapman-Enskog linear approximation method is adopted to solve the particle velocity distribution. Parameters such as particle stress, heat flux and energy dissipation of both translational and rotational motions are also propoed by solving Bolzmann equation. The constitutive correlations of granular pressure, granular viscosity and particle dissipation as well as boundary conditions are proposed.
     Flow bahvior of gas and particles in a bubbling fluidized bed is simulated by means of the kinetic theory of rough spheres (KTRS). The motion of bubbles, growing up, merging and breaking up are observed from simulations. The time-averaged velocity and fluctuation velocity distribution are obtained. Simulated results agree well with Yuu’s experimental results measured in a bubbling fluidized bed. The time-averaged concentration distribution in bubbling fluidized bed is also predicted and compared to experiments. Results show that simulations agree with Taghipour’s experimental results. Compared with the simulations by means of the original kinetic theory of granular flow (KTGF), it can be seen that the rotation of particles enhances the non-uniform characteristics in bubbling fluidized bed. Simulations show more bubbles are appeared, and the bobble size is increased. Thus, the bed expansion rate is also increased. Through the change of tangential restitution coefficient, the intensity of rotation of particles is altered. The distribution of particle’s pseudo-temperature, shear viscosity, bulk viscosity, solids pressure and thermal conductive coefficient are obtained as a function of solids concentrations. Simulated results show the pseudo-temperature, shear viscosity, bulk viscosity, solids pressure and thermal conductive coefficient relate with tangential restitution coefficient of particles.
     Flow behavior of gas-solid two-phase in risers is simulated by means of kinetic theory of granular flow with the consideration of rotation (KTRS). The time-averaged solids concentration and mass flow rate distribution at the high mass flow rate are obtained. The simulated results agree with Knowlton’s experimental results. The predicted axial gas pressure drop coincides with experimental results. The distributions of solids concentration, velocity and mass flow rate are predicted for the low mass flow rate in the riser. Simulations agree with Miller’s experimental results. Compared with simulations by means of the original kinetic theory of granular flow, the energy dissipation computed by means of the kinetic theory of rough spheres is increased, which has a certain effect to improve the results, and also changes the velocity distribution in a riser.
     The hydrodynamic and reaction of gas and particles phases is simulated by means of the kinetic theory of granular flow (KTRS) with the chemical reaction model in the fluidized bed gasifier. Through simulations, the distributions of temperature and gases components are obtained. Simulations coincide with the experimental measurements. Simulated results show that the chemical reaction in fluidized bed gasifier belongs to a reduction process. The combustion takes place at the bottom of the reactor rapidly. As the distance from the bed bottom increases, oxygen is rapidly exhausted. Then the reduction reaction takes place in a dominant mode. The gases components of hydrogen, carbon monoxide and methene are burnt out after being produced at the bottom of the reactor. After that, the three different gases are produced at the top of the bed where the reduction reaction dominants. The carbon dioxide is generated mainly at the bottom of the reactor through the combustion reaction where more oxygen is introduced from inlet. The volume fraction of gases is decreased because of reduction reaction. From the bed temperature field, it can be seen that the temperature at the bottom of the bed rises rapidly because of the high burning intensity. In the upper part of the bed, the heat absorption rate is low due to the reduction reaction which will absorb a large amount of heat. Hot particles are carried by flue gases through bubbles to the top part of the bed. This makes the temperature is evenly distributed in the whole bed. In the fluidized bed gasifier with a center jet, the local high tempetuere near the inlet and low temperature at the other regime in the bed is found. This non-uniform distribution of temperature promotes the processes of oxidation and reduction in the bed. Such advantage gives a unique property of the bubbling fluidized bed gasifier with a center jet used in the coal gasification.
引文
1金涌,祝京旭,汪展文,俞芷青.流态化工程原理.清华大学出版社. 2001: 17-263
    2 D. Gidaspow. Multiphase Fow and Fluidization: Continuum and Kinetic Theory Description. Boston: Academic Press. 1994
    3 J. T. Jenkins, S. B. Savage. A Theory for the Rapid Flow of Identical, Smooth, Nearly Elastic, Spherical Particles. J. Fluid Mech. 1983,130: 187~202
    4 J. Ding, D. Gidaspow. A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow. AIChE J. 1990, 36(4) :523~538
    5 C. C. Pain, S. Mansoorzadeh, C. R. E. de Oliveira. A Study of Bubbling and Slugging Fluidised Beds Using the Two-Fluid Granular Temperature Model. International Journal of Multiphase Flow. 2001. 27(3): 527~551
    6 N. Yang, W. Wang, W. Ge, J. Li. CFD Simulation of Concurrent-up Gas–Solid Flow in Circulating Fluidized Beds with Structure-Dependent Drag Coefficient. Chemical EngineeringJ. 2003,96: 71~80
    7 H.L. Lu, D. Gidaspow. Hydrodynamics of Binary Fluidization in A Riser: CFD Simulation Using Two Granular Temperatures. Chemical Engineering Science. 2003,58(16): 3777~3792
    8 M. J. V. Goldschmidt, J. A. M. Kuipers, W. P. M. van Swaaij. Hydrodynamic Modelling of Dense Gas-Fluidised Beds Using the Kinetic Theory of Granular Flow: Effect of Coefficient of Restitution on Bed Dynamics. Chemical Engineering Science. 2001, 56(2): 571~578
    9 K. Johansson, B. G. M. vanWachem, A. E. Almstedt. Experimental Validation of CFD Models for Fluidized Beds: Influence of Particles Tress Models,Gas Phase Compressibility and Air in Flow Models. Hemical Engineering Science. 2006,61:1705~1717
    10 S. Benyahia, M. Syamlal, T. J. O'Brien. Evaluation of Boundary Conditions Used to Model Dilute,Turbulent Gas/Solids Flows in A Pipe. Powder Technology. 2005, 156: 62~72
    11 G. A. Bokkers, J. A. Laverman, M. vanSintAnnaland, J. A. M. Kuipers. Modeling of Large-Scale Dense Gas–Solid Bubbling Fluidized Beds Using ANovel Discrete Bubble Model. Chemical Engineering Science. 2006, 61: 5590~5602
    12 S. Sasic, F. Johnsson, B. Leckner. Inlet Boundary Conditions for the Simulation of Fluid Dynamics in Gas–Solid Fluidized Beds. Chemical Engineering Science. 2006, 61: 5183~5195
    13 H. Lindborg, M. Lysberg, H. A. Jakobsen. Practical Validation of the Two-Fluid Model Applied to Dense Gas–Solid Flows in Fluidized Beds. Chemical Engineering Science. 2007, 62: 5854~5869
    14仇轶,由长福,祁海鹰,徐旭常.多相流动的直接数值模拟进展.力学进展. 2003, 33(4): 507~517
    15 M. A. van der Hoef, M. van Sint Annaland, J. A. M. Kuipers. Computational Fluid Dynamics for Dense Gas-Solid Fluidized Beds: A Multi-Scale Modeling Stratege. Chemcial Engineering Science. 2004, 59: 5157~5165
    16周力行.湍流气粒两相流动和燃烧的理论与数值模拟.科学出版社. 1994: 177-207
    17 F. Mashayek, R. V. R. Pandya. Analytical Description of Particle/Droplet-laden Turbulent Flows. Progress in Energy and Combustion Science. 2003, 29: 329~378
    18 C. S. Campbell, C. E. Brennen. Computer Simulations of Granular Shear Flows. Journal of Fluid Mechanics. 1985, 151: 167~188
    19 P. A. Cundall, O. D. L. Strack. A Discrete Numerical Model for Granular Assemblies. Geotechnique. 1979, 29(1): 47~65
    20 B. P. B. Hoomans, J. A. M. Kuipers, W. J. Briels, W. P. M. van Swaaij. Discrete Particle Simulation of Bubble and Slug Formation in A Two-Dimensional Gas-fluidized Bed: A Hard-sphere Approach. Chemical Engineering Science. 1996, 51(1): 99~118
    21欧阳洁,李静海.模拟气固流化系统的数值方法.应用基础与工程科学学报.1999, 7(4): 335~345
    22 J. Ouyang, J. H. Li. Particle-Motion-Resolved Discrete Model for Simulating Gas-Solid Fluidization. Chemical Engineering Science. 1999, 54(3): 2077~2083
    23 G. A. Bokkers, M. Van Sint Annaland, J. A. M. Kuipers. Mixing and Segregation in a Bidisperse Gas-Solid Fluidezed Bed: A Numerical andExperimental Stydy. Powder Technol. 2004,140(3): 176~186
    24闫洁,罗坤,樊建人.三维射流中颗粒碰撞的直接数值模拟.工程热物理学报. 2008, 29(7):1151~1154
    25 P. A. Cundall, O. D. L. Strack. A Discrete Numerical Model for Granular Assembles. Geotechnique. 1979, 29(1):47~65
    26 P. A. Langston, U. Tuzun, D. M. Heyes. Discrete Element Simulation of Granular Flow in 2D and 3D Hoppers-dependence of Discharge Rate and Wall Stress on Particle Interactions. Chemical Engineering Science. 1995, 50(6): 967~987
    27 O. R. Walton. Numerical Simulation of Inclined Chute Flows of Monodisperse Inelastic, Frictional Spheres. Mechanics of Materials. 1993, 16(3): 239~247
    28 N. G. Deen, M. Van Sint Annaland, M. A. van der Hoef, J. A. M. Kuipers. Review of Discrete Particle Modeling of Fluidized Beds. Chemical Engineering Science. 2007, 62: 28~44
    29 Y. Tsuji, T. Tanaka, S. Yonemura. Cluster Patterns in Circulating Fluidized Beds Predicted by Numerical Simulation (Discrete Particle Model Versus Two-Fluid Model). Powder Technology. 1998, 95: 254~264
    30 S. Y. Wang, H. P. Liu, H. L. Lu, W. T. Liu, J. M. Ding, W. Li. Flow Behavior of Clusters in A Riser Simulated by Direct Simulation Monte Carlo Method. Chemical Engineering Journal. 2005, 106(3): 197~211
    31彭正标,袁竹林.基于蒙特卡洛法的脱硫塔内气固流动数值模拟.中国电机工程学报. 2008, 28(14): 6~14
    32张槛,由长福,徐旭常.循环床内气固两相流中稠密颗粒间碰撞的数值模拟.工程热物理学报. 1998, 19(2): 256~260
    33 D. Gidaspow. Hydrodynamics of Fluidization and Heat Transfer: Supercomputer Modeling. Appl. Mech. Rev. 1986, 39: 1~23
    34 Y. P. Tsuo, D. Gidaspow. Comuputation of Flow Patterns in Circulationg Fluidized Beds. AIChE. 1990, 36:885~896
    35 H. Enwald, E. Peirano, A. E. Almstedt. Eulerian Two-Phase Flow Theory Applied to Fluidization. International Journal of Multiphase Flow. 1996, 22(Suppl.): 21~66
    36 M. Syamlal, W. Rogers, T. J. O’Brien. MFIX Documentation-Theory Guide.Technical Note DOE/METC-94-1004(DE94000087). 1993, 7~30
    37 C. K. K. Lun, S. B. Savage, D. J. Jeffrey, N. Chepurniy. Kinetic Theory for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield. Journal of Fluid Mechanics. 1984, 140: 233~256
    38 C. M. Hrenya, J. L. Sinclair. Effects of Particulate-Phase Turbulence in Gas-Solid Flows. AIChE Journal. 1997, 43(4): 853~869
    39 B. G. M. van Wachem, J. C. Schouten, C. M. Van Bleek, R. Krishna, J. L. Sinclair. Comparative Analysis of CFD Models of Dense Gas-Solid Systems. AIChE Journal. 2001, 47(5): 1035~1051
    40王维,李佑楚.颗粒流体两相流模型研究进展.化学进展. 2000, 12(2): 208~217
    41 W. Polashenski, J. C. Chen. Measurement of Particle Phase Stresses in Fast Fluidized Beds. Ind.Eng.Chem.Res. 1999, 38: 705~713
    42 C. S. Campbell, D. G. Wang. Particle Pressures in Gas-Fluidized Beds. J.Fluid Mechanics. 1991, 227: 495~508
    43 M. Massoudi, K. R. Rajagopal, J. M. Ekmann, M. P. Mathur. Remarks on the Modeling of Fluidized Sstems. AIChE. 1992, 38(3): 471~472
    44 D. J. Patil, M. V. Annaland, J. A. M. Kuipers. Critical Comparison of Hydrodynamic Models for Gas-Solid Fluidized Beds - Part I: Bubbling Gas-Solid Fluidized Beds Operated with AJet. Chemical Engineering Science. 2005, 60: 57~72
    45 M. Xu, W. Ge, J. H. Li. A Discrete Particle Model for Particle-fluid Flow with Considerations of Sub-Gid Structures. Chemcial Engineering Science. 2007, 62: 2302~2308
    46 L. M. Zou, Y. C. Guo, C. K. Chan. Cluster-Bsed Drag Coefficient Model for Simulating Gas-solid Flow in A Fast-Fuidized Bed. Chemcial Engineering Science. 2008, 63: 1052~1061
    47 R. J. Hill, D. L. Koch, J. C. Ladd. The First Effects of Fluid Inertia on Flows in Ordered and Random Arrays of Spheres. Journal of Fluid Mechanics. 2001, 448: 213~241
    48 R. Beetstra, M. A. van der Hoef, J. A. M. Kuipers. Numerical Study of Segregation Using A New Drag Force Correlation for Polydisperse SystemsDerived from Lattice-Boltzmann Simulations. Chemical Engineering Science. 2007, 62: 246~255
    49 B. G. M. van Wachem, J. C. Schouten, C. M. Van Bleek, R. Krishna, J. L. Sinclair. Comparative Analysis of CFD Models of Dense Gas-Solid Systems. AIChE Journal. 2001, 47(5): 1035~1051
    50 W. Du, X. J. Bao, J. Xu, W. S. Wei. Computational Fluid Dynamics (CFD) Modeling of Spouted Bed: Assessment of Drag Coefficient Correlations. Chemical Engineering Science. 2006, 61: 1401~1420
    51 L. C. G?mez, F. E. Milioli. Numerical Study on the Influence of Various Physical Parameters over the Gas-Solid Two-Phase Flow in the 2D Riser of A Circulating Fluidized Bed. Powder Technology. 2003, 132: 216~225
    52 A. Almuttahar, F. Taghipour. Computational Fluid Dynamics of High Density Circulating Fluidized Bed Riser: Study of Modeling Parameters. Powder Technology. 2008, 185(1): 11~23
    53李静海,郭慕孙.颗粒流体两相流能量最小多尺度作用(EMMS)模型简介.化学工程. 1992, 20(2): 26~29
    54 P. R. Naren, A. M. Lali, V. V. Ranade. Evaluating EMMS Model for Simulating High Solid Flux Risers. Chemical Engineering Research and Design, 2007, 85(A8): 1188~1202
    55 V. Jiradilok, D. Gidaspow, S. Damronglerd. Kinetic Theory Based CFD Simulation of Turbulent Fluidization of FCC Particles in A Riser. Chemical Engineering Science. 2006, 61: 5544~5559
    56 V. Jiradilok, D. Gidaspow, R. W. Breault. Computation of Gas and Solid Dispersion Coefficients in Turbulent Risers and Bubbling Beds. Chemical Engineering Science. 2007, 62: 3397~3409
    57杨宁,葛蔚,王维,李静海.非均匀气固流态化系统中颗粒气体相间作用的计算.化工学报. 2003, 54(4): 539~542
    58 W. Wang, J. H. Li. Simulation of Gas-Solid Two-Phase Flow by A Multi-Scale CFD Approach-of the EMMS Model to the Sub-Grid Level. Chemical Engineering Science. 2007, 62(1-2): 208~231
    59 C. Y. Wen, Y. H. Yu. Mechanics of Fluidization. American Institute of Chemical Engineers Symposium Series. 1966,62:100-111
    60 H. Y. Qi, F. Li, B. Xi, C. F. You. Modeling of Drag with the EulerianApproach and EMMS Theory for Heterogeneous Dense Gas-Solid Two-Phase Flow. Chemical Engineering Science. 2007, 62: 1670~1681
    61 T. Mckeen, T. Pugsley. Simulation and Experimental Validation of A Freely Bubbling Bed of FCC Catalyst. Powder Technology. 2003, 129: 139~152
    62 L.G. Gibilaro, R. Di Felice, S. P. Waldram. Generalized Friction Factor and Drag Coefficient Correlations for Fluid-Particle Interactions. Chemical Engineering Science. 1985, 40(10): 1817~1823
    63 E. Helland, H. Bournot, R. Occelli, L. Tadrist. Drag Reduction and Cluster Formation in A Circulating Fluidised Bed. Chemical Engineering Science. 2007, 62: 148~158
    64 Y. Igci, A. T. AndrewsⅣ, S. Sundaresan, S. Pannala, T. O’Brien. Filtered Two-Fluid Models for Fluidized Gas-Particle Suspensions. American Institute of Chemical Engineers. 2008, 54(6): 1431~1448
    65刘春嵘,郭印诚.基于拟颗粒的气固两相曳力模型研究.工程热物理学报. 2005, 26(2): 253~256
    66 R. A. Bagnold. Experiments on a Gravity-Free Dispersion of Large Solid Spheres in A Newtonian Fluid under Shear. Proc. Roy. Sci. 1954, 225: 49~63
    67 S. Ogawa, A. Umemura, U. Sshima. On the Equations of Fully Fluidized Granular Materials. Journal of Applied Mathematics and Physics. 1980, 31: 483~493
    68 S. B. Sabage, D. J. Jeffrey. The Stress Tensor in A Granular Flow at High Shear Rates. Journal of Fluid Mechanics. 1981, 110: 255~272
    69 J. T. Jenkins, S. B. Savage. A Theory for the Rapid Flow of Identical Smooth, Nearly Elastic, Spherical Particles. Journal of Fluid Mechanics. 1983, 130: 187~202
    70 J. T. Jenkins, M. W. Richman. Grad’s 13-Moment System for A Dense Gas of Inelastic Spheres. Archive for Rational Mechanics. 1985, 87: 355~377
    71 H. Grad. On the Kinetic Theory of Rarified Gases. Communications on Pure and Applied Mathematics. 1949, 2(4): 331~407
    72 J. T. Jenkins, M. W. Richman. Kinetic Theory for Plane Flows of A Dense Gas of Identical, Rough, Inelastic, Circular Disks. Physics of Fluids. 1985, 28(12): 3485~3494
    73 C. K. K. Lun, S. B. Savage. A Simple Kinetic Theory for Granular Flow ofRough, Inelastic, Spherical Particles. Journal of Applied Mechanics. 1987, 54(1): 47~53
    74 S. Chapman, T. G. Cowling, (刘大有,王伯懿,译).非均匀气体的数学理论.科学出版社. 1985, 34~431
    75 J. J. Nieuwland, M. V. Annaland, J. A. M. Kuipers, W. P. M. V. Swaaij. Hydordynamic Modeling of Gas/Particle Flows in Riser Reactors. AIChE J. 1996, 42: 1569~1582
    76 D. Gidaspow, H. L. Lu, Collisional Viscosity of FCC Particles in A CFB. AIChE J. 1992, 42: 2503~2510
    77 J. L. Sincalir, R. Jackson. Gas-Particle Flow in A Vertical Pipe with Particle-Particle Interacrtion. AIChE J. 1989, 35(5): 1473~1486
    78 D. Ma, G. Ahmadi. A Kinetic Model for Rapid Granular Flows of Nearly Elastic Particles Including Interstitial Fluid Effects. Powder Technology. 1988, 56(3): 191~207
    79 G. Baler, A. Boelle, O. Simonin. Eulerian Gas-Solid Flow Modelling of Dense Fluidized Bed. Fluidization VIII, International Symposium of the Engineering Foundation. Tours, 1995: 1125~1135
    80 E. Peirano, B. Leckner. Fundamentals of Turbulent Gas-Solid Flows Applied to Circulating Fluidized Bed Combustion. Progress in Energy and Combustion Science. 1998, 24: 259~296
    81 J. T. Jenkins, F. Mancini. Balance Laws and Constitutive Relations for Plane Flows of A Dense, Binary Mixture of Smooth, Nearly Elastic, Circular Disks. Journal of Applied Mechanics. 1987, 54(1): 27~34
    82 D. Gidaspow, H. L. Lu, E. Mangar. Kinetic Theory of Multiphase Flow and Fluidization: Validation and Extension to Binaries. Proceedings of the XIXth International Congress of Theoretical and Applied Mechanics, Japan. 1996
    83 H. L. Lu, D. Gidaspow. Hydrodynamics of Binary Fluidization in A Riser: CFD Simulation Using Two Granular Temperatures. Chemical Engineering Science. 2003, 58(16): 3777~3792
    84 H. L. Lu, Y. R. He, D. Gidaspow. Hydrodynamic Modelling of Binary Mixture in A Gas Bubbling Fluidized Bed Using the Kinetic Theory of Granular Flow. Chemical Engineering Science. 2003, 58(7): 1197~1205
    85 M. F. Rahaman, Jamal Naser, P. J. Witt. An Unequal Granular TemperatureKinetic Theory: Description of Granular Flow with Multiple Particle Classes. Powder Technology. 2003, 138(2-3): 82~92
    86郑建祥.粘附性颗粒动力学及气固两相流体动力学特性的研究.哈尔滨工业大学博士论文. 2008: 21~46
    87 M. W. Richman. The Source of Second Moment in Dilute Granular Flows of Highly Inelastic Spheres. Journal of Rheology. 1989, 33(8): 1293~1306
    88 C. S. Chou, M. W. Richman. Constitutive Theory for Homogeneous Granular Shear Flow of Highly Inelastic Spheres. Physica A. 1998, 259: 430~438
    89赵云华.稠密气固两相流动的颗粒相二阶矩模型及数值模拟研究.哈尔滨工业大学博士论文. 2009: 15~34
    90黄宁,郑晓静.风沙跃移运动中的Magnus效应.兰州大学学报自然科学版. 2001, 37(3): 19~25
    91亢力强,郭烈锦.风沙跃迁中颗粒冲击起动的数值模拟.自然科学进展. 2005, 15(2): 252~256
    92亢力强,郭烈锦.风沙跃移中颗粒与多粒径床面碰撞的数值模拟.工程热物理学报. 2006, 27(1): 82~84
    93 L. Kang, L. Guo. Eulerian-Lagrangian Simulation of Aeolian Sand Transport. Powder Technology. 2006, 162(2): 111~120
    94 Z. Y. Luo, X. C. Wu, Q. H. Wang. Particle Rotation Characteristics in CFB Riser. Journal of Chemical Industry and Engineering(China). 2005, 56(10): 1869~1874
    95 X. C. Wu, Q. H. Wang, Z. Y. Luo. Measurement of Particle Rotation in CFB Riser with High-Speed Digital Video Camera Technique. Proceedings of the CSEE. 2005, 25(17): 72~77
    96 S. I. Rubinow, J. Keller. The Transverse Force on A Spinning Sphere Moving in A Viscous Fluid. Fluid Mechnics. 1961, 11(2): 447~459
    97 J. H. Macoll. Aerodynamics of A Spinning Sphere. Journal of the Royal Aeronautical Society. 1968, 32: 777~798
    98 J. M. Davies. The Aerodynamics of Golf Balls. Applied physics. 1949, 20: 821~828
    99 H. M. Barkla, L. J. Auchterlonie. The Magnus of Robins Effect on Rotating Spheres. Fluid Mechanics. 1993, 251: 661~685
    100 J. L. Best. The Influence of Particle Rotation on Wake Stability at ParticleReynolds Numbers, ReP<300—Implications for Turbulence Modulation in Two-Phase Flows. International Journal of Multiphase Flow. 1998, 24(5): 693~720
    101 X. Y. Zou, H. Cheng, Ch. L. Zhang, Y. Z. Zhao. Effects of the Magnus and Saffman Forces on the Saltation Trajectories of Sand Frain. Geomorphology. 2007, 90(1-2):11~22
    102芩可法,樊建人.煤粉颗粒在气流中的受力分析及其运动轨迹的研究.浙江大学学报. 1987, 21(6): 1~11
    103肖美添,刘华信,朱艳.工业炉旋风预燃器煤粉颗粒运动轨迹.华侨大学学报(自然科学版). 2001, 22(3): 303~308
    104 H. Enwald,E. Peirano, A. E. Almstedt. Eulerian Two-Phase Flow Theory Applied to Fluidization. International Journal of Multiphase Flow. 1996, 22(Suppl.): 21~66
    105由长福,祁海鹰,徐旭常.煤粉颗粒所受Magnus力的数值模拟.中国工程热物理学报. 2001, 22(5): 625~628
    106 J. Sun. Francine Battaglia. Hydrodynamic Modeling of Particle Rotation for Segregation in Bubbling Gas-Fluidezed Beds. Chemical Engineering Science. 2006, 61. 1470~1479
    107 G. David. Satwinder Singh Sadhal. Charles S.Campbell. Particle Rotation as A Heat Transfer Mechanism. International Journal of Heat and Mass Transfer. 32(8). 1989, 1413~1423
    108黄海明,王荣乾.旋转碳颗粒对端头帽烧蚀的影响.北京交通大学学报. 2005, 29(4): 1~4
    109 H. X. Shi. Experimental Research of Flow Structure in A Gas-Solid Circulating Fluidized Bed Riser by PIV. Journal of Hydrodynamics. 2008, 19(6): 712~719
    110 Mayur J. Sathe, Iqbal H. Thaker, Tyson E. Strand, Jyeshtharaj B. Advanced PIV/LIF and Shadowgraphy System to Visualize Flow Structure in Two-Phase Bubbly Flows. Chemical Engineering Science. 2010, 65(8). 2431-2442
    111 Y. X. Su, Y. R. Mao. Experimental Study on the Gas–Solid Suspension Flow in A Square Cyclone Separator. Chemical Engineering Science. 2006, 121(1): 51~58
    112 Tobias Bergenblock, Fabrice Onofri, Bo Leckner. Experimental Estimationof Particle Flow Fluctuations in Dense Unsteady Two-Phase Flow Using Phase Doppler Anemometry. International Journal of Multiphase Flow. 2007, 33(8): 849~872
    113 J. L. Best. The Influence of Particle Rotation on Wake Stability at Particle Reynolds Numbers,Rep<300—Implications for Turbulence Modulation in Tow-Phase Flows. 1985, 107(3): 484~488
    114 Y. Tsuji, Y. Morkawa, O. Mizumo. Experimental Measurement of the Magnus Force on A Rotating Sphere at Low Reynolds Numbers. J.Fluid Engineering. 1985, 107(3): 484~488
    115 M. A. Rice, B. B. Willetts, I. K. Mcewan. Obserbations of Collisions of Saltating Grains with A Granular Bed From High-Speed film. Sedimentology. 1996,43(1):21~31
    116施学贵.冷态气-固两相流激光全息实验研究.清华大学博士论文. 1988: 21~96
    117 T. Deng, M. S. Bingley, M. S. A Bradley. The Influence of Particle Rotation on the Solid Particle Erosion Rate of Metals. Wear. 2004, 256(11-12):1037~1049
    118 J. Li, T. Deng, M. S. Bingley, M. S. A. Bradley. Prediction of Particle Rotation in A Centrifugal Accelerator Erosion Tester and Effect on Erosion Rate. Wear. 258(1-4). 2005, 497~502
    119 X. C. Wu, Q. H. Wang, Z. Y. Luo, M. X. Fang, K. F. Cen. Theoretical and Experimental Investigations on Particle Rotation Speed in CFB Riser. hemical Engineering Science. 2008, 63(15): 3979~3987
    120 X. C. Wu, Q. H. Wang, Z. Y. Luo, M. X. Fang, K. F. Cen. Experimental Study of Particle Rotation Characteristics with High-Speed Digital Imaging System. Powder Technology. 2008, 181(1): 21~30
    121 X. C. Wu, Q. H. Wang, Z. Y. Luo, M. X. Fang, K. F. Cen. Rotation Speed Measurement of Moving Particles in A CFB Riser. Particuology. 2009, 7(4): 238~244
    122 J. R. D. Francis. Experiments on the Motion of Solitary Grains along the Bed of a Water-Stream. Proc. Royal Soc. Lond. 1973, (332): 443~471
    123 H. Y. Lee. I. S. Hsu. Investigation of Saltating Particle Motions. Hydraulic Engineering. 1994, 120:831~845
    124 H. Y. Lee. I. S. Hsu. Particle Spinning Motion During Saltation Process. Hydraulic Engineering. 1996, 122: 587~590
    125 K. J.S.M. T. Influence of Particle Rotation on the Inerraction Between Particle Clusters and Particle Induced Turbulence. International Journal of Heat and Fluid Flow. 2004, 25(5): 721~728
    126袁竹林,马明,徐益谦.离散数值模拟颗粒自转对流化床内颗粒流态的影响.燃烧颗粒与技术. 2001, 7(3): 238~241
    127袁竹林,徐益谦.从软、硬球模型探讨颗粒自转对流化状态的影响.工程热物理学报. 2001, 22(3): 363~366
    128 C. K. K. Lun, H. S. Liu. Numeirical Simulation of Dilute Trubulent Gas-Solid Flows in Horizontal Channels. International Journal of Multiphase Flow. 1997, 23(3): 575~605
    129 C. K. K. Lun. Kinetic Theory for Granular Flow of Dense, Slightly Inelastic,Slightly Rough Spheres. J. Fluid Mech. 1991, 233: 539~559
    130 J. S. Dahler, M. Theodosopulu. The Kinetic Theory of Dense Polyatomic Fluids, A Dilute Gas of Perfectly Rough Spheres. J Chem Phys. 1975, 42: 3445~3475
    131 A. Goldshtein, M. Shapiro. Mechanics of Collisional Motion of Granular Materials Part 1. General Hydrodynamic Equations. J Fluid Mech. 1995, 282: 75~114
    132 A. Goldshtein, M. Shapiro. Mechanics of Collisional Motion of Granular Materials Part 3. Self-Similar Shock Wave Ppropagation. J Fluid Mech. 1996, 316: 29~51
    133 J. Jenkins, C. Zhang. Kinetic Theoty for Identical, Frictional, Nearly Elastic Spheres. Physics of Fluids. 2002, 14(3): 1228~1235
    134 S. Y. Wang, Z. H. Shen, H. L. Lu, L. Yu, W. T. Liu, Y. L. Ding. Numerical Predictions of Flow Behavior and Cluster Size of Particles in Riser with Particle Rotation Model and Cluster-Based Approach. Chemical Engineering Science. 2008, 63(16): 4116~4125
    135 S. Y. Wang, H. L. Lu, X. Li. CFD Simulations of Bubbling Beds of Rough Spheres. Chemical Engineering Science. 2008, 63: 5653~5662
    136 S. Songprawat, D.Gidaspow. Multiphase Flow with Unequal Granular Temperatures. Chemical Engineering Science. 2010, 63(3): 1134~1143
    137贺永德.现代煤化工技术手册[M].北京:化学工业出版社, 2006
    138 H. Saburo, I. Jun, A. Masami. A Study on Gasification Reactivity of Pressurized Two-Stage Entrained Flow Gasifier. JSME Inerrnational Journal. 2002, 45(3): 518~522
    139 C. X. Chen, asayuki Horio, Toshinori Kojima. Numerical Simulation of Entrained Flow Coal Gasifiers. Part1: Modeling of Coal Gasification in An Entrained Flow Gasifier. Chemical Engineering Science. 2000, 55: 3861~3874
    140 C. X. Chen, Massayuki Horio, Toshinori Kojima. Numerical Simulation of Entrained Flow Coal Gasifiers. Part2: Effects of Operating Conditions on Gasifier Performance. Chemical Engineering Science. 2000, 55: 3875~3883
    141孔火良.流化床气化炉内的煤颗粒的升温过程及影响.燃料与化工. 2009, 40(2): 15~18
    142杨华松,史占彪,赵庆杰.加热速度对煤的气化反应性的影响.东北大学学报. 1998, 19(2): 128~131
    143杨泱,钱芬芬,潘多伟.煤的气化及其影响因素综述.煤炭加工与综合利用. 2005, 5: 41~43
    144池勇,郑皎,金余其,米海波,蒋旭光,倪明江.模拟垃圾流化床气化特性的实验研究.中国电机工程学报. 2008, 28(29): 59~63
    145杨建蒙,孙学峰.生物质鼓泡流化床气化特性的空气当量比影响分析.应用能源技术. 2009, 7: 1~4
    146吕清刚,刘琦,范晓旭,宋国良,那永洁,贺军.双流化床煤气化实验研究.工程热物理学报. 2008, 29(8): 1435~1439
    147那永洁,张荣光,吕清刚,王东宇.循环流化床常压煤气化的初步实验研究.煤炭学报. 2004, 29(5): 598~601
    148 H.Watanabe, M.Otaka. Numerical Simulation of Coal Gasification in Entrained Flow Coal Gasifier. Fuel. 2006,85(12) : 1935~1943
    149 M.Grabner, S.Ogriseck, B.Meyer. Numerical Simulation of Coal Gasification at Circulating Fluidized Bed Conditions. Fuel Processing Technology. 2007, 88 10) : 948~958
    150 C.Scott, J.C.Charles. CFD Simulation of Particle Mixing in A Binary Fluidized. Powder Technology. 2005,151: 27~36
    151 S.Ravelli, A.Perdichizzi, G.Barigozzi. Description,Applications andNumerical Modelling of Bubbling Fluidized Bed Bombustion in Waste-to-Energy Plants. Progress in Energy and Combustion Science. 2008,34(2) : 224~253
    152邓中乙,肖睿,金保升,沈来宏,宋启磊,李乾军.加压喷动流化床煤气化数值模拟.燃烧科学与技术. 2009,15(4): 332~338
    153高鹍,吴晋沪,王洋.射流流化床煤气化炉中气固流动和传热、传质的CFD模拟研究.燃烧化学学报. 2008, 36(3): 360~364
    154 L.Yu, J.Lu, X.P. Zhang. Numerical Simulation of Bubbling Fluidized Bed Coal Gasification by the Kinetic Theory of Granular Flow(KTGF). Fuel. 2007,86: 722~734
    155王小芳,金保升,钟文琪.基于欧拉多相流模型的流化床煤气化过程三维数值模拟.东南大学学报. 2008, 38(3): 454~460
    156 X.F.Wang, B.S.Jin, W.Q.Zhong. Three-Dimensional Simulation of Fluidized Bed Coal Gasification. Chemical Engineering and Processing. 2009,48: 695~705
    157 W. Goldsmith. Impact: The Theoty and Physical Behavior Colliding Solids. E. Arnold. 1960
    158 D. L. Koch, A. S. Sangani. Particle Pressure and Marginal Stability Limits for A Homogenous Monodisperse Gas-Fluidized Bed: Kinetic Theory and Numerical Simulations. J. Fluid Mech. 1999,400:229~263
    159 S. Yuu, T. Umekage, Y. Johno. Numerical Simulation of Air and Particle Motions in Bubbling Fluidized Bed of Small Particles. Powder Technology. 2000, 110: 158~168
    160 F. Taghipour, N. Ellis, C. Wong. Experimental and Computational Study of Gas-solid Fluidized Bed Hydrodynamics. Chemical Engineering Science. 2005, 60: 6857~6867
    161 J. H. Jung, I. K. Gamwo, Multiphase CFD-based Models for Chemical Looping Combustion Process: Fuel Reactor Modeling. Powder Technology. 2008, 183: 401~409
    162 S. Mori, C. Y. Wen. Estimation of Bubble Diameter in Gaseous Fluidized Beds. AIChE J. 1975, 21: 109~115
    163 R. C. Darton, R. D. LaNauze, J. F. Davidson, D. Harrison. Bubble Growth Due to Coalescence in Fluidized Beds. Transactions of the Institutions ofChemical Engineers 1977, 55: 274~280
    164 J. F. Davison, D. Harrison. Fluidized Particles. Cambridge: Cambridge University Press. 1963
    165 Y.C. Chung , S.S. Hsiau, H.H.Liao, J.Y.Ooi. An Improved PTV Technique to Evaluate the Velocity Field of Non-Spherical Particles. Powder Technology. 2010, 202:151-161
    166 T. Knowlton, D. Geldart, J. Matsen, D. King. Comparison of CFB Hydrodynamic Models. PSRI Challenge Problem Presented at the Eighth International Fluidization Conference, Tour, France, May, 1995
    167 A.Miller, D.Gidaspow. Dense,Vertical Gas-Solid Flow in A Pipe. AICHE J. 1992,38: 1801~1813
    168 S. Benyahia, H. Arastoopour, T. M. Knowlton, H. Massah. Simulation of Particles and Gas Flow Behavior in the Riser Section of A Circulating Fluidized Bed Using Kinetic Theory Approach for the Particulate Phase. Powder Technology. 2000, 112: 24-33
    169 M. Syamlal, T. J. O’Brien. Simulation of Granular Layer Inversion in Liquid Fluidized Beds. International Journal of Multiphase Flow. 1988,14(4):473-481
    170 J. Garside, M. R. Al-Dibouni. Velocity-Voidage Relationship for Fluidization and Sedimentation. Industrial and Engineering Chemistry Process Design and Development. 1977,16:206-214
    171 A. T. Andrews, P. N. Loezos, S. Sundaresan. Coarse-Grid Simulation of Gas-Particle Flows in Vertical Risers. Ind. Eng. Chem. Res. 2005, 44: 6022~6037
    172 A. Neri, D. Gidaspow. Riser Hydrodynamics: Simulation Using Kinetic Theory. AIChE Journal. 2000, 46(1): 52-67
    173 D. Gidaspow, J.Jung, R. K. Singh. Hydrodynamics of Fluidization Using Kinetic Theory: An Emerging Paradigm 2002 Flour-Daniel Lecture. Powder Technology. 2004, 149: 123-141
    174 F. Chejne, JP. Hernandez. Modeling and Simulation of Coal Gasification Process in Fluidized Bed. Fuel. 2002,(81): 1687~702
    175 D. J. Gunn. Transfer of Heat or Mass to Particles in Fixed and Fluidized Beds. International Journal of Heat and Mass Transfer. 1978, (21): 467~476

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700