粘土基多孔吸附/催化材料及其净化典型VOCs的性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气中挥发性有机化合物(Volatile Organic Compounds, VOCs)的净化处理是环境科学与工程领域的研究热点之一。粘土基类吸附/催化材料对VOCs具有较好的吸附/催化性能,在VOCs污染控制领域有良好的应用前景。本文以有机膨润土(或废弃有机膨润土)为原料合成新型层状多孔粘土异构材料(Porous Clay Heterostructures, PCHs)以及锐钛型粘土基多孔二氧化钛(Ti02)纳米催化材料,研究了它们吸附/催化降解VOCs的性能、机制及构效关系。论文取得了以下有价值的研究结果:
     (1)建立了典型PCHs吸附VOCs的多元线性数学模型,系统评价了PCHs吸附VOCs的性能与气体分子理化性质(分子截面积、极化率、蒸发焓和临界体积等)之间的构效关系,揭示了PCHs吸附VOCs的特性及作用机制。发现PCHs对丙酮等羰基VOCs的吸附量高于甲苯、乙苯、邻二甲苯、间二甲苯和对二甲苯等芳香烃VOCs。
     (2)发现空气湿度越高,PCHs和活性炭(AC)对甲苯的平衡吸附量越小,穿透时间越短;与PCHs相比,AC吸附甲苯的性能受水蒸气影响更为明显,甲苯的平衡吸附量下降更大。AC对水蒸气的吸附总量高于PCHs。初步探明了PCHs和AC疏水性能的差异及其水分子循环吸附-脱附机制。
     (3)开发了锐钛型粘土基多孔Ti02纳米催化材料。该材料比表面积和孔容较大,孔径分布均匀,在紫外200-400 nm范围内有强烈吸收,具有较高的催化活性,对甲苯的光催化降解率与其比表面积呈正相关。加入小分子助表面活性剂(DDA)或对硝基苯酚(PNP)可使催化材料比表面积和孔体积增大、平均孔径减小,并提高其光催化降解甲苯的效率。空气湿度80%时,添加DDA或PNP后制得的光催化材料,其降解甲苯的效率由17.90%分别提高至74.60%和76.50%。
With increasing aggravation of indoor air pollution, the removal of volatile organic compounds (VOCs) is a key issue in the field of Environmental Science & Engineering. Clay-based materials have been developed to remove VOCs due to their excellent properties of adsorbents and/or catalysts. In this work, porous clay heterostructures (PCHs) and clay-based anatase titanium dioxide (TiO2) catalyst were synthesized from organic bentonites or disused organic bentonites. The removal performances and the underlying mechanisms of VOCs by adsorption on PCHs or by photocatalystic degradation with clay-based TiO2 were examined and related with the physicochemical properties of VOCs and adsorbents/catalysts. Several conclusions are as follows:
     1. The multivariate linear model of the adsorption of VOCs on typical PCHs was employed to establish the relationships between the adsorption capacities of VOCs on PCHs and the physicochemical properties of VOCs (e.g., molecular cross-sectional area, polarizability, evaporation enthalpy and the critical volume, etc.). The removal performances and the underlying mechanisms of VOCs by adsorption on PCHs were examined. The adsorption capacity of the carbonyl VOCs (e.g., acetone) on PCHs was higher than that of aromatic VOCs (e.g., toluene, ethylbenzene, O-xylene, m-xylene and p-xylene).
     2. As the air humidity increased, the equilibrium adsorption capacities of PCHs or AC for toluene decreased and the breakthrough time was shortened. The effect of the water vapor of adsorptive properties of toluene on AC was more obvious than that of PCHs. It showed that the descending tendency of equilibrium adsorption capacities on AC for toluene were more obvious than that of PCHs at relatively higher humidity. The adsorption-desorption isotherms indicated the water vapor adsorption capacities of AC was higher than that of PCHs. The similarities and differences of hydrophobic properties of PCHs and AC were compared. Meanwhile, the adsorption-desorption circulation mechanism of water moleculars was also proved.
     3. Clay-based anatase titanium dioxide (TiO2) catalyst with large surface area, pore volume and uniform pore size distribution was synthesized, which had strong absorbance in the ultraviolet light wavelength range of about 250-400 nm. The high photocatalytic degradation rate of toluene by clay-based TiO2 depended on the specific surface area of catalysts. The addition of the small co-surfactant (DDA) or p-Nitrophenol (PNP) contributed to the increasing of specific surface area and pore volume, while the decreasing of average diameters. Besides, the degradation efficiency of toluene can also be enhanced by adding DDA or PNP to the surface of catalyst. The degradation rates of toluene by photocatalytic materials increased from 17.90% to 74.60% and 76.50% with the addition of DDA or PNP, respectively, when humidity was 80%.
引文
[1]Robinson J, Nelson W C. National human activity pattern survey data base. United States Environmental Protection Agency, Research Triangle Park, N C.1995
    [2]United States Environmental Protection Agency. Office of air and radiation (6601) EPA Document # 400-R-92-012, March 1993
    [3]United States Environmental Protection Agency, United States Consumer Product Safety Commission (Office of Radiation and Indoor Air). The inside story, a guide to indoor air quality. URL:http://www.epa.gov/iaq/pubs/insidest.html EPA Document # 40-K-93-007, April 1995
    [4]Collins J G. Health characteristics by occupation and industry:United States 1983-1985. Hyattsville, MD:National Center for Health Statistics. Vital Health Stat., 1989,10(170)
    [5]周中平,赵寿堂,朱立,赵毅红.室内污染检测与控制.北京:化学工业出版社,2002
    [6]袁华丽,高松亭,韩朔睽.室内空气中挥发性有机物采样方法进展.环境污染与防治,2002,24(5),297-299
    [7]United States Environmental Protection Agency, center for environmental research information, office of research and development. Compendium method TO14A/TO15. Cincinnati,1997
    [8]闫勇.有机废气中VOC的回收方法.化工环保,1997,17,332-335
    [9]Srivastava P K, Pandit G G, Sharma S, Mohan Rao AM. Volatile organic compounds in indoor environments in Mumbai, India. Sci. Total Environ.,2000,255 (1-3), 161-168
    [10]Schneider P, Gebefugi I, Richter K, Wolke Q Schnelle J, Wichmann H E, Heinrich J. Indoor and outdoor BTX levels in German cities. Sci. Total Environ.,2001,267 (1-3),41-51
    [11]Lee S C, Li W M, Chan L Y Indoor air quality at restaurants with different styles of cooking in metropolitan Hong Kong. Sci. Total Environ.,2001,279 (1-3),181-193
    [12]Jo W K, Kim K Y, Park K H, Kim Y K, Lee H W, Park J K. Comparison of outdoor and indoor mobile source-related volatile organic compounds between low-and high-floor apartments. Environ. Res.,2003,92 (2),166-171
    [13]Son B, Breysse P, Yang W. Volatile organic compounds concentrations in residential indoor and outdoor and its personal exposure in Korea, Environ. Int.2003,29 (1), 79-85
    [14]Zhao Q Y, Lin T. Research on formaldehyde pollution in indoor air during 2001-2003 in Beijing. Built Environ. Public Health, Proc.,2004,50-53
    [15]Yoshino H, Zhao J, Yoshino Y, Kumagai K, Ni Y Y, Li Z H, Liu J, Shigeno T, Miyasaka H, Yanagizawa Y. A study on indoor air quality of urban residential buildings in China. Built Environ. Public Health, Proc.,2004,208-215
    [16]Isbell M A, Stolzberg R J, Duffy L K. Indoor climate in interior Alaska: simultaneous measurement of ventilation, benzene and toluene in residential indoor air of two homes. Sci. Total Environ.,2005,345 (1-3),31-40
    [17]Hinwood A L, Berko H N, Farrar D, Galbally I E, Weeks I A. Volatile organic compounds in selected micro-environments. Chemosphere,2006,63 (3),421-429
    [18]Zuraimi M S, Roulet C A, Tham K W, Sekhar S C, David Cheong K W, Wong N H, Lee K H. A comparative study of VOCs in Singapore and European office buildings. Build. Environ.,2006,41 (3),316-329
    [19]Zhao Y, Chen B, Guo Y L, Peng F F, Zhao J L. Indoor air environment of residential buildings in Dalian, China. Energy Buildings,2004,36 (12),1235-1239
    [20]Feng Y L, Wen S, Chen Y J, Wang X M, Lu H X, Bi X H, Sheng G Y, Fu J M. Ambient levels of carbonyl compounds and their sources in Guangzhou, China. Atmos. Environ.,2005,39 (10),1789-1800
    [21]Wang B, Lee S C, Ho K F. Characteristics of carbonyls:Concentrations and source strengths for indoor and outdoor residential microenvironments in China. Atmos. Environ.,2007,41 (13),2851-2861
    [22]Huang J, Feng Y, Li J, Xiong B, Feng J, Wen S, Sheng G, Wu M. Characteristics of carbonyl compounds in ambient air of Shanghai, China. J Atmos. Chem.,2008,61 (1),1-20
    [23]Saitoh T, Suzuki S, Hiraide M. Polymer-mediated extraction of the fluorescent compounds derived by Hantzsch reaction with dimedone for the sensitive determination of aliphatic aldehydes in air. J. Chromatogr. A,2006,1134 (1-2), 38-44
    [24]Liu W, Zhang J J, Korn L R, Zhang L, Weisel C P, Turpin B, Morandi M, Stock T, Colome S. Predicting personal exposure to airborne carbonyls using residential measurements and time/activity data. Atmos. Environ.,2007,41 (25),5280-5288
    [25]Marchand C, Le Calve S, Mirabel Ph, Glasser N, Casset A, Schneider N, de Blay F. Concentrations and determinants of gaseous aldehydes in 162 homes in Strasbourg (France). Atmos. Environ.,2008,42 (3),505-516
    [26]Guo H, Lee S C, Li W M, Cao J J. Source characterization of BTEX in indoor microenvironments in Hong Kong. Atmos. Environ.,2003,37 (1),73-82
    [27]Daisey J M, Hodgson A T, Fisk W J, Mendell M J, Ten Brinke J. Volatile organic compounds in twelve California office buildings:Classes, concentrations and sources. Atmos. Environ.,1994,28 (22),3557-3562
    [28]Ekberg L E. Volatile organic compounds in office buildings. Atmos. Environ.,1994, 28 (22),3571-3575
    [29]Yang X, Chen Q, Zhang J S, An Y, Zeng J, Shaw C Y. A mass transfer model for simulating VOC sorption on building materials. Atmos. Environ.,2001,35 (7), 1291-1299
    [30]Maroni M, Lundgren B. Assessment of the health and comfort effects of chemical emissions from building materials:the state of the art in the European Union. Indoor Air,1998,8(4),26-31
    [31]Lee C S, Haghighat F, Ghaly W S. A study on VOC source and sink behavior in porous building materials-analytical model development and assessment. Indoor Air, 2005,15(3),183-196
    [32]Wang S B, Ang H M, Tade M O. Volatile organic compounds in indoor environment and photocatalytico xidation, State of the art. Environ. Int.,2007,33 (5),694-705
    [33]Smith J F, Gao Z, Zhang J S, Guo B. A new experimental method for the determination of emittable initial VOC concentrations in building materials and sorption isotherms for IVOCs. Clean,2009,37 (6),454-458
    [34]Van Der Wal J F, Hoogeveen A W, Leeuwen L V. A quick screening method for sorption effects of volatile organic compounds on indoor materials. Indoor Air,1998, 8(2),103-112
    [35]Porstmann F, Boke J, Hartwig S, Kaaden R, Rosenlehner R, Schupp A, Stiller T, Wichmann H E. Benzene and toluene in children's bedrooms. Staub Reinhaltung der Luft,1994,54 (4),147-153
    [36]Ohura T, Amagai T, Shen X Y, Li S, Zhang P, Zhu L Z. Comparative study on indoor air quality in Japan and China:Characteristics of residential indoor and outdoor VOCs. Atmos. Environ.,2009,43 (40),6352-6359
    [37]Ten Brinke J, Selvin S, Hodgson A T, Fisk W J, Mendell M J, Koshland C P, Daisey J M. Development of new volatile organic compound (VOC) exposure metrics and their relationship to "sick building syndrome" symptoms. Indoor Air,1998,8 (3), 140-152
    [38]Reitzig M, Mohr S, Heinzow B, Knoppel H. VOC emissions after building renovations:Traditional and less common indoor air contaminants, potential sources, and reported health complaints. Indoor Air,1998,8 (2),91-102
    [39]Jones A P. Indoor air quality and health. Atmos, Environ.,1999,33 (28),4535-4564
    [40]Sundell J. On the history of indoor air quality and health. Indoor Air,2004,14 (7), 51-58
    [41]Alsmo T, Holmberg S. Sick buildings or not:Indoor air quality and health problems in schools. Indoor Built Environ.,2007,16 (6),548-555
    [42]Brown S K. Volatile organic pollutants in new and established buildings in Melbourne, Australia. Indoor Air,2002,12 (1),55-63
    [43]Samet J M, Spengler J D. Indoor environments and health:Moving into the 21st century. Am. J. Public Health,2003,93 (9),1489-1493
    [44]崔九思.室内空气污染监测方法(第1版).北京:化学工业出版社,2002
    [45]Rumchev K B, Spickett J T, Bulsara M K, Phillips M R, Stick S M. Domestic exposure to formaldehyde significantly increases the risk of asthma in young children. Eur. Respir. J.,2002,20 (2),403-408
    [46]Thrasher J D, Kilburn K H. Embryo toxicity and teratogenicity of formaldehyde. Arch. Environ. Health,2001,56 (4),300-311
    [47]Ding P, Franklin P. Formaldehyde levels and the factors affecting these levels in homes in Perth, Western Australia. Indoor Built Environ.,2002,11 (2),111-116
    [48]Ruddy E N, Carroll L A. Select the best VOC control strategy. Chem. Eng. Prog., 1993,89 (7),28-35
    [49]Khan F I, Ghoshal A K. Removal of volatile organic compounds from polluted air. J. Loss Prevent. Proc.,2000,13 (6),527-545
    [50]Leson G, Winer A M. Biofiltration:An innovative air pollution control technology for VOC emissionns. J. Air Waste Manage. Assoc.,1991,41 (8),1045-1054
    [51]Ruhl M J. Recover VOCs via adsorption on activated carbon. Chem. Eng. Prog., 1993,89(7),37-41
    [52]Gupta V K, Verma N. Removal of volatile organic compounds by cryogenic condensation followed by adsorption. Chem. Eng. Sci.,2002,57 (14),2679-2696
    [53]冯孝庭.吸附分离技术.北京:化学工业出版社,2000
    [54]赵振国.吸附作用应用原理.北京:化学化工出版社,2005
    [55]田森林.有机膨润土吸附挥发性有机物的相关特性研究[博士论文].杭州:浙江大学,2004
    [56]Hassan N M, Ghosh T K, Hines A L, Loyalka S K. Adsorption of water-vapor on BPL activated carbon. Carbon,1991,29 (4-5),681-683
    [57]何启泰,高虎章,崔俊鸣.化学防护技术基础.北京:兵器工业出版社,1996
    [58]Parmar G R, Rao N N. Emerging control technologies for volatile organic compounds. Crit. Rev. Env. Sci. Tec.,2009,39 (1),41-78
    [59]陈平,陈俊.挥发性有机化合物的污染控制.石油化工环境保护,2006,29(3),20-23
    [60]Henschel D B. Cost analysis of activated carbon versus photocatalytic oxidation for removing organic compounds from indoor air. J. Air Waste Manage. Assoc.,1998, 48 (10),985-994
    [61]尹维东,乔惠贤,陈魁学,栾志强.FCJ型有机废气净化装置工艺分析.环境保护,1997(10),13-14
    [62]张丽丹,赵晓鹏,马群,王琪,郭坤敏.改性活性炭对苯废气吸附性能的研究.新型炭材料,2002,17(2),41-44
    [63]周玉昆.挥发性有机化合物的污染控制技术.化工环保,1993,13(4),199-202
    [64]Kim K J, Kang C S, You Y J, Chung M C, Woo M W, Jeong W J, Park N C, Ahn H G Adsorption-desorption characteristics of VOCs over impregnated activated carbons. Catal. Today,2006,111 (3-4),223-228
    [65]Hayashi J, Yamamoto N, Horikawa T, Muroyama K, Gomes V G. Preparation and characterization of high-specific-surface-area activated carbons from K2CO3-treated waste polyurethane. J. Colloid Interface Sci.,2005,281 (2),437-443
    [66]吴军良,尹华强,刘勇军,楚英豪,邹长武.活性炭纤维在环境保护中的应用及前景.环境污染治理技术与设备,2001,2(4),65-71
    [67]张金萍,李德生.活性炭纤维过滤器在室内空气净化中的试验研究.环境工程,2000,18(5),32-35
    [68]黄正宏,康飞宇,杨骏兵,梁开明,黄爱萍.活性炭纤维对挥发性有机物的吸附 及其等温线的拟合.离子交换与吸附,2001,17(6),487-493
    [69]徐东群,崔九思,韩克勤,李宝成.活性炭纤维吸附/热解吸/毛细管气相色谱法测定低浓度VOCs的方法.环境化学,1999,18(6),566-572
    [70]Navarri P, Marchal D, Ginestet A. Activated carbon fibre materials for VOC removal. Filtr. Separat.,2001,38.(1),34-40
    [71]Rong H, Ryu Z, Zheng J, Zhang Y Effect of air oxidation of Rayon-based activated carbon fibers on the adsorption behavior for formaldehyde. Carbon,2002,40 (13), 2291-2300
    [72]黄正宏,康飞宇,梁开明,杨骏兵.氧化处理ACF对VOC的吸附及其等温线的拟合.清华大学学报(自然科学版),2002,42(10),1289-1292
    [73]Lillo-Rodenas M A, Carratala-Abril J, Cazorla-Amoros D, Linares-Solano A. Usefulness of chemically activated anthracite for the abatement of VOC at low concentrations. Fuel Process. Technol.,2002,77-78,331-336
    [74]Ichiura H, Nozaki M, Kitaoka T, Tanaka H. Influence of uniformity of zeolite sheets prepared using a papermaking technique on VOC adsorptivity. Adv. Environ. Res., 2003,7 (4),975-979
    [75]Brosillon S, Manero M H, Foussard J N. Mass transfer in VOC adsorption on zeolite: Experimental and theoretical breakthrough curves. Environ. Sci. Technol.,2001, 35(17),3571-3575
    [76]Takeuchi Y, Iwamoto H, Miyata N, Asano S, Harada M. Adsorption of 1-butanol and p-xylene vapor and their mixtures with high silica zeolites. Sep. Technol.,1995,5 (1), 23-34
    [77]任磊夫.粘土矿物与粘土岩.北京:地质出版社,1992
    [78]万朴,李平,董发勤,彭同江,宋功保.海泡石坡缕石的有机吸附研究.2000,19(3),258-263
    [79]王鸿禧.膨润土.北京:地质出版社,1980
    [80]Jordan J W. Organophilic bentonites. I. Swelling in organic liquids. J. Phys. Chem., 1949,53,294-306
    [81]Jordan J W, Hook B J, Finlayson C M. Organophilic bentonites. Ⅱ. Organic liquid gels. J. Phys. Chem. A,1950,54 (8),1196-1208
    [82]Jordan J W, Williams F J. Organophilic Bentonites. Ⅲ. Inherent properties. Kolloid-Zeitschrift Z. Polymere,1954,137 (1),40-48
    [83]Green W J, Lee G F, Jones R A, Pallt T. Interaction of clay soils with water and organic solvents:Implications for the disposal of hazardous wastes. Environ. Sci. Technol.,1983,17 (5),278-282
    [84]王晓蓉,吴顺年,李万山,盛光遥.有机粘土矿物对污染环境修复的研究进展.环境化学,1997,16(1),1-13
    [85]Barrer R M. Shape-selective sorbents based on clay minerals:a review. Clays Clay Miner.,1989,37 (5),385-395
    [86]Inoe T, Mishima K, Inoe Z. Adsorbents for removal of nitrogen oxides from waste gases. JP-Kokai 07000743,1995
    [87]Kobayashi S, Mizuno K, Kushiyama S, Aizawa R, Koinuma Y, Ohuchi H. Gas adsorption and desorption method. United States, US 5282886,1994
    [88]Chiou C T, Shoup T D. Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity. Environ. Sci. Technol.,1985,19 (12),1196-1200
    [89]Steinberg S M, Swallow C E, Ma W K. Vapor phase sorption of benzene by cationic surfactant modified soil. Chemosphere,1999,38 (9),2143-2152
    [90]Costanza M S, Brusseau M L. Contaminant vapor adsorption at the gas-water interface in soils. Environ. Sci. Technol.,2000,34 (1),1-11
    [91]Guo Y, Thibaud-Erkey C, Akgerman A. Gas-phase adsorption and desorption of single-component and binary mixtures of volatile organic contaminants on soil. Environ. Eng. Sci.,1998,15 (3),203-213
    [92]Morrissey F A, Grismer M E. Kinetics of volatile organic compound sorption/ desorption on clay minerals. J. Contam. Hydrol.,1999,36 (3-4),291-312
    [93]Zhu L Z, Su Y H. Benzene vapor sorption by organobentonites from ambient air. Clays Clay Miner.,2002,50 (4),421-427
    [94]朱利中,苏玉红.苯蒸气在有机膨润土上的吸附行为研究.环境科学学报,2001,6(5),669-673
    [95]苏玉红,沈学优,朱利中.苯蒸气在有机膨润土上的吸附动力学.环境化学,2001,20(5),455-459
    [96]苏玉红,朱利中.苯蒸气在有机膨润土上的吸附性能及机理研究.中国环境科学,2001,21(3),252-255
    [97]Tian S L, Zhu L Z, Shi Y. Characterization of sorption mechanisms of VOCs with organobentonites using a LSER approach. Environ. Sci. Technol.,2004,38 (2), 489-495
    [98]朱利中,田森林.一种多孔粘土异构材料的制备方法.中国,发明专利,授权号:CN 1260002,2006
    [99]Tian S L, Zhu L Z, Shi Y. Adsorption of volatile organic compounds onto porous clay hetero structures based on spent organobentonites. Clays Clay Miner.,2005,53 (2),123-136
    [100]徐东群,崔九思.空气中挥发性有机化合物的采用及分析方法进展.中国环境监测,1997,13(3),48-55
    [101]Sunesson A L, Nilsson C A, Andersson B. Evaluation of adsorbents for sampling and quantitative analysis of microbial volatiles using thermal desorption-gas chromatography. J. Chromatogr. A,1995,699 (1-2),203-214
    [102]Russell J W. Analysis of air pollutants using sampling tubes and gas chromatography. Environ. Sci. Technol.,1975,9 (13),1175-1178
    [103]Cao X L, Hewitt C N. Thermal desorption efficiencies for different adsorbate/ adsorbent systems typically used in air monitoring programmes. Chemosphere,1993, 27 (5),695-705
    [104]Barrer R M, Macleod D M. Intercalation and sorption by montmorillonite. Trans. Farady Soc.,1954,50 (9),980-989
    [105]Barrer R M, Reay J S S. Sorption and intercalation by methyl-ammonium montmorillonites. Trans. Farady Soc.,1957,53,1253-1261
    [106]Harper M, Purnell C J. Alkylammonium montmorillonites as adsorbents for organic vapors from air. Environ. Sci. Technol.,1990,24 (1),55-62
    [107]Lee J F, Mortland M M, Chiou C T, Kile D E, Boyd S A. Adsorption of benzene, toluene, and xylene by two tetramethylammonium-smectites having different charge-densities. Clays Clay Miner.,1990,38 (2),113-120
    [108]Fang L, Clausen Q Fanger P O. Impact of Temperature and humidity on chemical and sensory emissions from building materials. Indoor Air,1999,9 (3),193-201
    [109]Girman J R, Alevantis L E, Kulasingam G C, Petreas M X, Webber L M. The bake-out of an office building:A case study. Environ. Int.,1989,15 (1-6),449-453
    [110]Chiang Y C, Chiang P C, Huang C P. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon,2001,39 (4),523-534
    [111]Lavanchy A, Stoeckli F. Dynamic adsorption, in active carbon beds, of vapour mixtures corresponding to miscible and immiscible liquids. Carbon,1999,37 (2), 315-321
    [112]Zhou L, Li M, Sun Y, Zhou Y P. Effect of moisture in microporous activated carbon on the adsorption of methane. Carbon,2001,39 (5),773-776
    [113]高华生,汪大翚,叶芸春,谭天恩.空气湿度对低浓度有机蒸气在活性炭上吸附平衡的影响.环境科学学报,2002,22(2),194-198
    [114]Rhue R D, Pennell K D, Rao P S C, Reve W H. Competitive adsorption of alkylbenzene and water vapors on predominantly mineral surfaces. Chemosphere, 1989,18(9-10),1971-1986
    [115]Valsaraj K T, Thibodeaux L J. Equilibrium adsorption of chemical vapors on surface soils, landfills and landfarms-a review. J. Hazard. Mater.,1988,19 (1),79-99
    [116]Hauxwell F, Ottewill R H. The adsorption of toluene vapor on water surfaces. J. Colloid Interface Sci.,1968,28 (3-4),514-521
    [117]Pennell K D, Rhue R D, Rao P S C, Johnston C T. Vapor-phase sorption of p-xylene and water on soils and clay minerals. Environ. Sci. Technol.,1992,26 (4),756-763
    [118]Lee J F, Mortland M M, Boyd S A. Shape-selective adsorption of aromatic molecules from water by tetramethylammonium-smecttite. J. Chem. Soc., Faraday Trans.1, 1989,85 (9),2953-2962
    [119]Ballesta P P, Ferradas E Q Aznar A M. Simultaneous passive sampling of volatile organic compounds. Chemosphere,1992,25 (12),1797-1809
    [120]陈秋燕,袁文辉,关建郁.影响活性炭吸附苯系物条件的研究.华南理工大学学报(自然科学版),2000,28(10),117-120
    [121]金一中,徐灏,谢裕坛.活性炭吸附苯、甲苯废气的研究.高校化学工程学报,2004,18(2),258-262
    [122]Vahdat N. Theoretical study of the performance of activated carbon in the presence of binary vapor mixtures. Carbon,1997,35 (10-11),1545-1557
    [123]Li Y X, Chen J Y, Sun Y H. Adsorption of multicomponent volatile organic compounds on semi-coke. Carbon,2008,46 (6),858-863
    [124]罗宏慧,朱质彬,申永浩.活性炭共吸附现象对有机蒸气穿透容量的影响.哈尔滨工业大学学报,1997,29(5),101-104
    [125]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238 (5358),37-38
    [126]Graetzel M, Thampi K R, Kiwi J. Methane oxidation at room temperature and atmospheric pressure activated by light via polytungstate dispersed on titania. J. Phys. Chem.,1989,93 (10),4128-4132
    [127]Herrmann J M, Disdier J, Mozzanega M N, Pichat P. Heterogeneous photocatalysis: In situ photoconductivity study of TiO2 during oxidation of isobutane into acetone. J. Catal.,1979,60 (3),369-377
    [128]Sauer M L, Ollis D F. Photocatalyzed oxidation of ethanol and acetaldehyde in humidified air. J. Catal.,1996,158 (2),570-582
    [129]Obee T N, Brown R T. TiO2 photocatalysis for indoor air applications:effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ. Sci. Technol.,1995,29 (5),1223-1231
    [130]Peral J, Ollis D F. Heterogeneous photocatalytic oxidation of gas-phase organics for air purification:Acetone,1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. J. Catal.,1992,136(2),554-565
    [131]Sauer M L, Ollis D F. Acetone oxidation in a photocatalytic monolith reactor. J. Catal.,1994,149(1),81-91
    [132]Rubio J, Oteo J L, Villegas M, Duran P. Characterization and sintering behaviour of submicrometre titanium dioxide spherical particles obtained by gas-phase hydrolysis of titanium tetrabutoxide. J. Mater. Sci.,1997,32 (3),643-652
    [133]金苏君,陈侠胜,李爽,张兴旺,沈学优.TiO2柱撑膨润土光催化气相甲苯的活性研究:湿度对活性的影响与催化剂结构的关系.环境科学学报,2008,29(12),3331-3336
    [134]Maira A J, Yeung K L, Lee C Y, Yue P L, Chan C K. Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J. Catal., 2000,192(1),185-196
    [135]Qi L, Ma J, Cheng H, Zhao Z. Preparation of BaSO4 nanoparticles in non-ionic w/o microemulsions. Colloids Surf., A,1996,108 (1),117-126
    [136]Emeline A V, Ryabchuk V K, Serpone N. Dogmas and misconceptions in heterogeneous photocatalysis. Some enlightened reflections. J. Phys. Chem. B,2005, 109(39),18515-18521
    [137]Cao L X, Gao Z, Suib S L, Obee T N, Hay S O, Freihaut J D. Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts:Studies of deactivation and regeneration. J. Catal.,2000,196 (2),253-261
    [138]Gregg S J, Sing K S W. Adsorption, surface area and porosity,2nd ed. London: Academic Press,1991
    [139]Kim S B, Hong S C. Kinetic Study for phtotocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Appl. Catal., B:Environ.,2002, 35,305-315
    [140]Alberici R M, Jardim W E. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl. Catal., B:Environ.,1997,14 (1-2),55-68
    [141]Fu X Z, Zeltner W A, Anderson M A. The gas-phase photocatalytic mineralization of benzene on porous Titania-based catalysts. Appl. Catal., B:Environ.,1995,6 (3), 209-224
    [142]d'Hennezel O, Pichat P, Ollis D F. Benzene and toluene gas-phase photocatalytic degradation over H2O and HCl pretreated TiO2:by-products and mechanisms. J. Photochem. Photobiol.,A:Chem.,1998,118 (3),197-204
    [143]Zhao J, Yang X D. Photocatalytic oxidation for indoor air purification:a literature review. Bulid. Environ.,2003,38 (5),645-654
    [144]Wang K H, Tsai H H, Hsieh Y H. The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead. Appl. Catal., B: Environ.,1998,17 (4),313-320
    [145]Luo Y, Ollis D F. Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air:Kinetic promotion and inhibition, time-dependent catalyst activity. J. Catal.,1996,163 (1),1-11
    [146]Ao C H, Lee S C, Yu J Z, Xu J H. Photodegradation of formaldehyde by photocatalyst TiO2:effects on the presences of NO, SO2 and VOCs. Appl. Catal., B: Environ.,2004,54 (1),41-50
    [147]Chen Y S, Hsu Y C, Lin C C, Tai C Y D, Liu H S. Volatile organic compounds absorption in a cross-flow rotating packed bed. Environ. Sci. Technol.,2008,42 (7), 2631-2636
    [148]Garetto T F, Apesteguia C R. Structure sensitivity and in situ activation of benzene combustion on Pt/Al2O3 catalysts. Appl. Catal., B:Environ.,2001,32 (1-2),83-94
    [149]Spinicci R, Faticanti M, Marini P, Rossi S D, Porta P. Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion. J. Mol. Catal. A, Chem.,2003, 197(1-2),147-155
    [150]Lu C S, Lin M R, Wey I H. Removal of EATX from waste gases by a trickle-bed air biofilter. J. Environ. Eng.:Asce.,2001,127 (10),946-951
    [151]Son H K, Striebig B A, Regan R W. Nutrient limitations during the biofiltration of methyl isoamyl ketone. Environ. Prog.,2005,24 (1),75-81
    [152]Derwent R Q Davies T J, Delaney M, Dollard G J, Field R A, Dumitrean P, Nason P D, Jones B M R, Pepler S A. Analysis and interpretation of the continuous hourly monitoring data for 26 C2-Cg hydrocarbons at 12 United Kingdom sites during 1996. Atmos. Environ.,2000,34 (2),297-312
    [153]Sone H, Fugetsu B, Tsukada T, Endo M. Affinity-based elimination of aromatic VOCs by highly crystalline multi-walled carbon nanotubes. Talanta,2008,74 (5), 1265-1270
    [154]Galarneau A, Barodawalla A, Pinnavaia T J. Porous clay heterostructures formed by gallery-templated synthesis. Nature,1995,374 (6522),529-531
    [155]Pichowicz M, Mokaya R. Porous clay heterostructures with enhanced acidity obtained from acid-activated clays. Chem. Commun.,2001, (20),2100-2101
    [156]Wexler A S, Seinfeld J H. Second-generation inorganic aerosol model. Atmos. Environ.,1991,25 A (12),2731-2748
    [157]Marsh K N. Recommended reference materials for the realization of physicochemical properties. Oxford:Blackwell Scientific Publications,1987
    [158]Galarneau A, Barodawalla A, Pinnavaia T J. Porous clay heterostructures (PCH) as acid catalysts. Chem. Commun.,1997, (17),1661-1662
    [159]Polverejan M, Liu Y, Pinnavaia T J. Aluminated derivatives of porous clay heterostructures (PCH) assembled from synthetic saponite clay:Properties as supermicroporous to small mesoporous acid catalysts. Chem. Mater.,2002,14 (5), 2283-2288
    [160]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc.,1918,40 (9),1361-1403
    [161]Yaws C L. Chemical properties handbook. Beijing:McGraw-Hill,1999
    [162]Emmett P H, Brunauer S. The use of low temperature van der Waals adsorption isotherms in determining the surface area of iron synthetic ammonia catalysts. J. Am. Chem. Soc.,1937,59,1553-1564
    [163]Pires J, Carvalho A, de Carvalho M B. Adsorption of volatile organic compounds in Yzeolites and pillared clays. Microporous Mesoporous Mater.,2001,43 (3),277-287
    [164]Giraudet S, Pre P, Tezel H, Cloirec P L. Estimation of adsorption energies using physical characteristics of activated carbons and VOCs'molecular properties. Carbon,2006,44 (10),1873-1883
    [165]Do D D. Adsorption analysis, equilibria and kinetics. London:Imperial College Press,1998
    [166]Delage F, Pre P, Le Cloirec P. Mass transfer and warming during adsorption of high concentrations of VOCs on an activated carbon bed:Experimental and theoretical analysis. Environ. Sci. Technol.,2000,34 (22),4816-4821
    [167]Fukui K, Yonezawa T, Shingu H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys.,1952,20 (4),722-725
    [168]Halsey G. Physical adsorption on non-uniform surfaces. J. Chem. Phys.,1948,16 (10),931-937
    [169]Carey F A. Organic chemistry,5nd ed. New York:McGraw-Hill,2004
    [170]Heinen A W, Peters J A, Bekkum H V. Competitive adsorption of water and toluene on modified activated carbon supports. Appl. Catal., A:Gen.,2000,194,193-202
    [171]Kim P, Zheng Y J, Agnihotri S. Adsorption equilibrium and kinetics of water vapor in carbon nanotubes and its comparison with activated carbon. Ind. Eng. Chem. Res.,2008,47(9),3170-3178
    [172]Okazaki M, Tamon H, Toei R. Prediction of binary adsorption equilibria of solvent and water vapor on activated carbon. J. Chem. Eng. Jpn.,1978,11 (3),209-215
    [173]Chou M S, Chiou J H. Modeling effects of moisture on adsorption capacity of activated carbon for VOCs. J. Environ. Eng.:Asce.,1997,123 (5),437-443
    [174]Brennan J K, Bandosz T J, Thomson K T, Gubbins K E. Water in porous carbons. Colloids Surf., A,2001,187 (187-188),539-568
    [175]Stoeckli H F, Kraehenbuehl F, Morel D. The adsorption of water by active carbons, in relation to the enthalpy of immersion. Carbon,1983,21 (6),589-591
    [176]Wagner C D, Riggs W M, Davis L E, Moulder J F, Muilenberg G E. Handbook of X-ray photoelectron spectroscopy. USA:Perkin-Elmer Corporation,1979
    [177]Cossarutto L, Zimny T, Kaczmarczyk J, Siemieniewska T, Bimer J, Weber J V. Transport and sorption of water vapour in activated carbons. Carbon,2001,39 (15), 2339-2346
    [178]Harding A W, Foley N J, Norman P R, Francis D C, Thomas K M. Diffusion barriers in the kinetics of water vapor adsorption/desorption on activated carbons. Langmuir, 1998,14(14),3858-3864
    [179]Tatlier M, Erdem-Senatalar A. Fractal dimension of zeolite surfaces by calculation. Chaos Soliton Fract.,2001,12 (6),1145-1155
    [180]Avnir D, Farin D, Pfeifer P. Surface geometric irregularity of particulate materials: the fractal approach.J.Colloid Interface Sci.,1985,103 (1),112-123
    [181]Dachs J, Bayona J M. Langmuir-derived model for diffusion-and reaction-limited adsorption of organic compounds on fractal aggregates. Environ. Sci. Technol.,1997, 31 (10),2754-2760
    [182]Avnir D, Jaroniec M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. Langmuir,1989,5 (6),1431-1433
    [183]Kibanova D, Cervini-Silva J, Destaillats H. Efficiency of clay-TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant. Environ. Sci. Technol.,2009,43 (5),1500-1506
    [184]Kibanova D, Trejo M, Destaillats H, Cervini-Silva J. Synthesis of hectorite-TiO2 and kaolinite-TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants. Appl. Clay Sci.,2009,42 (3-4),563-568
    [185]陈宝梁.表面活性剂在土壤有机污染修复中的作用及机理[博士论文].杭州:浙江大学,2004
    [186]Li F B, Li X Z, Ao C H, Lee S C, Hou M F. Enhanced photocatalytic degradation of VOCs using Ln3+-Ti02 catalysts for indoor air purification. Chemosphere,2005,59 (6),787-800
    [187]Kim S B, Lee J Y, Jang H T, Cha W S, Hong S C. Enhanced photocatalytic activity of TiO2 by metal doping for degradation of VOCs in air. J. Ind. Eng. Chem.,2003,9 (4),440-446
    [188]Zhu L Z, Chen B L, Tao S, Chiou C T. Interactions of organic contaminants with mineral-adsorbed surfactants. Environ. Sci. Technol.,2003,37 (17),4001-4006
    [189]Chen B L, Zhu L Z, Zhu J X, Xing B S. Configurations of the bentonite-sorbed myristylpyridinium cation and their influences on the uptake of organic compounds. Environ. Sci. Technol.,2005,39 (16),6093-6100
    [190]Xu S H, Boyd S A. Cationic surfactant adsorption by swelling and nonswelling layer silicates. Langmuir,1995,11 (7),2508-2514
    [191]Jaynes W F, Boyd S A. Clay mineral type and organic-compound sorption by hexadecyltrimethlyammonium-exchanged clays. Soli Sci. Soc. Am. J.,1991,55 (1), 43-48
    [192]Kutsuna S, Toma M, Takeuchi K, Ibusuki T. Photocatalytic degradation of some methyl perfluoroalkyl ethers on TiO2 particles in air:The dependence on the dark-adsorption, the products, and the implication for a possible tropospheric sink. Environ. Sci. Technol.,1999,33 (7),1071-1076

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700