角蛋白酶基因工程菌的构建和表达及重组酶酶学性质与功效研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
角蛋白酶是一种可降解角蛋白的酶类,在多个行业特别是饲料工业中具有较大的应用前景。但是由于天然菌株产酶水平较低,限制了其应用范围。为了获得高效表达的角蛋白酶(kerA)基因工程菌株,本研究分别构建了kerA基因大肠杆菌和毕赤酵母表达载体,并实现了异源表达;分析角蛋白酶的基因和蛋白结构,利用定点突变技术进行改造,改善重组酶表达水平和热稳定性;系统研究了重组角蛋白酶酶学性质,初步评价其在动物试验中的应用效果。具体研究内容和结果如下:
     试验一:地衣芽孢杆菌kerA基因的克隆
     通过PCR以地衣芽孢杆菌DNA为模板扩增出除去信号肽的kerA基因序列。对序列分析显示,该基因长度为1047bp,编码349个氨基酸;与来源于地衣芽孢杆菌PWD-1的kerA基因相比,有5个氨基酸位点发生了改变(Arg-7vs.Glu-7,Asp-121vs. Gly-121, His-136vs. Asn-136, Glu-267vs. Gly-267, Ala-297vs.Val-297),但是仍具有角蛋白酶的三联体催化位点(Asp32, His63和Ser220)。
     试验二:kerA基因在大肠杆菌中的表达及重组酶酶学性质研究
     将试验一所得kerA基因克隆进入原核表达载体pET-30a和pET-32a中,转化大肠杆菌BL21得到能够分泌重组角蛋白酶的基因工程菌E. coli BL21-pET-30a-kerA和BL21-pET-32a-kerA,表达的重组蛋白分别命名为EK1和EK2;两种重组酶分子大小分别约为45kDa和55kDa;超声波处理细胞后,破碎液酶活可达18U/mL和13.5U/mL;重组酶EK1和EK2最适反应pH分别为7.5和8.5,最适温度均是50℃;两种重组酶在50-60℃之间热稳定性均较好,在60℃保温30mmin,EK1和EK2相对酶活仍能保持最高酶活的60%以上
     试验三:kerA基因在毕赤酵母中的表达及重组酶酶学性质研究
     将除去信号肽和终止密码子的kerA基因克隆进入真核表达载体pPICZaA中,转化毕赤酵母X-33后得到基因重组菌P. pastoris pPICZaA-kerAwt,表达的重组角蛋白酶命名为PK1,其分子大小为39kDa左右,经糖蛋白染色实验证明,重组蛋白属于糖蛋白;甲醇诱导下,重组菌P. pastoris pPICZaA-kerAwt产酶水平最高达195U/mL;重组角蛋白酶PK1最适反应pH和最适反应温度分别为7.5和50℃;该酶在50℃孵育2h后,相对酶活仍能保持最高酶活的50%以上;但是当温度超过60℃时热稳定性较差;就不同底物亲和力而言,重组酶PK1水解羽毛粉(β--角蛋白)的能力要显著强于天青角蛋白(α-角蛋白)。
     试验四:高效表达角蛋白酶基因的分子设计及其在毕赤酵母中的表达研究
     利用定点突变技术,通过两种不同的密码子优化策略优化亲本kerA基因,提高重组角蛋白酶的表达水平。优化策略主要包括以下两种方式,一种是将亲本kerA基因的CCG (Pro-3)和GCG (Ala-4)同义突变为CCA和GCT,获得的突变基因为kerAoptil;另外一种是在前者的基础上继续进行突变,将CGC (Arg-322)和CGT(Arg-324)替换为AGA (Arg);将两种优化基因克隆进入pPICZaA载体中,转化P. pastoris X-33得到基因工程菌P. pastoris pPICZaA-kerAopti1和pPICZaA-kerAopti2,表达的重组角蛋白酶分别命名为PK2和PK3;通过实时荧光定量PCR技术检测插入的基因拷贝数和mRNA表达水平,结果表明这两种指标在重组毕赤酵母菌株中均没有显著差异;甲醇诱导下,重组P. pastoris pPICZaA-kerAopti1和pPICZaA-kerAopti2的产酶水平最高分别可达324U/mL和293U/mL,得到的重组蛋白分子大小约为39kDa。
     试验五:耐热角蛋白酶基因的分子设计及其在毕赤酵母中的表达研究
     通过定点突变技术,在亲本kerA基因引入两个Cys生成二硫键,提高重组角蛋白酶的热稳定性。利用Disulfide by DesignTM软件,选择将Gln-316和Leu-320突变为Cys,获得突变基因kerAopti3,构建真核表达载体pPICZaA-kerAopti3,电转进入P. pastoris X-33中,得到基因工程菌株P. pastoris pPICZaA-kerAopti3,获得的重组酶命名为PK4,其分子大小约为39kDa,与前期研究一致;甲醇诱导下,重组菌P. pastoris pPICZaA-kerAopti3产酶水平为24U/mL;重组酶PK4最适pH和最适反应温度分别是8.0和50℃;其热稳定性较PK1有所改善,在60℃孵育30min,相对酶活仍有30%以上,而重组酶PK1在60℃保温30min,残余酶活只有13%左右。
     试验六:重组酶小规模制备及其应用效果评定
     通过30L发酵罐对基因工程菌P. pastoris pPICZaA-kerAopti1进行小规模诱导产酶,结果表明产酶水平最高可达568U/mL,与摇瓶培养相比提高了150%以上。为了考察重组角蛋白酶对生长育肥猪生长性能和饲粮粗蛋白质消化率的影响,本研究选择60头DLY生长育肥猪(58.1±1.1kg),随机分为5个处理组(n=12),处理1为对照组(CD组),采用玉米豆粕型基础饲粮;处理2-5,均添加5%的羽毛粉等N替代基础饲粮中的豆粕,保证试验饲粮粗蛋白质和赖氨酸含量一致,其中角蛋白酶添加水平分别为0(FD组)、3000U/kg (LFD组)、6000U/kg (MFD组)、9000U/kg (HFD组)。结果表明,与CD组相比,FD组平均日增重(ADG)和饲粮粗蛋白质表观消化率(ADCP)显著降低(P<0.05),随着重组角蛋白酶的添加,LFD、MFD和HFD组的ADG和ADCP也随之增加;试验期间,平均日采食量与耗料增重比在各个组之间没有显著差异(P>0.05),但是FD组的耗料增重比最高。
     综上结果表明,本研究成功实现了地衣芽孢杆菌kerA基因在大肠杆菌和毕赤酵母中的表达;获得的大肠杆菌基因工程菌株虽然热稳定性较高,但产酶水平较低,不适合于商业化生产;通过密码子优化后,重组菌P. pastoris pPICZaA-kerAoptil产酶水平远远高于大肠杆菌表达系统,是一株较有潜力的生产菌株;经过动物试验初步评定证明重组角蛋白酶可以改善饲粮蛋白质消化率和利用率;对kerA基因进行改造得到耐热重组角蛋白酶,虽然热稳定性有一定提高,但是表达量显著降低。因此,进一步开展角蛋白酶蛋白结构与功能关系的研究十分必要。
Keratinases are metallo or serine proteinases which can degrade the insoluble structure forming keratin substrates and have immense potential application in the animal nutrition and feed industry. However, the industrial applications of keratinase are still not extensive because of its low level of expression. To increase its production, the keratinase (kerA) gene from Bacillus licheniformis S90was expressed in Escherichia coli BL21and Pichia pastoris X-33. In addition, the native gene was optimized by site-directed mutagenesis to improve its production and thermal stability, and then expressed in P. pastoris X-33. The biochemical properties of all recombinant keratinases were fully characterized.
     Experiment1:Cloning of the kerA gene from Bacillus licheniformis
     The kerA gene was successfully amplified by PCR from B. licheniformis S90DNA. Sequence analysis revealed that the nucleotide sequence of this gene contains1047bp open reading frame (ORF) encoding349amino acids. As compared to the B. licheniformis PWD-1keratinase, there were only five amino acid mutations in the protein sequence of B. licheniformis S90keratinase (Arg-7vs.Glu-7, Asp-121vs. Gly-121, His-136vs. Asn-136, Glu-267vs. Gly-267, Ala-297vs.Val-297). However, both enzymes share the same triad of catalytic residues including Asp-32, His-63, and Ser-220.
     Experiment2:Expression of the kerA gene in E. coli
     The gene kerA was cloned into two conventional vectors, pET30a and pET32a, and expressed in E. coli BL21. From SDS-PAGE analysis, the recombinant keratinases were45and55kDa. They had different optimal pH values (7.5and8.5) but the same optimum temperature of50℃. Both of them had improved thermal stability and kept approx.60%of its max activity after30min at60℃.
     Experiment3:Expression of the kerA gene in P. pastoris X-33
     The gene kerA was cloned into plasmid pPICZaA and expressed in P. pastoris X-33under the control of AOX1promoter. The highest keratinase activity produced by P. pastoris pPICZaA-kerAwt was195U/mL. The keratinase secreted by recombinant P. pastoris was named PK1. The molecular weight of PK1was approx.39kDa. The enzyme PK1was active at pH values from7-9and had optimum pH of7.5. It was stable at moderate temperature and had optimum temperature at50℃. The PK1is much more stable at optimum temperature (50℃), remained approx.50%of the maximum activity at this temperature for2h. However, it was rapidly inactivated at higher temperatures60-70℃for30min. When the substrate chicken feather (β-keratin) meal was used, the yield of enzymatic hydrolysis was significantly higher than the substrate keratin azure (a-keratin).
     Experiment4:Expression of the high-yield kerA gene in P. pastoris X-33
     The main kerA gene was optimized by two codon optimization strategies and expressed in P. pastoris in order to improve the enzyme production compared to the preparations with the native kerA gene. The obtained recombinant keratinase was named PK2and PK3respectively. The results showed that the corresponding mutations (synonymous codons) according to the codon bias in P. pastoris were successfully introduced into keratinase gene. The highest keratinase activity produced by P. pastoris pPICZaA-kerAoptil and pPICZaA-kerAopti2was324U/mL and293U/mL respectively. In addition, there was no significant difference in biomass concentration, target gene copy numbers and relative mRNA expression levels of every positive strain. And the secreted recombinant protein was determined by SDS-PAGE was approx.39kDa.
     Experiment5:Expression of the thermostable kerA gene in P. pastoris X-33
     Improvement of thermal stability of kerA was tried by engineering a de novo designed disulfide bridge. Disulfide design was performed firstly using Disulfide by DesignTM program. In the present study, only one disulfide bond (Gln320and Leu316) was selected, and the respective amino acids were substituted with Cys residues. The newly designed gene which was named kerAopti3expressed in Pichia pastoris. The highest keratinase activity produced by P. pastoris pPICZaA-kerAwt was24U/mL. The obtained recombinant keratinase was named PK4. The molecular weight of PK4was approx.39kDa. The PK4was optimally active at pH8.0and50℃. The PK4produced clearly improved the thermal stability. It was more stable than PK1at60-70℃.
     Experiment6:Production of recombinant keratinase by small-scale fermentation and its effect on growth performance and apparent crude protein digestibility in finisher pigs
     The high density cultivation of Pichia pastoris pPICZaA-kerAopti1was performed in a30-L fermenter. The highest expression level of568U/mL was achieved after72h fermentation. Then, the recombinant keratinase was added to a feather meal dietary to detect its effect on growth performance and crude protein digestibility in finisher pigs. Sixty Duroc×Landrace×Yorkshire finisher pigs (58.1±1.1kg of initial body weight) were randomly allotted to five groups (n=12). The dietary groups include:(1) basal diet without feather meal and keratinase supplementation (CD);(2-5) feather meal dietary group (5%of feather meal inclusion) with keratinase supplementation at a final concentration of0U/kg (FD group)、3000U/kg (LFD group)、6000U/kg (MFD group)、9000U/kg (HFD group). The results indicated that the average daily body-weight gain (ADG) and the apparent digestibility of crude protein (ADCP) were significantly reduced for FD group compared to CD group (P<0.05), but the ADG and ADCP were increased by FD group keratinase supplementation. In addition, no significant effect of keratinase treatment on feed intake and efficiency.
     In summary, the broad the pH profile, substrate specificity and expression level make the recombinant keratinase from P. pastoris pPICZaA-kerAopti1a suitable applicant for various industrial applications.
引文
[1]Williams C M, Richter C S, Mackenzie J M, et al. Isolation, Identification, and Characterization of a Feather-Degrading Bacterium. Applied and Environmental Microbiology,1990(6):1509-1515.
    [2]Lin X, Lee CG, Casale ES, et al. Purification and characterization of keratinase from a feather-degrading Bacillus licheniformis strain. Appl. Environ. Microb.,1992,58:3271-3275.
    [3]Son HJ, Park HC, Kim HS, et al. Nutritional regulation of keratinolytic activity in Bacillus pumilis. Biotechnol. Lett.,2008,30:461-465.
    [4]Liu B, Zhang J, Li B, et al. Expression and characterization of extreme alkaline, oxidation-resistant keratinase from Bacillus licheniformis in recombinant Bacillus subtilis WB600 expression system and its application in wool fiber processing. World Journal of Microbiology and Biotechnology,2013,29:825-832.
    [5]Syed DG, Lee JC, Li WJ, et al. Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresource Technology,2009,100: 1868-1871.
    [6]Tiwary E and Gupta R. Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15:Biochemical characterization and application in feather degradation and dehairing of hides. Bioresource Technology,2010,101: 6103-5110.
    [7]Langeveld JPM, Wang JJ, Van deWiel DFM, et al. Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J. Infect. Dis.,2003,188 (11): 1782-1789.
    [8]Grazziotin A, Pimentel FA, Sangali S, et al. Production of feather protein hydrolysate by keratinolytic bacterium Vibrio sp. kr2. Bioresource Technology,2007,98: 3172-3175.
    [9]Sharma R and Gupta R. Coupled action of y-glutamyl transpeptidase-glutathione and keratinase effectively degrades feather keratin and surrogate prion protein, Sup 35NM. Bioresource Technology,2012 120,314-317.
    [10]Wang JJ, Garlich JD and Shih JCH. Beneficial effects of versazyme, a keratinase feed additive, on body weight, feed conversion, and breast yield of broiler chickens. J. Appl. Poult. Res.,2006,15:544-550.
    [11]Stark CR, Spencer BE, Shih JCH, et al. Evaluation of keratinase stability in pelleted broiler diets. J. Appl. Poult. Res.,2009,18:30-33.
    [12]徐清海和明霞.由鸡羽毛制备复合氨基酸铁复合物方法.沈阳农业大学学报,2001,32(1):5653.
    [13]田桂清.羽毛粉和肠羽粉的加工方法与设备.中国饲料,2000(6):28-29.
    [14]王镜岩,朱圣庚和徐长法.生物化学.北京:高等教育出版社第3版上册,2002:221.
    [15]辛中印和胡新华.改性羽毛蛋白复鞣剂的研究.中国皮革,1995(24):39-42.
    [16]蔺春兰.利用家禽羽毛生产食用浓缩调味液及胱氨酸.山东食品发酵,1997(4):22-25.
    [17]Papadopoulos MC, El Boushy AR and Ketelaars EH. Effect of different processing condition on amino acid digestibility of feather meal determined by chicken assay. Poultry Science,1985,(64):1729-1741.
    [18]谭盈盈和郑平.角蛋白的微生物降解与利用.中国沼气,2001,19(2):30-34.
    [19]Ionata E, Canganella F, Bianconi G, et al. A novel keratinase from Clostridium sporogenes bv. pennavorans bv. nov., a thermotolerant organism isolated from solfataric muds. Microbiol. Res.,2008,163:105-112
    [20]Cedrola SML, de Melo ACN, Mazotto AM et al. Keratinases and sulfide from Bacillus subtilis SLC to recycle feather waste. World Journal of Microbiology and Biotechnology,2012,28:1259-1269.
    [21]Awasthi P and Kushwaha RKS. Keratinase activity of some hyphomycetous fungi from dropped off chicken feathers. IJPBA,2011,2(6):1745-1750.
    [22]Helena G, Friedrich J, Igor K, et al. Similarities and specificities of fungal keratinolytic proteases:comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Applied And Environmental Microbiology,2005,71:3420-3426
    [23]Santos RMD, Firmino AAP, Sa CM, et al. Keratinolytic activity of Aspergillus fumigatus Fresenius. Current Microbiology,1996,33:364-370.
    [24]Brandelli A. Bacterial keratinases:Useful enzymes for bioprocessing agroindustrial wastes and beyond. Food. Bioprocess. Technol.,2008,1:105-116.
    [25]Tawfik M, Muhsin and Adnan H. Aubaid. Partial purification and some biochemical characteristics of exocellular keratinase from Trichophyton mentagrophytes var. erinacei. Mycopathologia,2000,150:121-125.
    [26]Tsuboi R, Ko I, Takamori K, et al. Isolation of a keratinolytic proteinase from Trichophyton mentagrophytes with enzymatic activity at acidic pH. Infection And Immunity,1989,57:3479-3483.
    [27]Macedo AJ, da Silva WOB, Gava R, et al. Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilities. Appl. Environ. Microbiol.200571: 94-596.
    [28]Naghy MA, Ktatng MS, Fadl-Allah EM, et al. Degradation of chicken feather by Chrysoporium georgial. Mycopathologia,1998,2:77-84.
    [29]Xie F, Chao Y, Yang XQ, et al. Purification and characterization of four keratinases produced by Streptomyces sp.strain 16 in native human foot skin medium. Bioresource Technology,2010,101:344-350.
    [30]Li J, Shi PJ, Han XY, et al. Functional expression of the keratinolytic serine protease gene sfp2 from Streptomyces fradiae var. kll in Pichia pastoris. Protein Expression and Purification,2007,54:79-86.
    [31]Ignatova Z, Gousterova A, Spassov G, et al. Isolation and partial characterisation of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus. Can J Microbiol.,1999,45(3):217-22.
    [32]Chitte RR, Nalawade VK and Dey S. Keratinolytic activity from the broth of a feather-degrading hermophilic Streptomyces thermoviolaceus strain SD8. Lett Appl Microbiol,1999,28:131-136.
    [33]涂国全和于静.一株分解羽毛角蛋白酶的弗氏链霉菌变种的初步鉴定.江西农业大学学报,1994,16(4):399-403.
    [34]Riffel A and Brandelli A. Isolation and characterization of a feather-degrading bacterium from the poultry processing industry. J Ind Microbiol Biotechnol.,2002, 29(5):255-258.
    [35]Brandelli A. Production of an extracellular keratinase from Chryseobacterium sp. growing on raw feathers. Electronic Journal of Biotechnology,2005,8:35-42.
    [36]Lal S, Ram RC and Hasija SK. In vitro degradation of keratin by two species of Bacillus. J. Gen. Appl. Microbiol.,1999,45:283-287.
    [37]Pissuwan D and Suntornsuk W. Production of keratinase by Bacillus sp. FK 28 isolated in Thailand. Kasetsart Journal.2001,35(2):171-178.
    [38]Lin X, Kelemen DW, Miller ES, et al. Nucleotide sequence and expression of ker A, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Appl Environ Microb,1995,61,1469-1474.
    [39]Kansoh AL, Hossiny EN and EL-Hameed EKA. Keratinase production from feathers wastes using some local Streptomyces isolates. Australian Journal of Basic and Applied Sciences,2009,3(2):561-571
    [40]Prakash P, Jayalakshmi SK, and Sreeramulu K. Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halodurans PPKS-2. Applied Microbiology and Biotechnology,2010,87: 625-633,2010.
    [41]Mazotto AM, Coelho RR, Cedrola SM, et al. Keratinase production by three Bacillus spp. using feather meal and whole feather as substrate in a submerged fermentation. Enzyme Research,2011:1-7.
    [42]Bressolier P, Letourneau F, Urdaci M, et al. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Applied and Environmental Microbiology,1999,65:2570-2576.
    [43]Bernal C, Cairo J and Coello N. Purification and characterization of a novel exocellular keratinase from Kocuria rosea. Enzyme and Microbial Technology,2006, 38:49-54.
    [44]Kim JD. Purification and characterization of a keratinase from a feather-degrading fungus, Aspergillus flavus strain K-03. Mycobiology,2007,35(4):219-225.
    [45]Kim JS, Kluskens LD, de Vos WM, et al. Crystal structure of fervidolysin from Fervidobacterium pennivorans, a keratinolytic enzyme related to subtilisin. J Mol Biol.2004,335(3):787-797.
    [46]Gupta R and Ramnani P. Microbial keratinases and their prospective applications:an overview. Appl. Microbial. Biotechnol.2006,70:21-33.
    [47]Evans KL, Crowder J and Miller ES. Subtilisins of Bacillus spp. hydrolyze keratin and allow growth on feathers. Can J Microbiol,2000,46:1004-1011.
    [48]Lin X, Shih JCH and Swaisgood HE. Hydrolysis of feather keratin by immobilized keratinase. Appl Environ Microbiol,1996,62:4273-4275.
    [49]Bockle B, Galunsky B and Muller R. Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Appl Environ Microbiol.,1995, 61(10):3705-3710.
    [50]Riffel A, Brandelli A, Bellato CM, et al. Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6. Journal of Biotechnology,2007,128:693-703
    [51]Kojima M, Kanai M, Tominaga M, et al. Isolation and characterization of a feather-degrading enzyme from Bacillus pseudofirmus FA30-01. Extremophiles,2006, 10:229-235.
    [52]Hattori M, Yoshiura K, Negi M, et al. Keratinolytic proteinase produced by Candida albicans. Sabouraudia.1984,22(3):175-183.
    [53]Xu B, Zhong QF, Tang XH, et al. Isolation and characterization of a new keratinolytic bacterium that exhibits significant feather-degrading capability. African Journal of Biotechnology,2009,8:4590-4596.
    [54]Pandianl S, Sundaram J and Panchatcharam P. Isolation, identification and characterization of feather degrading bacteria. European Journal of Experimental Biology,2012,2(1):274-282.
    [55]Cai CG, Chen JS, Qi JJ, et al. Purification and characterization of keratinase from a new Bacillus subtilis strain. J Zhejiang Univ Sci B.2008,9(9):713-720.
    [56]Nam GW, Lee DW, Lee HS, et al. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe Arch Microbiol.,2002178(6):538-47
    [57]Riffel A, Lucas F, Heeb P, et al. Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch. Microbiol.,2003,179:258-265.
    [58]Rissen S and Antranikian G. Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles, 2001,5:399-408.
    [59]Thys RCS, Lucas FS, Riffel A, et al. Characterization of a protease of a feather-degrading Microbacterium species. Lett Appl Microbiol,2004,39:181-186.
    [60]Coward-Kelly G, Chang VS, Agbogbo FK, et al. Lime treatment of keratinous materials for the generation of highly digestible animal feed:1. Chicken feathers. Bioresour Technol.2006,97(11):1337-1143.
    [61]Giongo JL, Lucas FS, Casarin F, et al. Keratinolytic proteases of Bacillus species isolated from the Amazon basin showing remarkable de-hairing activity. World Journal of Microbiology and Biotechnology,2007,23:375-382.
    [62]Korkmaz H, Hur H and Dincer S. Characterization of alkaline keratinase of Bacillus licheniformis strain HK-1 from poultry waste. Annals of Microbiology,2004,54: 201-211.
    [63]Gradisar H, Kern S, and Friedrich J. Keratinase of Doratomyces microsporus App. Microbio. Biotech.,2000,53(2):196-200.
    [64]Malviya HK, Rajak RC and Hasija SK. Synthesis and regulation of extracellular keratinase in three fungi isolated from the grounds of a gelatin factory, Jabalpur, India. Mycopathologia,1992,120:1-4.
    [65]Figueras MJ, Guarro J and Zaror L. Ultrastructural aspects of hair digestion in black piedra infection. Med. Mycol.,1997,35(1):1-6.
    [66]Figueras MJ and Guarro J. Ultrastructural aspect of the keratinolytic activity of piedra. Biology of dermatophytes and other keratinophilic fungi,2000:136-141
    [67]Bockle B, and Muller R. Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers. Applied and Environmental Microbiology,1997,63 (2): 790-792.
    [68]Kunert J. Biochemica mechanism of keratin degradation by the actinomycete Streptomyces fradiae and the fungus microsporum gypseum. Journal of Basic Microbiology,1989,29 (9):597-604.
    [69]Nickerson WJ, Noval JJ and Robison RS. Keratinase:Ⅰ. Properties of the enzyme conjugate elaborated by Streptomyces fradiae. Biochim. Biophys. Aeta,1963 (77): 73-86.
    [70]黄林,熊智强,蔡华静等.链霉菌降解角蛋白的生化机制研究.微生物学通报,2006,33:36-42.
    [71]涂国全,叶亚建,张宝等.链霉菌分解角蛋白的生化机制研究Ⅱ角蛋白分解过程中含硫化合物变化规律的初步探讨.江西农业大学学报,1998,20(1):6-11.
    [72]Kluskens LD, Wilfried GV, Roland J, et al. Molecular characterization of fervidolysin, a subtilisin-like serine protease from the thermophilic bacterium Fervidobacterium pennivorans. Extremophiles,2002,6:185-194.
    [73]Huang Q, Peng Y, Li X, et al. Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr Microbiol,2003,43:169-173
    [74]Nakamura T, Yamagata Y and Ichishima E. Peptide synthesis by proteases in organic solvents:medium effect on substrate specificity. Enzyme Microb Technol,1992 14:842-847
    [75]Yoshimoto T, Oyama h, Honda T, et al. Cloning and expression of subtilisin amylo-sacchariticus gene. J Biochem,1988,103:1060-1065.
    [76]李江,石鹏君,张王照等.弗氏链霉菌丝氨酸蛋白酶基因的克隆及表达.生物工程学报.2005,21(5):782-788.
    [77]Mitsuiki S, Ichikawa M, Oka T, et al. Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Enzyme Microb Technol,2004, 34:482-489.
    [78]Woodfolk JA, Wheatley LM, Piyasena RV, et al. Trichophyton antigens associated with IgE antibodies and delayed type hypersensitivity. Sequence homology to two families of serine proteinases. The Journal of Biological Chemistry,1998,273(45): 29489-29496.
    [79]赵小冬.须癣毛癣菌角蛋白酶的表达及生物学作用.第四军医大学.2004
    [80]Noronha EF, de Lima BD, de Sa CM, et al. Heterologous production of Aspergillus fumigatus keratinase in Pichia pastoris. World Journal of Microbiology and Biotechnology,2002,18:563-568.
    [81]Lin X, Wong SL, Mille ES, et al. Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis. Journal of Industrial Microbiology & Biotechnology, 1997,19:134-138.
    [82]Wang JJ and Shih JC. Fermentation production of keratinase from Bacillus licheniformis PWD-1 and a recombinant B. subtilis FDB-29. J Ind Microbiol Biotechnol,1999,22(6):608-616.
    [83]Wang JJ, Rojanatavorn K and Shih JC. Increased production of Bacillus keratinase by chromosomal integration of multiple copies of the kerA gene. Biotechnol Bioeng, 2004,87(4):459-464.
    [84]梁斌,邢述,付学奇等.角蛋白酶基因kerB的提取、克隆及表达.吉林大学学报:理学版,2003,3:365-368.
    [85]Porres JM, Benito MJ and Lei XG. Functional expression of keratinase(kerA) gene from Bacillus licheniformis in Pichia pastoris. Biotechnol. Lett.2002,24:631-636.
    [86]Krainer FW, Dietzsch C, Hajek T, et al. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microbial Cell Factories 2012,11:22.
    [87]Li PZ, Anumanthan A, Gao XG, et al. Expression of recombinant proteins in Pichia Pastoris. Applied Biochemistry and Biotechnology,2007,142:105-124.
    [88]彭日荷,熊爱生,李贤等.应用毕氏酵母高效表达耐高温植酸酶.生物化学与生物物理学报.2002,34(6):725-730.
    [89]Pace CN. Conformational stability of globular proteins[J]. Trends Biochem Sci, 1990,15:14-17.
    [90]Jeong MY, Kim S, Yun CW, et al. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No.236. J Biotechnol,2007(127):300-309.
    [91]Knowles TPJ and Zahn R. Enhanced stability of human prion proteins with two disulfide bridges. Biophysical Journal,2006(91):1494-1500.
    [92]Siadat OR, Lougarre A, Lamouroux L, et al. The effect of engineered disulfide bonds on the stability of Drosophila melanogaster acetylcholinesterase. BMC Biochemistry, 2006,7:12 doi:10.1186/1471-2091-7-12.
    [93]van Hartingsveldt W, van Zeijl CMJ, Harteveld GM, et al. Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene, 1993(127):87-94
    [94]Rodriguez E, Mullaney EJ and Lei XG. Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochem Biophys Res Commun,2000(268):373-378
    [95]Manczinger L, Rozs M, Vagvolgyi Cs, et al. Isolation and characterization of a new keratinolytic Bacillus licheniformis strain. World J Microbiol Biotechnol,2003,19: 35-39.
    [96]Shih JCH. Recent development in poultry waste digestion and feather utilization. Poult. Sci.,1993,72:1617-1620.
    [97]Onifade AA, Al-Sane NA, Al-Musallam AA, et al. Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Biores Technol,1998,66:1-11
    [98]Bertsch A and Coello N. A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresource Technology,2005,96:1703-1708.
    [99]Odetallah NH, Wang JJ, Garlich JD, et al. Keratinase in starter diets improves growth of broiler chicks. Poultry Science,2003,82:664-670.
    [100]Odetallah NH, Wang JJ, Garlich JD, et al. Versazyme supplementation of broiler diets improves market growth performance. Poultry Science,2005,84:858-864.
    [101]Richt JA, Kunkle RA, Alt D, et al. Identification and characterization of two bovine spongiform encephalopathy cases diagnosed in the United States. J Vet Diagn Invest, 2007,19:142-154.
    [102]Beck KE, Sallis RE, Lockey R, et al. Use of murine bioassay to resolve ovine transmissible spongiform encephalopathy cases showing a bovine spongiform encephalopathy molecular profile. Brain Pathology,2012:265-279.
    [103]Selvam K and Vishnupriya B. Biochemical and molecular characterization of microbial keratinase and its remarkable applications. International Journal of Pharmaceutical & Biological Archives,2012:3(2):267-275.
    [104]Okoroma EA. Enzymatic degradation of prion protein by keratinase producing proteolytic micro-organisms. PhD thesis, Middlesex University.2012
    [105]Sharma A, Chandra S and Sharma M. Difference in keratinase activity of dermatophytes at different environmental conditions is an attribute of adaptation to parasitism. Mycoses,2012,55:410-415.
    [106]韩晓宇,刘亚洁和李江.角蛋白酶基因工程研究.东华理工学院学报.2007,30:287-290.
    [107]Geethanjali PA. Screening of keratinolytic Fungi from the poultry soil for the degradation of chicken feather. Journal of Theoretical and Experimental Biology, 2011,8:53-56.
    [108]Farag AM and Hassan MA. Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme and Microbial Technology,2004,34: 85-93.
    [109]Kainoor PS and Naik GR. Production and characterization of feather degrading keratinase from Bacillus sp. JB 99. India Journal of Biotechnology,2010,9: 384-390.
    [110]Vesela M and Friedrich J. Amino acid and soluble protein cocktail from waste keratin hydrolysed by a fungal keratinase of Paecilomyces marquandii. BBE,2009,14: 84-90.
    [111]Yue XY, Zhang B, Jiang DD, et al. Separation and purification of a keratinase as pesticide against root-knot nematodes. World J Microbiol Biotechno,2011,27: 2147-2153.
    [112]Rai SK and Mukherjee AK. Optimization of production of an oxidant and detergent-stable alkaline P-keratinase from Brevibacillus sp. strain AS-S10-11: Application of enzyme in laundry detergent formulations and in leather industry. Biochemical Engineering Journal,2011,54:47-56.
    [113]Jayalakshmi T, Krishnamoorthy P, Ramesh kumar G, et al. Application of pure keratinase on keratinous fibers to identify the keratinolytic activity. Journal of Chemical and Pharmaceutical Research,2012,4(6):3229-3233
    [114]Rajput R, Sharma R and Gupta R. Biochemical characterization of a Thiol-Activated, oxidation stable keratinase from Bacillus pumilus KS12. Enzyme Research,2010, doi:10.4061/2010/132148.
    [115]Bressollier P, Letourneau F, Urdaci M, et al. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl. Environ. Microbiol.,1999,65:2570-2576.
    [116]Nuc P and Nuc K. Recombinant protein production in Escherichia coli. Postepy Biochem.2006,52(4):1448-456.
    [117]Arnau J, Lauritzen C, Petersen GE, et al. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif, 2006,48(1):1-13.
    [118]Studier FW and Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol,1986,189:113-130.
    [119]Eum JH, Bottjen RC, Pruijssers AJ, et al. Characterization and kinetic analysis of protein tyrosine phosphatase-H2 from Microplitis demolitor bracovirus. Insect Biochem Mol Biol,2010,40:690-698
    [120]赖欣.羽毛降解菌枯草芽孢杆菌B-3的分离鉴定及角蛋白酶基因的克隆表达.[硕士学位论文]四川雅安,四川农业大学,2010.
    [121]Radha S and Gunasekaran P. Cloning and expression of keratinase gene in Bacillus megaterium and optimization of fermentation conditions for the production of keratinase by recombinant strain. J Appl Microbiol,2007,103:1301-1310.
    [122]Stader JA and Silhavy TJ. Engineering Escherichia coli to secrete heterologous gene products. Methods Enzymol.1990,185:166-187.
    [123]Mutsuda M, Michel KP, Zhang X, et al. Biochemical properties of CikA, an unusual phytochrome-like histidine protein kinase that resets the circadian clock in Synechococcus elongatus PCC 7942. J Biol Chem,2003,278:19102-19110.
    [124]LaVallie ER, DiBlasio EA, Kovacic S, et al. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Nat Biotechnol,1993,11:187-193.
    [125]Chandrasekharaiah M, Thulasi A, Vijayarani K, et al. Expression and biochemical characterization of two novel feruloyl esterases derived from fecal samples of Rusa unicolor and Equus burchelli. Gene,2012,500:134-139.
    [126]Macauley-Patrick S, Fazenda ML, McNeil B, et al Heterologous protein production using the Pichia pastoris expression system. Yeast,2005,22:249-270.
    [127]Niu M, Li X, Gong Q, et al. Expression of 4 kD scorpion defensin and its in vitro synergistic activity with conventional antibiotics. World J Microbiol Biotechnol, 2013,29:281-288.
    [128]Radha S and Gunasekaran P. Purification and characterization of keratinase from recombinant Pichia and Bacillus strains. Protein Expr Purif,2009 64:24-31.
    [129]Herscovics A, Orlean P, Glycoprotein biosynthesis in yeast. FASEB journal,1993, 7(6):540-550.
    [130]Roger K and Bretthauer FJ. Glycosylation of Pichia pastoris-derived proteins. Biotechnol Appl Biochem,1999,30:193-200.
    [131]Zhu T, Guo M, Tang Z, et al. Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris. J Appl Microbiol,2009,107(3):954-963.
    [132]Hartner FS, Ruth C, Langenegger D, et al. Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res,2008,36(12):e76.
    [133]Li K, Gao H, Gao L, et al. Recombinant gp90 protein expressed in Pichia pastoris induces a protective immune response against reticuloendotheliosis virus in chickens. Vaccine,2012,30:2273-2281.
    [134]Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res,2001,29(9):e45.
    [135]张巍和沈倍奋.一种快速简便的定点突变方法.免疫学杂志,2003,3:48-51.
    [136]Waterham HR, Digan ME, Koutz PJ, et al. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene,1997,186:37-44.
    [137]Gustafsson C, Govindarajan S and Minshull J. Codon bias and heterologous protein expression. TRENDS Biotechnol,2004,22:346-353.
    [138]Zhang SP, Zubay G and Goldman E. Low-usage codons in Escherichia coli, yeast, fruit fly and primates. Gene,1991,105(1):61-72.
    [139]Schutter DK, Lin YC, Tiels P, et al. Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol,2009,27(6):561-566.
    [140]Hu X, Shi Q, Yang T, et al. Specific replacement of consecutive AGG codons results in high-level expression of human cardiac troponin T in Escherichia coli. Protein Expr Purif,1996,7(3):289-293.
    [141]Spanjaard RA and van Duin J. Translation of the sequence AGG-AGG yields 50% ribosomal frameshift. Proc Natl Acad Sci USA,1988,85(21):7967-7971.
    [142]Bai J, Swartz DJ, Protasevich II, et al. A gene optimization strategy that enhances production of fully functional P-Glycoprotein in Pichia pastoris. PLoS ONE,2011, 6(8):e22577.
    [143]Yao B, Zhang CY, Wang J, et al. High-level expression of phytase gene in Pichia pastoris by codon optimization. Science In China (Series C),1998,28:237-243.
    [144]Chen H, Zhao H., Wang HN, et al. Increasing expression level of phytase gene(phyA) in Pichia pastoris by Changing Rare Codons. Chin J Biochem Mol Biol, 2005,21:171-175.
    [145]Dombkowski AA. Disulfide by Design:a computational method for the rational design of disulfide bonds in proteins, Bioinformatics,2003,19:1855-1853.
    [146]Anthony C and Burgess RR. Conformational Flexibility in sigma 70 Region 2 during Transcription Initiation. J Biol Chem,2002,277(48):46433-46441.
    [147]Anthony LC, Dombkowski AA and Burgess RR. Using disulfide engineering to study conformational changes in the β'260-309 coiled-coil region of E. Coli RNA polymerase during σ70 binding, J Bacteriol.2002,184(10):2634-41.
    [148]Fenel EM, Leisola J, Janis J, et al. A. de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-beta-xylanase II. J Biotechnol.2004,108: 137-143.
    [149]Han ZL, Han SY, Zheng SP, et al. Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface. Appl Microbiol Biotechnol,2009,85:117-126.
    [150]Romanos MA, Scorer CA and Clare JJ. Foreign gene expression in yeast:A review. Yeast,1992,8:423-488.
    [151]Potvin G, Ahmad A and Zhang Z. Bioprocess engineering aspects of heterologous protein production in Pichia pastoris:A review. Biochem Eng J,2012,64:91-105.
    [152]van Heugten E and van Kempen TATG. Growth performance, carcass characteristics, nutrient digestibility and fecal odorous compounds in growing-finishing pigs fed diets containing hydrolyzed feather meal. J Anim Sci,2002,80:171-178.
    [153]Divakala KC, Chiba LI, Kamalakar RB, et al. Amino acid supplementation of hydrolyzed feather meal diets for finisher pigs. J Anim Sci,2008:87:1270-1281.
    [154]Braude R, Fulford RJ and Low AG Studies on digestion and absorption in the intestines of growing pigs. Measurements of the flow of digesta and pH. Brit J Nutr, 1976,36:497-511.
    [155]Wang HY and Guo YM. Effects of enzyme supplementation on broiler chicks fed different type diets and the underlying mechanism [Thesis]. [Beijing]:China Agricultural University,2007
    [156]Wang D, Piao XS, Zeng ZK, et al. Effects of keratinase on performance, nutrient utilization, intestinal morphology, intestinal ecology and inflammatory response of weaned piglets fed diets with different levels of crude protein. Asian-Aust J Anim Sci,2011,24:1718-1728
    [157]Wang D, Zeng ZK, Piao XS, et al. Effects of keratinase supplementation of corn-soybean meal based diets on apparent ileal amino acid digestibility in growing pigs and serum amino acids, cytokines, immunoglobulin levels and loin muscle area in nursery pigs. Arch Anim Nutr,2012,65:290-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700