双螺杆挤压膨化对豆粕营养品质影响规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆粕因其蛋白质含量高,氨基酸构成合理,广泛应用于食品工业中。大豆原料经不同工艺处理后,豆粕质量具有很大差异。挤压膨化预处理工艺在保证低残油率的同时,蛋白质变性程度低,且经试验表明,膨化加工的高温、高压处理可以使大豆中一些影响营养物质吸收的有害成分得到消除。本课题以综合利用大豆资源为目标,主要研究不同挤压条件下挤压参数对大豆粕营养品质的影响规律,对于豆粕的生产利用具有重大意义。
     本文以大豆挤压膨化预处理浸油后粕中的蛋白质NSI值、豆粕保水性值、粕中粗纤维含量、脲酶活性以及植酸含量为指标,并选择挤压机模孔直径、物料含水率、螺杆转速、套筒温度为影响因素,通过二次旋转正交组合设计试验,建立回归方程。利用SAS软件进行响应面分析,探讨各因素对试验指标的影响规律,同时,利用Matlab7.5中的遗传算法(GA)工具箱对回归模型进行优化分析,为实际生产中应用挤压膨化预处理工艺获得高营养品质的豆粕提供科学依据。具体研究结果如下:
     1.各因素对粕蛋白NSI的影响由大到小依次为:物料含水率,螺杆转速,模孔直径,套筒温度。获取高NSI值的最优挤压条件为:模孔直径10mm,物料含水率10.4%,螺杆转速124 r?min-1.,套筒温度60℃。
     2.通过试验研究发现,豆粕获得较高保水性的挤压参数为模孔直径14.8mm,物料含水率18%,螺杆转速106 r?min-1,套筒温度91.5℃。挤压参数对粕蛋白保水性的影响由大到小依次为:物料含水率,套筒温度,螺杆转速,模孔直径。
     3.小模孔直径、较高的物料含水率、低螺杆转速和较高的挤压温度可以使豆粕中粗纤维含量减少,有利于不溶性纤维向可溶性纤维的转化。获得低粗纤维含量豆粕的挤压参数为模孔直径10mm,物料含水率10%,螺杆转速160 r?min-1,套筒温度120℃。
     4.在本试验研究范围内,各挤压膨化参数之间的交互作用对脲酶活性的影响显著。获得低脲酶活性豆粕的挤压参数为模孔直径26mm,物料含水率18%,螺杆转速160 r?min-1,套筒温度120℃。在此条件下进行验证试验显示脲酶活性丧失。
     5.大模孔直径、适当的水分含量、高螺杆转速和较高的挤压温度有利于植酸分子的钝化。通过试验分析得出在模孔直径26mm,物料含水率14%,螺杆转速160 r?min-1,套筒温度为106.5℃的条件下,植酸含量最低。
     6.利用模糊综合评判法进行优化,为保证得到高NSI值、低粗纤维含量、低脲酶活性的高营养品质豆粕,应选择模孔直径为19mm~21mm,物料含水率为16%~17%,螺杆转速为76 r?min-1~107 r?min-1,套筒温度为77℃~93℃的条件下进行挤压膨化。
Soybean meals which have a high protein content and a reasonable constitutional rate of the essential amino acids are widely used in food industry. And they have great differences in quality by different treated processes of soybean raw material. By the practice, it shows that the harmful ingredients effecting nutrient absorption in soybean could be removed by extrusion expansion which is a high temperature and high pressure treatment processing. Extrusion method that guarantees the low rate of residual oil while guarantees a low degree of protein denaturation has become the most important forage soybean processing methods.
     Five indexes were studied in this paper including NSI, WHC, crude fiber content, urease activity and phytic acid content in the meal after pretreating soybean with extrusion. Furthermore, four factors (nozzle diameter, material moisure, rotate speed of screw, temperature of barrel) were chosen to find the influence between indexes and factors. A mathematical model was established to discuss the influence law between indexes and factors, basing on a revolving, orthogonal and tropical design of the second power. The mathematical model that has been analyzed by SAS and optimized by GA of Matlab7.5 would be taken as the scientific bassis for industry. Specific research results are as follows.
     1. Various factors impacted on protein meal about the size of NSI are as follows: moisture content of material, rotational speed of screw, diameter of die nozzle, temperature of barrel. The optimal conditions extrusion of high NSI value whose parameters are that diameter of die nozzle is 10mm, moisture content of material is 10.4%, rotational speed of screw is 124 r?min-1, temperature of barrel is 60℃would be obtained.
     2. The extrusion parameters which obtains a higher water-holding capacity of Soybean meal are that diameter of die nozzle is 14.8mm, moisture content of material is 18%, rotational speed of screw is 106r?min-1, temperature of barrel is 91.5℃. Extrusion parameters impacted of water- holding capacity of the meal protein are as follow: moisture content of material, temperature of barrel, rotational speed of screw, diameter of die nozzle.
     3. Crude fiber content of soybean meal is reduced through reducing the diameter of die nozzle and the rotational speed of screw and improving the moisture content of material and the temperature of barrel. The extrusion parameters which obtains a lower crude fiber content of Soybean meal are that diameter of die nozzle is 10mm, moisture content of material is 10%, rotational speed of screw is 160 r?min-1, temperature of barrel is 120℃.
     4. There is significant impact on the urease activity by the interaction between the extrusion parameters. The extrusion parameters which obtains a lower urease activity that is almost inactivity are that diameter of die nozzle is 26mm, moisture content of material is 18%, rotational speed of screw is 160 r?min-1, temperature of barrel is 120℃.
     5. It is conducive to phytic acid molecules passivating through improving the diameter of die nozzle, the rotational speed of screw, the temperature of barrel and the appropriate moisture content of material. The extrusion parameters which obtains the lowest phytic acid content are that diameter of die nozzle is 26mm, moisture content of material is 14%, rotational speed of screw is 160 r?min-1, temperature of barrel is 106.5℃.
     6. Optimized by the fuzzy comprehensive evaluation method, the extrusion parameters which made a high nutritional quality of the soybean meal with hight NSI, low crude fiber content and low urease activity are that diameter of die nozzle is 19mm~21mm, moisture content of material is 16%~17%, rotational speed of screw is 76 r?min-1~107 r?min-1, temperature of barrel is 77℃~93℃.
引文
陈存社,赵华. 2003.苹果纤维膳食纤维改性实验研究.食品工业科技. (6):34-35.
    陈瑞战,王晓菊,张永宏等. 2005.应用双螺杆挤压机改性玉米蛋白质的研究.长春师范学院学报. 24(5):65.
    陈雪峰,吴丽萍. 2005.挤压改性对苹果膳食纤维物理化学性质的影响.食品与发酵工业. 31(12):57-60.
    陈玉芳. 2003.挤压膨化加工对大豆抗营养因子的影响.粮油加工与食品机械. (11):40-42.
    杜双奎,魏益民. 2005.挤压膨化过程中物料组分的变化分析.中国粮油学报. 20(3):40- 45.
    冯玉红. 2000.挤压膨化带胚玉米作啤酒辅料的试验研究.东北农业大学硕士论文.
    高福成.1997.现代食品工程高新技术.北京:中国轻工业出版社.
    顾华孝. 2000.挤压机概述.饲料工业. 21(7):1.
    管军军,周瑞宝. 2001.大豆蛋白功能性研究.粮食与油脂. (9):29-31.
    郭仁生. 2007.基于MATLAB和Pro/ENGINEER优化设计实例解析.北京:机械工业出版社.
    郭树国,刘强. 2006.挤压膨化过程中大豆化学成分变化分析.粮油加工与食品机械. 7:60.
    华欲飞,顾玉兴. 1999.大豆蛋白的吸水和持水性能.中国油脂. 24 (4):64- 67.
    江志炜. 2002.蛋白质加工技术.北京:化学工业出版社.
    解铁民. 2008.干法挤压膨化菜籽油脂及粕品质的试验研究.东北农业大学博士学位论文.
    金茂国,孙伟. 1996.用挤压法提高豆渣可溶性膳食纤维含量的研究.粮食与饲料工业. (8):35.
    金希亿,张宪国,姜山. 1995.干法挤压膨化对大豆品质的影响及作用机理.饲料工业. 16(4):9-11.
    康立宁. 2007.大豆蛋白高水分挤压组织化技术和机理研究.西北农林科技大学博士学位论文.
    李桂杰,高淑云. 1997.大豆浸出制油工艺过程中脲酶活性的研究.粮食科技与经济. (2):32-33.
    李里特,刘志胜. 1999.大豆蛋白营养品质和生理功能研究进展.中国食物与营养. (4): 21-23.
    林仕梅. 2001.挤压膨化工艺在浮性水产饲料中的应用.粮食与饲料工业. (3):15-18.
    刘大川. 1996.大豆蛋白制取工业的进展.武汉食品工业学院学报. (1):1-5.
    刘大川. 2000.大豆资源综合开发产业化.中国油脂. 25:9-12.
    刘福柱,牛竹叶,陈新科. 2001.膨化条件参数对大豆中脲酶活性的影响.畜牧兽医杂志. 20(4):3-5.
    刘红武. 2000.食品挤压技术.食品科学. 21(012): 184-187.
    刘天印,陈存社. 1999.挤压膨化食品生产工艺与配方.北京:中国轻工业出版社.
    潘丽军. 2008.试验设计与数据处理.南京东南大学出版社.
    钱建亚,丁霄霖. 1995.膳食纤维的双螺杆改性.食品与发酵工业. (6):24-27.
    谯仕彦,李德发,于会民等. 1997.膨化加工对全脂大豆养分含量和抗营养因子的作用.中国畜牧杂志. 33(6):20-21.
    沈宁,杨光. 2007.双螺杆挤压对大豆蛋白质的影响.食品工业科. 28 (7):70- 71.
    沈玉星,刘辉. 2002.低温大豆粕生产质量与应用.粮食与油脂. (10):37-38.
    石晓. 2006.花生蛋白持水性研究.粮油加工. 9:57-60.
    唐雪梅,王宇峰,唐振茂. 2002.大豆的生化特性及精深加工.粮油食品科技. 10(1).
    王东冬. 2007.大豆皂苷的提取纯化与分离检测.上海交通大学硕士学位论文.
    王宏立,张祖立,白晓虎. 2006.大豆挤压膨化技术及膨化机理的分析.农机化研究. (1):85
    王宏立. 2004.螺杆挤压膨化全脂大豆的试验研究.沈阳农业大学硕士学位论文.
    王洪武. 2002.大豆蛋白质挤压加工的实验与数值模拟研究.北京化工大学博士学位论文.
    王洪武. 2005.大豆蛋白质双螺杆挤压加工工艺参数对系统参数的影响.中国油脂. 30(9):28- 30.
    王丽玮. 1998.挤压膨化带胚玉米作啤酒辅料的基础研究.东北农业大学硕士学位论文.
    王宁,卢承前,黄志. 1995.大米粉在挤压蒸煮过程中酶法糊化度数学模型.食品科学. 16(9): 20-24.
    王石瑛. 2000.挤压膨化技术及其应用.西部粮油科技. 25(3): 31- 32.
    王玮,刘恩岐. 2008.挤压加工对食品营养品质的影响.农产品加工·学刊. (3):71-73.
    魏益民,康立宁,张波等. 2006.高水分大豆蛋白组织化生产工艺和机理分析.农业工程学报. 22 (10) : 193-197.
    吴道银. 2001.豆粕的质量控制.粮油食品科技. 9(1):35.
    吴卫国,杨伟丽,唐书泽等. 2005.双螺杆挤压机操作参数对早餐谷物产品特性影响的研
    席鹏彬,张宏福,方路. 2000.不同温度湿法挤压膨化加工对全脂大豆化学成分及抗营养因子的影响.饲料工业. 21(11):32-33.
    夏杨毅,鲁言文. 2007.提高豆渣膳食纤维的可溶性改性研究进展.粮油加工. 7:120.
    肖志刚,申勋宇. 2006.挤压膨化系统参数对脱胚玉米蛋白质含量影响规律的研究.中国食品学报. 6(2):82- 83.
    肖志刚,吴谋成,申德超. 2008.挤压膨化对菜籽粕中单宁含量的影响分析.农业机械学报. 39(7):85-89.
    刑小鹏. 2000.大豆分离蛋白的功能性.食品工业科技. 21(4):74-76.
    徐超,王晓红. 2001.大豆蛋白和高钙摄入对高血胆固醇模型大鼠血脂水平的影响.中华预防医学杂志. 8:318-321.
    徐红华,许岩,肖志刚. 2004.不同挤压膨化条件对稻麸中可溶性膳食纤维含量的影响.食品科技. 12:89-90.
    徐红华. 2004.挤压膨化对大豆油脂、蛋白质、异黄酮影响规律的试验研究.东北农业大学学位论文.
    徐学明. 1995.挤压过程中的碳水化合物、蛋白质和脂肪.食品与机械. (5):22-23.
    杨铭铎. 1988.谷物膨化机理的研究.食品与发酵工业. (4): 7-16.
    尤瑜敏. 1993.大豆蛋白的功能特性及其在食品行业中的应用.食品研究与开发. 2:1-10.
    余云雷,齐德生,张妮娅. 2005.大豆脲酶活性测定方法比较研究.养殖与饲料. 6:19-21.
    张波,魏益民,康立宁等. 2007.挤压参数对组织化大豆蛋白持水性的影响.农业工程学报. 23(11):260- 263.
    张祥,程秀花,赵国琦. 2005.不同挤压条件对大豆中脲酶活性的影响.饲料加工. 1:20-24.
    张永林. 1994.双螺杆挤压机的特性及应用.粮食与饲料工业. (6):42.
    张裕中,王景. 1998.食品挤出加工技术与应用.北京:中国轻工业出版社.
    赵多勇,魏益民,张波等. 2006.高水分组织化大豆蛋白干燥与复水特性研究.中国粮油学报. 21(3):127-13.
    赵多勇. 2006.高水分组织化大豆蛋白产品特性研究.西北农林科技大学硕士学位论文.
    赵凤琴,申德超. 2008.挤压膨化对玉米秸秆中粗纤维含量的影响.东北农业大学学报. 39(3):105-109.
    赵团结,盖钧镒. 2004.栽培大豆起源与演化研究进展.中国农业科学. 37(7): 952-962.
    赵晓芳,刘惠芳. 2002.抗营养因子及其钝化方法.四川畜牧与兽医. 29(137):77- 79.
    赵学伟. 2006.小米挤压加工特性研究.西北农林科技大学博士学位论文.
    郑建仙,高孔荣. 1994.论膳食纤维.食品与发酵工业. (4) :71-74.
    中华人民共和国卫生部. 2004.中国居民营养与健康现状.中国心血管病研究杂志. 2(12): 919-922.
    周春晖,黄惠华等. 2001.大豆蛋白生理保健作用研究进展.粮食与油脂. (2):37-39.
    周肃纯. 1981.油脂科技.增刊:131-133.
    朱国君,赵国华. 2008.膳食纤维改性研究进展.粮食与油脂. (4):40.
    朱燕,夏玉宇. 2003.饲料品质检验饲料品质检验.化学工业出版社. 61-63.
    左青,孙维众,戴劲松. 2005.论豆粕质量鉴定方法.中国油脂. 27(2):47-48.
    Bhattacharya M. Hanna M. A. 1986. Extrusion processing of wet corngluten meal J. Food Sci. 50: 1508-1510.
    Cheftel JC. 1986. Nutritional effects of extrusion cooking. Food Chem. (20):263-28.
    Chiang B. Y. Johson J. A. 1977.Gelatinization of starch inextruded products. Cereal Chem. 54(3): 436-441.
    Chove B.E.2001.Emulsifying properties of soy protein isolate fractions obtained by isoelectricprecipitation. Sci Food Agric. 81:759-763.
    Crowe T W, Johnson L A, Wang T.2001.Characterization of extrude-expelled soybean flours. J Am Oil Chem.Soc. 78: 775- 779.
    Crowe T W, Johnson L A. 2001. Twin-screw extrusion texturization of extruded-expelled soybean flour. Journal of the American Oil Chemists' Society. 78(8): 781-786.
    DAHL S R, VILLOTA R. 1991. Twin-screw extrusion texturization of acid and alkali denatured soy proteins. Journal of food science. 56(4): 1002-1007.
    Ding Qingbo, Aisworth P, Plunkett Aetal.2006.The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. J Food Eng. 73(2):142- 148.
    Dogan H, Karw e M V. 2003.Physicochemical proper ties of quinoa extrudates. Food Sci Tech Inter. 9 (2):101-114.
    Endres J G. 2001.Soy Protein Products: Characteristics, Nutritional Aspects, and Utilization . AOCS Press.
    Faller J F, A, Dep F S.2000.Physical and sensory characteristics of extruded corn/soy breakfast cereals.Journal of Food Quality. 23(1):87-102.
    Farhat IA, Blanshard M V, Descamps M, Mirchell J R. 2000. Effect of sugars on retrogradation of waxy maize starch sugar extrudates. Cereal Chemistry. 77 (2): 202 -207
    Frame N D. 1994. The Technology of Extrusion Cooking. Aspen Publishers.
    Fujita Y.Y. 1981.Noda.The effect of hydration on the thermal stability of ovalbumin as measured by means of differential scanning calorimetry. Bull Chem. Soc. Jpn. 54: 3233-3234.
    Gomez M. H. Aguilera J.M. 1983.Changes in the starch fraction during extrusion cooking of corn. J. Food Sc.i. 48: 374-37.
    Gomez M.H. Aguilera J.M.. 1984. A physiochemical model for extrusion of cornstarch. J. Food Sc.i. 49: 40-46.
    H N E. 2001.Functional properties of pregelatinized and cross-linked cassava starch obtained by extrusion with sodium trimetaphosphate. Carbohydrate Polymers. (45): 347-353.
    H U L. Food Emulsifier Effects on Corn Meal Extrusion with Dietary Fiber. Dissertation abstracts international. B 54(7):3412. No.DA9400033
    Harper J M. 1986.Extrusion texturization of foods . Food Technol. 40(3): 70-76.
    Harper J M.1989. Food extruders and their applicitions. Mercier C, Linko P, Harper J M. Extrusion Cooking. St, Paul, MN: AACC. 1- 16.
    Isobe, S. F. Zuber, K. Uemura. 1992. A Twin-Screw Press Design for Oil Extraction of Dehulled Sunflower Seeds\. JAOCS. (69):884-889.
    Jung S, Lamsal B P, Stepien V, et al. 2006.Functionality of soy protein produced by enzyme-assisted extraction. J.AOCS. 83(1): 71-78.
    Kahlon T S, Edwards R H, Chow F I. 1998. Effect of extrusion on hypocholesterolemic properties of rice, oat, corn, and wheat bran diets in hamsters. Cereal chemistry. 75(6): 897-903.
    Lawton B. T, Henderson G.A.1972. Derlakta E. J. The effect of extruder variables ongelatinization of cornstarch.Can. J. Chem. Eng., 50(4): 168-173
    Lesko A J, Degady M. 1991. Continuous production of chewing gum using corotating twin screw extruder. USA Patents.
    Linko P, Colonna P. Mercier C.1981. High-temperature, short-time extrusioncooking. Advances in Cereal Science and Technology. 4: 145-235.
    Lucas E W. 1988. Oilseeds: Extrusion for solvent extraction. J. Am. Oil Chem. Soc. (65): 1109-1114.
    Maga, J.A.1978. Cis-trans fatty acid ratios as influenced by product and tempera tare of extrusion cooking Lebensm, Wiss Technol.
    Meuser F, P faller W, Van Lengerch B. 1987.Technological as pects regarding specific changes to the charateristic properties of extrudates by HTST extrusion cooking. New York: extrusion technology for the food science. 35-53.
    Nelson, A. I. W. B. Wijeratne, S. W. Yeh. 1987. Dry Extrusion as an Aid to Mechanical Expelling of Oil from soybeans. JAOCS. (64):1345-1347.
    Obato lu V A.2002.Nutrient and sensory qualities of extruded malted or unmated mille/soyben mixture. Food Chem. 76:129-133.
    Pecz B, Radnoczi G, Cassette S, et al. 1997. Water soluble oxidized starches by peroxide reactive extrusion. Industrial Crops and Products. 7(1): 45-52.
    Rao S.K, Artz W.E. 1989, Effect of extrusion on lipid oxidation. J. Food Sc.i. 54(6): 1580-1583.
    Riaz M N. 2000. Extruders in Food Applications. CRC Press, Robert B. 1987. Breakfast cereals: processed grains for human consumption. Cereal Food World. 32(3):241-243.
    S L E, Hajos G, T M S. 1997.Functional properties of the enzymatically modified soy protein isolate. Acta alimentaria (Acta aliment). 26: 279-285.
    Sacchetti G, Pinnavaia G G Guidolin Eetal. 2004. Effects of extrusion temperature and feed composition on the functional, physical and sensory proper ties of chestnut and rice flour-based snack-like products. Food Research Inter. 37:527- 534.
    Screw-extrusion of chocolate and other fat-containing confectionery materials. In: US Patent 6051267: 2000.
    Sevatson.E. and Huber, G R.2000. Extruder in food industry. In: Extruder in Food Applications. Edited by Mian N. Riaz. Lancaster. Pa.: Technomic Pub. Co.p 167-203.
    Singh R J, Hymowitz T.1999.Soybean genetic resources and crop improvement. Genome, 42: 605-616.
    Wang L, Shogren R L, Willett J L. 1997. Preparation of starch succinates by reactive extrusion. St?rke. 49(3): 116-120.
    Williams, M. A. 1995.Extrusion Preparation for Oil extraction. IN FORM.(6):289-293.
    Wu Wu, Hettiarachchy N S, Qi M. 1998. Hydrophobicity, solubility\ and emulsifying
    Properties of soy protein peptides prepared by papain modification and ultrafiltration. J Amer Oil Chemists Soc. 75(7):845-850.
    Yeh A N, Hwang S. 1992. Effect of screw profile on extrusion-cooking of wheat flour by a twin- screw extruder. International journal of food science & technology. 27(5): 557-563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700