三维微观孔隙结构与岩石变形机制及输运特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石是一种有着复杂内部结构的非均匀材料。在较小的尺度上,岩石含有各种不同的矿物颗粒、胶结物、孔隙和微裂纹等微观特征。孔隙是岩石微观结构重要组分之一,是岩石微观非均匀性的重要体现。孔隙对岩石的力学性质、输运性质和其他岩石物理性质有重要的影响。
     因此:1,应该在岩石力学和岩石物理学中描述孔隙的几何特性如孔隙大小、形状、弯曲度以及孔隙空间结构与连通性;2,定量的讨论孔隙结构如何从微观的尺度控制了岩石的宏观力学行为,将提高对岩石物理性质的认识。
     微CT作为一种新的三维成像技术为研究岩石孔隙结构的复杂性提供了新的视角,这对理解岩石的孔隙结构及其对岩石的物理性质的影响,岩石破坏的演化及其与破裂微观力学的关系有极大的帮助。将新技术与传统经典的岩石实验力学方法相结合,我们开展了以下几方面的工作:
     (1)传统的岩石微观构造的研究是基于二维薄片的,通过利用光学显微镜和SEM,可以对岩石样品的二维薄片进行不同尺度的综合观察;目前绝大多数微CT岩石研究的对象是两相砂岩,对于微观结构更为复杂的灰岩,尚没有任何工作开展。我们首次利用三维微CT成像研究了印第安纳灰岩完整样品和变形样品中的孔隙结构;并创新性的将三维CT图像分为三个组分:固体颗粒,宏孔隙和以微孔隙为主要成分的中间域;在此基础上,给出了每一个独立宏孔隙的三维形态,得到了球形度和等效直径两个几何参数的统计分布,并定量比较了变形对孔隙结构的影响。
     我们的研究指出两个与灰岩力学和输运特性有关的重要问题:与完整样品相比,在变形样品中,宏孔隙的数目显著的减少;中间域(微孔隙)保持了整体骨架的连通性,非弹性压缩不仅导致微孔隙骨架的体积减少,也导致微孔隙骨架厚度的减少;对于印第安纳灰岩,宏孔隙并不是内部连通的,仅仅依靠宏孔隙并不能组成流体通道。因此,为了穿过样品,流体必须流经部分渗透率较低的微孔隙。
     (2)我们用类似的方法分析了Majella灰岩完整样品的三维微观结构,给出了Majella灰岩宏孔隙与微孔隙的定量描述。然后,我们获得了不同围压条件下的Majella灰岩样品在变形前后的三维X光成像,通过三维数字图像相关分析,首次获得了灰岩样品的不可逆变形位移场和三维应变张量场;进一步,我们运用数字图像处理和形态学分析对样品的三维应变场进行了详细的分析,分析了不同围压条件下多孔灰岩的破坏机制,以及Majella灰岩中的脆韧性转换的破裂形态。
     我们的研究指出,对于Majella灰岩样品,在低围压条件下样品很快达到了差应力峰值,并进入应变软化阶段,具有典型的脆性破坏特征,高应变区在三维空间中体现为较窄的应变局部化带;对于高围压样品,在进入非弹性变形阶段后,样品一直处于应变硬化的状态,高应变区在三维空间中的分布更为分散,有典型的碎屑流特征。当围压介于两者之间时,变形曲线比较平直、斜率接近0,没有显著的应变硬化或者应变软化的趋势;即使在较大轴向应变的情况下,也没有出现差应力峰值;高应力区不是单条窄剪切带,而是由多个不同角度的层状结构叠加而成剪切区域,宽度约为9mm;即使在同一层状结构内部,应变的分布也是不均匀的;同时具备分散式和局部化的特征,其破坏过程是脆性破裂和碎屑流共同作用的结果。
     (3)局部化离散压缩带是一种介于脆性和韧性之间的特殊破坏模式。这是一种平面结构压缩带,垂直于平面方向的缩短导致了平面内的碎裂压缩,伴随着非常少量的剪切。这种压缩带的首次报道见于野外研究中,后来在实验室得到了系统的研究。其变形机制尚无定论。Fortin等人(Fortin et al.(2006))发现在Bleuswiller砂岩中有局部的孔隙块存在。并推测,这些孔隙块体的塌缩造成了某种程度上的应力扰动,应力扰动最终导致了压缩带的成核聚集。此假设有一定影响力,并已经被用于实际研究中。
     我们对Bleuswiller砂岩变形后的样品进行X光CT扫描,并在此基础上给出了孔隙块体的数学定义,从而能够分析孔隙块体的特征及其在三维空间里的几何分布;进一步我们利用COV算法抽象出样品的应变局部化带的在三维空间里的分布;最后我们将这两者在空间里的位置进行比较,并直观的观察到:孔隙块是一系列尺度在毫米量级、局部孔隙度相对较低的空间区域;其形状近似为椭球形(长轴约为3mm至5mm),在三维空间中的位置是相对随机的。通过比较孔隙块与应变局部化带的空间位置,我们认为:应变局部化带在三维空间里的位置与孔隙块并没有直接关系,也就是说Fortin等人关于孔隙块导致了离散压缩带的假设可能是不成立的。
     (4)数据分类是所有岩石CT研究工作的基础。为了能够更准确的对岩石样品的微观结构进行定量分析,我们需要一种稳定的、不依赖个人经验的、能获得全局最优解的多层分类算法。虽然大津算法可以基本满足要求,但是当将其推广至高灰度分辨率CT图像的多层分类问题是,计算效率非常低,而且占用了过量的内存,导致计算无法进行。
     为此我们提出了一个改进的基于查找表的大津算法。在内存控制方面,通过对灰度分布的裁剪,和分步输出H查找表,有效的控制了内存占用;在运算速度方面,通过逐级搜索,将低层数分类的最优阈值的结果用作高维分类阈值的限制条件,从而实现了在大幅降低运算量的同时,保证得到全局最优的阈值。这种改进方案可以将计算时间减少为之前的约1/50。之后利用递归的思想,我们的算法可以很自然的升级到多层分类。
Rock is a typical inhomogeneous material. The inhomogeneities of rock may becaused by its complex microstructure, including grains, pores, and cements. Porespace is one of the most important part of microstructure and will influence thebehaviors of rock on a macroscale. The mechanical and transport behaviors of a rockare sensitively dependent on its pore geometry. Hence it is of fundamentalimportance in rock physics to characterize the pore space and its geometricattributes, including pore size, shape, tortuosity and connectivity.
     Therefore, quantitative characterization of pore geometry of rocks is of greatsignificance to both rock mechanics and rock physics; and being able to interpret themacro behaviors of rocks from a microstructure perspective can advance rock studyto a higher level.
     Recent advances in3-dimensional imaging techniques such as X-raymicrocomputed tomography (microCT) have provided enhanced perspective on poregeometry complexity, which has contributed to useful insights into the preexistingpore space and how it influences rock physical properties, as well as damageevolution and its relation to the micromechanics of failure. With a combination ofconventional rock mechanics experiments and an advanced technology such asmicroCT, a few approaches have been made.
     First of all, this thesis studied the pore structure in intact and inelasticallycompacted Indiana limestone using microCT imaging. Guided by detailedmicrostructural observations and using the Otsu’s global thresholding method, the3D images acquired at voxel resolution of4m were segmented into three domains:solid grains, macropores and an intermediate zone dominated by microporosity. Themacropores were individually identified by morphological processing and their shapequantified by their sphericity and equivalent diameter. The new data revealed asignificant reduction of the number of macropores in hydrostatically and triaxiallycompressed samples with respect to the intact material, in agreement with previousmicrostructural analysis. The intermediate (microporosity) domains remained interconnected in compacted samples. The data suggest that the inelasticcompaction in Indiana limestone is manifested by not only a decrease in the volumefraction of the microporosity backbone, but also a corresponding decrease in itsthickness.
     Secondly, this thesis analyzed the pore structure of the intact sample of Majellalimestone following the same routine, and the quantitative characterization of themacro pore and micro pore was presented. Besides, CT scan was applied to eachsample before and after deformation, and then the TOMOWARP code was used toperform3D volumetric DIC on the two images to derive the permanent displacementfield and the full3D strain tensor field of each sample. Furthermore, a detailedanalysis of the3D strain field has been made with the help of image processing andmorphological methods.
     Thirdly, this study tried to gain some insight of how the localized discretecompaction band would develop. The discrete compaction band is an intermediatefailure mode between the two end-members of brittle faulting and compactivecataclastic flow. So far, there are only three sandstones that have been observed todevelop discrete compaction bands in the lab, which are Bleuswiller sandstone,Bentheim sandstone and Diemelstadt sandstone. The mechanism of the compactionband is still under debate. This work applied CT scan on each Bentheim sandstonesample before and after deformation. Based on the CT images, the porosity patchwas defined and the strain localization band was recognized. Both porosity patch andstrain localization were plotted together in3D space, which led to a conclusion thatthe locations of these patches did not coincide with where the compaction bandsformed.
     Finally, a fast algorithm for multi-level thresholding is presented. Rock is atypical multi-phase medium on a microscale, with the participation of different grains,pores, micro cracks and so on. To quantitatively study the behavior of rock on amicroscale, a reliable way of segmenting the CT images of rock is required. The Otsus method of image segmentation selects an optimum threshold by maximizing the between-class variance in a gray image. However, this method becomes verytime-consuming and resource-consuming when applied to a multi-level thresholdproblem due to the fact that a huge number of iterations are required for computingthe cumulative probability and the mean of a class, and a great amount of RAM isrequired to restore the look-up table. To improve the efficiency of Otsu's method, anew fast multi-level algorithm is proposed, which can greatly reduce computing timewith mush less RAM and produce the global optimum in the mean time.
引文
Abak, A.T., Baris, U., Sankur, B.,1997. The performance evaluation of thresholding algorithmsfor optical character recognition. In: IEEE Proc. Internat. Conf. Document Analysis and
    Recognition, Ulm, Germany, August, pp.697–700.Aiteanu, D., Ristic, D., Graser, A.,2005. Content based threshold adaptation for image
    processing in industrial application. In: Internat. Conf. Control and Automation, Budapest,Hungary, June, pp.1022–1027.
    Amer, A.,2003. Memory-based spatio-temporal real-time object segmentation forvideo surveillance. In: Proc. SPIE Internat. Symposium on Electronic Imaging, Conf. onReal-Time Imaging VII, Santa Clara, CA, USA, January, pp.10–21.
    Atkins, M.S., Mackiewich, B.T.,1998. Fully Automatic Segmentation of the Brain in MRI. IEEETrans. Med. Imaging17(1),98–107.
    Chien, S.Y., Huang, Y.W., Hsieh, B.Y., Ma, S.Y., Chen, L.G.,2004. Fast video segmentationalgorithm with shadow cancellation, global motion compensation, and adaptive thresholdtechniques. IEEE Trans. Multimedia6(5),732–748.
    Demirkaya, O., Asyali, M.H.,2004. Determination of image bimodality thresholds fordifferent intensity distribution. Signal Proc.-Image Commun.19(6),507–516.
    Fan, S.K.S., Lin, Y.,2007. A multi-level thresholding approach using a hybrid optimalestimation algorithm. Pattern Recognition Lett.28(5),662–669.
    Jing, G., Rajan, D., Siong, C.E.,2005. Motion detection with adaptive background anddynamic thresholds. In: IEEE Internt. Conf. Information, Communications and SignalProcessing, Bangkok, Thailand, December, pp.41–45.
    Liao, P.S., Chen, T.S., Chung, P.C.,2001. A fast algorithm for multi-level thresholding. J. Inf. Sci.Eng.17(5),713–727.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.,2000. FVC2000Fingerprint Database. Availablefrom:. Ng, H.F.,2006. Automatic thresholdingfor defect detection. Pattern Recognition Lett.27(14),1644–1649.
    Ong, E.P., Tye, B.J., Lin, W.S., Etoh, M.,2002. An efficient video object segmentation scheme.In: IEEE Proc. Internat. Conf. Acoustics, Speech, and Signal Processing, Orlando, Florida, USA,May, pp.3361–3364.
    Otsu, N.,1979. A threshold selection method from gray-level histogram. IEEE Trans. SystemsMan Cybern.9(1),62–66.
    Quweider, M.K., Scargle, J.D., Jackson, B.,2007. Grey level reduction for segmentation,thresholding and binarisation of images based on optimal partitioning on an interval. IETImage Process.1(2),103–111.
    Saha, P.K., Udupa, J.K.,2001. Optimum Image thresholding via class uncertainty and regionhomogeneity. IEEE Trans. Pattern Anal. Mach. Intell.23(7),689–706.
    Sargur N.S.,1991. Center of Excellence for Document Analysis and Recognition (CEDAR).Available from:.
    Sezgin, M., Sankur, B.,2004. Survey over image thresholding techniques and quantitativeperformance evaluation. J. Electron. Imaging.13(1),146–165.
    Su, C., Amer, A.,2006. A real-time adaptive thresholding for video change detection. In: IEEEInternat. Conf. Image Processing, Atlanta, Georgia, USA, October, pp.157–160.
    Sukmarg, O., Rao, K.R.,2000. Fast object detection and segmentation in MPEG compresseddomain. In: IEEE TENCON2000Proc., Kuala Lumpur, Malaysia, September, pp.364–368.
    Yan, F., Zhang, H., Kube, C.R.,2005. A multistage adaptive thresholding method. PatternRecognition Lett.26(8),1183–1191.
    Zahara, E., Fan, S.K.S., Tsai, D.M.,2005. Optimal multi-thresholding using a hybridoptimization approach. Pattern Recognition Lett.26(8),1082–1095.
    Zhang, D., Lu, G.,2001. Segmentation of moving objects in image sequence: a review.Circuits Syst. Signal Process.20(2),143–183.
    Al Kharusi A.S., Blunt M.J.(2007) Network extraction from sandstone and carbonate porespace images, J. Petrol. Sci. Eng.45,41-46.
    Anselmetti, F. S., S. Luthi, and G. P. Eberli (1998), Quantitative characterization of carbonatepore systems by digital image analysis, AAPG Bulletin,82,1815-1836.
    Arns, C. H., M. A. Knackstedt, W. Val Pinczewski, and N. S. Martys (2004), Virtualpermeametry on microtomographic images, J. Pet. Sci. Eng.,45,41-46.
    Auzerais, F. M., J. Dunsmuir, B. B. Ferreol, N. Martys, J. Olson, T. S. Ramakrishnan, D. H.Rothman, and L. M. Schwartz (1996), Transport in sandstone: A study based on threedimensional microtomography, Geophys. Res. Lett.,23,705-708.
    Baechle, G. T., A. Colpaert, G. P. Eberli, and R. J. Weger (2008), Effects of microporosity onsonic velocity in carbonate rocks, The Leading Edge(August),1012-1018.
    Baud, P., A. Schubnel, and T.-f. Wong (2000), Dilatancy, compaction and failure mode inSolnhofen limestone, J. Geophys. Res.,195,19289-19303.
    Bauer D., Youssef S., Han M., Bekri S., Rosenberg E., Fleury M., Vizika O.(2011) Frommicrocomputed tomography images to resistivity index calculations of heterogeneouscarbonates using a dualporosity
    pore-network approach: Influence of percolation on the electrical transport properties, Phys.Rev. E84,011133.
    Brace, W. F., E. Silver, K. Hadley, and C. Goetze (1972), Cracks and pores-a closer look,Science,178,163-165.
    Choquette, P. W., and L. C. Pray (1970), Geologic nomenclature and classification ofporosity in sedimentary carbonates, AAPG Bulletin,54,207-250.
    Churcher, P. L., P. R. French, J. C. Shaw, and L. L. Schramm (1991), Rock properties ofBerea sandstone, Baker dolomite, and Indiana limestone, paper presented at SPEInternational Symposium on Oilfield Chemistry, Anaheim, CA..
    Coker, D. A., S. Torquato, and J. H. Dunsmuir (1996), Morphology and physical properties ofFontainebleau sandstone via tomographic analysis, J. Geophys. Res.,101,17497-17506.
    Dresen, G., and Y. Guéguen (2004), Damage and rock physical properties, in Mechanics ofFluid-Saturated Rocks, edited by Y. Guéguen and M. Boutéca, pp.169-217, Elsevier,Amsterdam.
    Folk, R. L.(1980), Petrology of Sedimentary Rocks,184pp., Hemphill, Austin.
    Fredrich, J. T.(1999),3D imaging of porous media using laser scanning confocal microscopywith application to microscale transport processes, Phys. Chem. Earth (A),24,551-561.
    Fredrich, J. T., B. Evans, and T.-f. Wong (1989), Micromechanics of the brittle to plastictransition in Carrara marble, J. Geophys. Res.,94,4129-4145.
    Fredrich, J. T., B. Menendez, and T.-f. Wong (1995), Imaging the pore structure ofgeomaterials, Science,268,276-279.
    Fredrich, J. T., A. A. Di Giovanni, and D. R. Noble (2006), Predicting macroscopic transportproperties using microscale image data, J. Geophys. Res.,111, B03201,doi:03210.01029/02005JB003774.
    Gleeson J.W., Woessner D.E.(1991) Three-dimensional and flowweighted NMR imaging ofpore connectivity in a limestone, Magn. Reson. Imag.9,5,879-884.
    ILI (2007), Indiana Limestone Handbook,22nd edition,154pp., Indiana Limestone Instituteof America, Inc., Bedford, IN.
    Ketcham, R. A., and W. D. Carlson (2001), Acquisition, optimization and interpretation ofX-ray computed tomographic imagery: applications to the geosciences, Computers&Geosciences,27,381-400.
    Kleinberg R.L.(1999) Nuclear magnetic resonance, in Experimental Methods in the PhysicalSciences, Wong P.-Z.(ed.), Academic Press, San Diego, Vol.35, pp.337-385.
    Knackstedt, M. A., S. Latham, M. Madadi, A. Sheppard, and T. Varslot (2009), Digital rockphysics:3D imaging of core material and correlations to acoustic and flow properties, TheLeading Edge, January,28-33.
    Lindquist, W. B., A. Venkatarangan, J. Dunsmuir, and T.-f. Wong (2000), Pore and throatsize distributions measured from synchrotron X-ray tomographic images of Fontainebleausandstones, J. Geophys. Res.,105,21509-21527.
    Lorensen, W. E., and H. E. Cline (1987), Marching cubes: a high resolution3D surfaceconstruction algorithm, Computer Graphics,21,163-169.
    Lucia, F. J.(1995), Rock-fabric/petrophysical classification of carbonate pore space forreservoir characterization, AAPG Bulletin,79,1275-1300.
    Myer, L. R., J. Kemeny, N. G. W. Cook, R. Ewy, R. Suarez, and Z. Zheng (1992), Extensilecracking in porous rock under differential compressive stress, Appl. Mech. Rev.,45,263-280.
    Otsu, N.(1979), A threshold selection method from gray-level histograms, IEEE Trans. Sys.,Man., Cyber.,9,62-66.
    Paterson, M. S., and T.-f. Wong (2005), Experimental Rock Deformation-The Brittle Field,2nd Edition,348pp., Spinger-Verlag, New York.
    Patton, J. B., and D. D. Carr (1982), The Salem Limestone in the Indiana Building-StoneDistrict,31pp., Department of Natural Resources, Geological Survey Occasional Papers38, Bloomington, IN.
    Pittman, E. D.(1971), Microporosity in carbonate rocks, AAPG Bulletin,55,1873-1878.
    Robinson, R. H.(1959), The effect of pore and confining pressure on the failure process insedimentary rocks, Colorado School of Mines Quart.,54,177-199.
    Russ, J. C.(1990), Computer-Assisted Microscopy, The Measurement and Analysis of Images,453pp., Plenum, NY.
    Spanne, P., J. F. Thovert, C. J. Jacquin, W. B. Lindquist, K. W. Jones, and P. M. Adler (1994),Synchrotron computer microtomography of porous media: Topology and transports, Phys.Rev. Lett.,73,2001-2004.
    Sun, W. C., J. E. Andrade, J. W. Rudnicki, and P. Eichhubl (2011), Connectingmicrostructural attributes and permeability from3D tomographic images of in situshear-enhanced compaction bands using multiscale computations, Geophys. Res. Lett.,38,L10302, doi:10310.11029/12011GL047683.
    Underwood, E. E.(1970), Quantitative Stereology,274pp., Addison Wesley, Reading.
    Vajdova, V., P. Baud, and T.-f. Wong (2004), Compaction, dilatancy and failure in porouscarbonate rocks, J. Geophys. Res.,109, B05204, doi:05210.01029/02003JB002508.
    Vajdova, V., W. Zhu, T.-M. N. Chen, and T.-f. Wong (2010), Micromechanics of brittlefaulting and cataclastic flow in Tavel limestone, J. Struct. Geol.,32,,2010,1158-1169.
    Vajdova, V., P. Baud, L. Wu, and T.-f. Wong (2012), Micromechanics of inelasticcompaction in two allochemical limestones, J. Struct. Geol., submitted.
    Wadell, H.(1935), Volume, shape and roundness of quartz particles, Jour. Geol.,43,250-280.
    Wawersik, W. R., and C. Fairhurst (1970), A study of brittle rock fracture in laboratorycompression experiments, Int. J. Rock Mech. Min. Sci.,7,561-575.
    White, J. A., R. I. Borja, and J. T. Fredrich (2006), Calculating the effective permeability ofsandstone with multiscale lattice Boltzmann/finite element simulations, Acta Geotech.,1,195-209.
    Wong, T.-f., C. David, and B. Menéndez (2004), Mechanical compaction, in Mechanics ofFluid-Saturated Rocks, edited by Y. Guéguen and M. Boutéca, pp.55-114, ElsevierAcademic Press, Amsterdam.
    Zhan, X., L. M. Schwartz, M. N. Toksoz, W. C. Smith, and F. D. Morgan (2010), Pore-scalemodeling of electrical and fluid transport in Berea sandstone, Geophysics,75, F135-F142.
    Zheng, Z.(1989), Compressive stress-induced microcracks in rocks and application toseismic anisotropy and borehole stability,227pp., Ph.D. thesis, UC Berkeley.
    Zhu, W., P. Baud, and T.-f. Wong (2010), Micromechanics of cataclastic pore collapse inlimestone, J. Geophys. Res.,115, B04405, doi:04410.01029/02009JB006610.
    Andrews, D. J.2007. Compaction can limit peak vertical velocity at Yucca Mountain. Eos Trans.AGU,88(52), Fall Meet. Suppl., Abstract S14C-07.
    Andrews, D. J., Hanks, T. C., Whitney, J. W.2007. Physical limits on ground motion at YuccaMountain. Bull. Seism. Soc. Am.97,1771-1792.
    Anselmetti, F.S., Luthi, S., Eberli, G.P.,1998. Quantitative characterization of carbonate poresystems by digital image analysis. AAPG Bulletin82,1815-1836.
    Antonellini, M., Aydin, A.1994. Effect of faulting on fluid flow in porous sandstones:petrophysical properties. Am. Asso. Petrol. Geol. Bull.78,355-377.
    Antonellini, M. A., Pollard, D. D.1995. Distinct element modeling of deformation bands insandstone. J. Struct. Geol.17,1165-1182.
    Ashby, M. F., Hallam, S. D.1986. The failure of brittle solids containing small cracks undercompressive stress states. Acta metall.34,497-510.
    Atkinson, B.K., Meredith, P.G.,1987. Experimental fracture mechanics data for rocks andminerals. In: Atkinson, B.K.(Ed.), Fracture Mechanics of Rock. Academic Press, London,477-525.
    Aydin, A., Johnson, A. M.1978. Development of faults as zones of deformation bands and as slipsurfaces in sandstone. Pure and Appl. Geophys.116,931-942.
    Aydin, A., Borja, R. I., Eichhubl, P.2006. Geological and mathematical framework for failuremodes in granular rock. J. Struct. Geol.28,83–98.
    Azeemuddin, M., Scott, T. E., Zaman, M.1994. Variations in acoustic wave velocity inducedduring deformation of Ekofisk chalk, RMC-94-17. The University of Oklahoma, Norman, OK,27.
    Baechle, G. T., Colpaert, A., Eberli, G. P., Weger, R. J.2008. Effects of microporosity on sonicvelocity in carbonate rocks. The Leading Edge (August),1012-1018.
    Baud, P., Schubnel, A., Wong, T.-f.,2000a. Dilatancy, compaction and failure mode in Solnhofenlimestone. J. Geophys. Res.195,19289-19303.
    Baud, P., Zhu, W., Wong, T.-f.2000b. Failure mode and weakening effect of water on sandstone.J. Geophys. Res.105,16371-16390.
    Baud, P., Klein, E., Wong, T.-f.,2004. Compaction localization in porous sandstones: spatialevolution of damage and acoustic emission activity. J. Struct. Geol.,26,603-624.
    Baud, P., Vajdova, V., Wong, T-f.,2006. Shear-enhanced compaction and strain localization:Mechanical data and constitutive parameters for porous sandstones, J. Geophys. Res.,111,B12401, doi:10.1029/2005JB004101.
    Baud, P., Vinciguerra, S., David, C., Cavallo, A., Walker, E., Reuschle, T.,2009. Compaction andfailure in high porosity carbonates: mechanical data and microstructural observations. Pure Appl.Geophys.166,869-898.
    Baud, P., P.G. Meredith, E. Townend,2012. Permeability evolution during triaxial compaction ofan anisotropic porous sandstone, J. Geophys. Res.,117, B5, doi:10.1029/2012JB009176.
    Bemer, E., Vincké, O., Longuemare, P.,2004. Geomechanical log deduced from porosity andmineralogical content. Oil, Gas Sci. Tech.-Rev. IFP59,405-426.
    Bésuelle, P., Desrues, J., Raynaud, S.,2000. Experimental characterization of the localizationphenomenon inside a Vosges sandstone in a triaxial cell. Int. J. Rock Mech. Min. Sci.37,1223-1237.
    Bésuelle, P., Baud, P., Wong, T.-f.2003. Failure mode and spatial distribution of damage inRothbach sandstone in the brittle-ductile transition. Pure Appl. Geophys.160,851-868.
    Bésuelle, P., Rudnicki, J. W.2004. Localization: shear bands and compaction bands. In:Mechanics of Fluid-Saturated Rocks (edited by Guéguen, Y., Boutéca, M.). Elsevier AcademicPress, Amsterdam,219-321.
    Bhatt, J. J., Carroll, M. M., Schatz, J. F.1975. A spherical model calculation for volumetricresponse of porous rocks. J. Appl. Mech.42,363-368.
    Bhattacharyya, A., Friedman, G. M.,1979. Experimental compaction of ooids and lime mud andits implication for lithification during burial. J. Sed. Petrol.49,1279-1286.
    Bjorlykke, K., Hoeg, K., Faleide, J. I., Jahren, J.2005. When do faults in sedimentary basins leak?Stress and deformation in sedimentary basins; examples from the North Sea and Haltenbanken,offshore Norway. AAPG Bull.89,1019-1031.
    Blenkinsop, T. G.2000. Deformation Microstructures and Mechanisms in Minerals and Rocks.Kluwer, Dordrecht.
    Borja, R. I., Aydin, A.2004. Computational modeling of deformation bands in granular media. I.Geological and mathematical framework. Computer methods in applied mechanics andengineering193,2667-2698.
    Boutéca, M., Sarda, J.-P., Schneider, F.,1996. Subsidence induced by the production of fluids.Rev. Inst. Franc. Petr.51,349-379.
    Brace, W. F.1978. Volume changes during fracture and frictional sliding: a review. PAGEOGH116,603-614.
    Brzesowsky, R., Spiers, C. J., Peach, C. J., Hangx, S. J. T.2011. Failure behavior of single sandgrains: Theory versus experiment. J. Geophys. Res.116, B06205, doi:10.1029/2010JB008120.
    Byerlee, J. D.1968. Brittle-ductile transition in rocks. J. Geophys. Res.73,4741-4750.
    Carroll, M. M.1980. Compaction of dry or fluid-filled porous materials. Jour. Eng. Mech., Proc.ASCE106(EM5),969-990.
    Carroll, M. M.1991. A critical state plasticity theory for porous reservoir rock. In: Recent
    Advances in Mechanics of Structured Continua (edited by Massoudi, M., Rajagopal, K. R.).ASME AMD Vol.117, Book No. G00617,1-5.
    Casey, M., Butler, R. W. H.2004. Modelling approaches to understanding fold development:implications for hydrocarbon reservoirs. Mar. Petrol. Geol.21,933-946.
    Chao, Y J, Sutton M A, Peter W H, et al. Measurement of three-dimensional displacements indeformable bodies by digital image processing.1989SEM Spring Conference on ExperimentalMechanics,1989,139~146
    Charalampidou, E.-M., Hall, S. A., Stanchits, S., Lewis, H., Viggiani, G.2011. Characterization ofshear and compaction bands in a porous sandstone deformed under triaxial compression.Tectonophysics503,8-17.
    Chen, W. F.1984. Soil mechanics, plasticity and landslides. In: Mechanics of Inelastic Materials(edited by Dvorak, G. J., Shield, R. T.). Elsevier, Amsterdam,31-58.
    Choquette, P. W., Pray, L. C.,1970. Geologic nomenclature and classification of porosity insedimentary carbonates. AAPG Bulletin54,207-250.
    Coelho, L., Soares, A. C., Ebecken, N. F. F., Drummond Alves, J. L., Landau, L.2005. Theimpact of constitutive modeling of porous rocks on2-D wellbore stability analysis. J. Petrol. Sci.Eng.46,81-100.
    Cundall, P. A., Strack, O. D. L.1979. A discrete numerical model for granular assemblies.Geotechnique29,47-65.
    Curran, J.H., Carroll, M.M.,1979. Shear stress enhancement of void compaction. J. Geophys. Res.84,1105-1112.
    Cuss, R. J., Rutter, E. H., Holloway, R. F.2003. The application of critical state soil mechanics tothe mechanical behaviour of porous sandstones. Int. J. Rock Mech. Min. Sci.40,847–862.
    Das, A., Nguyen, G. D., Einav, I.2011. Compaction bands due to grain crushing in porous rocks:A theoretical approach based on breakage mechanics. J. Geophys. Res.116, B08203,doi:10.1029/2011JB008265.
    Dautriat, J., Gland, N., Dimanov, A., Raphanel, J.2011. Hydromechanical behavior ofheterogeneous carbonate rock under proportional triaxial loadings. J.Geophys. Res.116, B01205,doi:10.1029/2009JB000830.
    David, C., Wong, T.-f., Zhu, W., Zhang, J.1994. Laboratory measurement of compaction-inducedpermeability change in porous rock: implications for the generation and maintenance of pore
    pressure excess in the crust. Pure Appl. Geophys.143,425-456.Davis, R. O., Selvadurai, A. P. S.2002. Plasticity and Geomechanics. Cambridge University Press,Cambridge, UK.
    Desai, C. S., Siriwardane, H. J.1984. Constitutive Laws for Engineering Materials. Prentice-Hall,Englewood Cliffs, NJ.
    DiMaggio, F. L., Sandler, I. S.1971. Material model for granular soils. J. Eng. Mech. Div., ASCE97,935-950.
    Dresen, G., Guéguen, Y.2004. Damage and rock physical properties. In: Mechanics ofFluid-Saturated Rocks (edited by Guéguen, Y., Boutéca, M.). Elsevier, Amsterdam,169-217.
    Drucker, D. C.1951. A more fundamental approach to plastic stress strain relations. In: Proc. FirstU. S. National Congress Appl. Mechanics,487-491.
    Edmond, J. M., Paterson, M. S.1972. Volume change during the deformation of rocks at highpressure. Int. J. Rock Mech. Min. Sci.9,161-182.
    Eichhubl, P., Hooker, J. N., Laubach, S. E.2010. Pure and shear-enhanced compaction bands inAztec Sandstone. J. Struct. Geol.32,1873-1886.
    Einav, I.2007a. Breakage mechanics-Part I: Theory. J. Mech. Phys. Solids55,1274-1297.
    Einav, I.2007b. Soil mechanics: breaking ground. Phil. Trans. R. Soc. A365,2985-3002.
    Evans, B., Fredrich, J., Wong, T.-f.1990. The brittle-ductile transition in rocks: recentexperimental and theoretical progress. In: The Heard Volume (edited by Duba, A. G., Durham, W.
    B., Handin, J. W., Wang, H. F.). Am. Geophys. Union, Geophysical Monograph56,1-20.
    Evans, B.&Wong, T.-f.1985. Shear localization in rocks induced by tectonic deformation. In:Mechanics of Geomaterials (edited by Bazant, Z.). John Wiley, NY.
    Evans, J. P., Bradbury, K. K.2004. Faulting and fracturing of nonwelded Bishop tuff, EasternCalifornia: Deformation mechanisms in very porous materials in the vadose zone. Vadose Zone J.3,602-623.
    Fabre, D., Gustkiewicz, J.1997. Poroelastic properties of limestones and sandstones underhydrostatic conditions. Int. J. Rock Mech. Min. Sci.34,127-134.
    Fisher, Q. J., Casey, M., Clennell, M. B., Knipe, R. J.1999. Mechanical compaction of deeplyburied sandstones of the North Sea. Mar. Petrol. Geol.16,605-618.
    Fortin, J., Stanchits, S., Dresen, G., Guéguen, Y.2006. Acoustic emission and velocitiesassociated with the formation of compaction bands in sandstone. J. Geophys. Res.111, B10203,doi:10.1029/2005JB003854.
    Fortin, J., Schubnel, A., Guéguen, Y.,2007. Effect of pore collapse and grain crushing onultrasonic velocities and Vp/Vs, J. Geophys. Res.112, doi:10.129/2005JB004005.
    Fossen, H., Schultz, R. A., Zhipton, Z. K., Mair, K.2007. Deformation bands in sandstone: areview. J, Geol. Soc. London164,755-769.
    Fossen, H., Schultz, R. A.&Torabi, A.2011. Conditions and implications for compaction bandformation in the Navajo sandstone, Utah. J. Struct. Geol.,33,1477-1490.
    Fossum, A. F., Fredrich, J. T.2000. Cap plasticity models and dilatant and compactive pre-failuredeformation. In: Proc.4th North Am. Rock Mech. Symp. A. A. Balkema, Rotterdam,1169-1176.
    Fowles, J., Burley, S.1994. Textural and permeability characteristics of faulted, high porositysandstones. Mar. Pet. Geol.11,608-623.
    Fredrich, J. T., Evans, B., Wong, T.-f.,1989. Micromechanics of the brittle to plastic transition inCarrara marble. J. Geophys. Res.94,4129-4145.
    Fredrich, J.T., Deitrick, G.L., Arguello, J.G., deRouffignac, E.P.,2000. Geomechanical modelingof reservoir compaction, surface subsidence, and casing damage at the Belridge diatomite field.SPE Res. Eval., Eng.3,348-359.
    Griggs, D.T., Turner, F.J., Heard, H.C.,1960. Deformation of rocks at500°to800°C. In: Griggs,
    D., Handin, J.(Eds.), Rock Deformation. Memoir. Geological Society of America79,39-104.
    Grueschow, E.2005. Yield Cap Constitutive Models for Predicting Compaction Localization inHigh Porosity Sandstone. Unpublished Ph.D. thesis, Northwestern University.
    Grueschow, E., Rudnicki, J. W.2005. Elliptic yield cap constitutive modeling for high porositysandstone. Int. J. Solids Struct.42,4574-4587.
    Guéguen, Y., Palciauskas, V.,1994. Introduction to the Physics of Rocks, Princeton UniversityPress, Princeton.
    Guéguen, Y., Dormieux, L., Boutéca, M.2004. Fundamentals of poromechanics. In: Mechanics ofFluid-Saturated Rocks (edited by Guéguen, Y., Boutéca, M.). Elsevier Academic Press,Amsterdam,1-54.
    Guéguen, Y., Fortin, J.2005. Mécanique des roches en géologie: des processus microscopiques aucomportement macroscopique. In: Colloque "Microstructure et Propriétés des Matériaux". ENPC.Gupta, V., Bergstr m, J.1998. Compressive failure of rocks by shear faulting. J Geophys Res103(B10),23875-23895.
    Gurson, A. L.,1977. Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media. J. Eng. Mat. Tech.99,2-15.Handin, J., Hager, R. V., Friedman, M., Feather, J. N.1963. Experimental deformation ofsedimentary rock under confining pressure: pore pressure effects. Bull. Am. Asso. Petrol. Geol.47,717-755.
    Hazzard, J. F., Young, R. P., Maxwell, S. C.2000. Micromechanical modeling of cracking andfailure in brittle rocks. J. Geophys. Res.105,16683-16697.
    Hazzard, J. F., Mair, K.2003. The importance of the third dimension in granular shear. Geophys.Res. Lett.30,1708, doi:10.1029/2003GL017534.
    Heard, H.C.,1960. Transition from brittle fracture to ductile flow in Solnhofen limestone as afunction of temperature, confining pressure and interstitial fluid pressure. In: Griggs, D., Handin, J.(Eds.) Rock Deformation. Memoir. Geological Society of America79,193-226.
    Heilbronner, R.,2000. Automatic grain boundary detection and grain size analysis usingpolarization micrographs or orientation images. J. Struct. Geol.22,969-981.
    Helm J D, McNeil S R, Sutton M A. Improved three-dimensional image correlation for surfacedisplacement measurement. Opt. Eng.1996,35(7):1911~1920
    Hill, R. E.,1989. Analysis of deformation bands in the Valley of Fire State Park, Nevada.Unpublished M.S. thesis, University of Nevada, Las Vegas.
    Hirth, G., Tullis, J.1994. The brittle-plastic transition in experimentally deformed quartzaggregates. J. Geophys. Res.99,11731-11748.
    Homand, S., Shao, J. F.2000. Mechanical behaviour of a porous chalk and effect of saturatingfluid. Mech. Cohes.-Frict. Mater.5,583-606.
    Horii, H., Nemat-Nasser, S.1986. Brittle failure in compression: splitting, faulting andbrittle-ductile transition. Phil. Trans. Royal Soc. London319,337-374.
    Isida, M., Nemat-Nasser, S.1987. On mechanics of crack growth and its effects on the overallresponse of brittle porous solids. Acta metall.35,2887-2898.
    Issen, K. A.2000. Conditions for Localized Deformation in Compacting Porous Rocks.Unpublished Ph.D. thesis, Northwestern University.
    Issen, K. A., Rudnicki, J. W.2000. Conditions for compaction bands in porous rock. J. Geophys.Res.105,21529-21536.
    Jaeger, J. C., Cook, N. G. W., Zimmerman, R. W.2007. Fundamentals of Rock Mechanics,4th ed.Blackwell, Oxford.
    Jamison, W. R., Teufel, L. W.1979. Pore volume changes associated with failure and frictionalsliding of a porous sandstone. Proc. U. S. Rock Mech. Symp.20,163-170.
    Jamison, W. R., Stearns, D. W.1982. Tectonic deformation of Wingate Sandstone, ColoradoNational Monument. Am. Asso. Pet. Geol. Bull.66,2584-2608.
    Jizba, D. L.1991. Mechanical and Acoustical Properties of Sandstones and Shales. UnpublishedPh.D. Thesis, Stanford University.
    Johnson, K. L.1985. Contact Mechanics. Cambridge University Press, Cambridge.
    Johnson, J. N., Green, S. J.1976. The mechanical response of porous media subject to static loads.In: The Effects of Voids on Material Deformation (edited by Cowin, S. C., Carroll, M. M.) AMD.A.S.M.E.,93-124.
    Kahn-Jetter Z L, Chu T C. Three dimensional displacement measurement using digital imagecorrelation and photogrammic analysis. Experimental Mechanics,1990,30:10~16
    Karman, T. von.1911. Festigkeitsversuche unter allseitigem. Druck. Z. Verein. Dtsch. Ing.55,1749-1757.
    Karner, K. L., Chester, F. M., Kronenberg, A. K., Chester, J. S.2003. Subcritical compaction andyielding of granular quartz sand. Tectonophysics377,357–381.
    Karner, S. L., Chester, J. S., Chester, F. M., Kronenberg, A. K., Hajash, A. J.2005. Laboratorydeformation of granular quartz sand: Implications for the burial of clastic rocks. AAPG Bull.89,603–625.
    Katsman, R., Aharonov, E., Scher, H.2005. Numerical simulation of compaction bands inhigh-porosity sedimentary rock. Mech. Mat.37,143-162.
    Kemeny, J. M., Cook, N. G. W.1991. Micromechanics of deformation in rocks. In: TougheningMechanisms in Quasi-Brittle Materials (edited by Shah, S. P.). Klewer Academic,155-188.
    Klein, E., Baud, P., Reuschlé, T., Wong, T.-f.2001. Mechanical behaviour and failure mode ofBentheim sandstone under triaxial compression. Phys. Chem. Earth (A)26,21-25.
    Knipe, R. J.1997. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbonreservoirs. AAPG Bulletin81,187-195.
    Kohlstedt, D. L., Evans, B., Mackwell, S. J.1995. Strength of the lithosphere: Constraintsimposed by laboratory experiments. J. Geophys. Res.100,17587-17602.
    Kwasniewski, M.1989. Laws of brittle failure and of B-D transition in sandstones. In: Rock atGreat Depth (edited by Maury, V., Fourmaintraux, D.). A. A. Balkema, Rotterdam,45-58.
    Lawn, B. R.1998. Indentation of ceramics with spheres: A century after Hertz. J. Am. Ceram. Soc.81,1977-1994.
    Li, L., Holt, R. M.2002. Particle scale reservoir mechanics. Oil, Gas Science and Technology-Rev. IFP57,525-538.
    Lockner, D. A., Morrow, C. A.2008. Energy dissipation in Calico Hills tuff due to pore collapse.Eos Trans. AGU,89(53), Fall Meet. Suppl., Abstract T51A-1856.
    Louis, L., Wong, T.-f., Baud, P., Tembe, S.2006. Imaging strain localization by X-ray computedtomography: discrete compaction bands in Diemelstadt sandstone. J. Struct. Geol.28,762-775.
    Louis, L., Baud, P., Wong, T.-f.,2009. Microstructural inhomogeneity and mechanical anisotropyassociated with bedding in sandstone, Pure Appl. Geophys.,166,1063-1087.
    Lubarda, V. A., Mastilovic, S., Knap, J.1996. Brittle-ductile transition in porous rocks by capmodel. J. Eng. Mech.122,633-642.
    Makowitz, A., Milliken, K. L.2003. Quantification of brittle deformation in burial compaction,Frio and Mount Simon Formation sandstones. Jour. Sed. Res.73,1007-1021.
    Mair, K., Elphick, S. C., Main, I. G.,2002. Influence of confining pressure on the mechanical andstructural evolution of laboratory deformation band. Geophys. Res. Lett.29(10),10.1029/2001GL013964.
    Marketos, G., Bolton, M. D.2009. Compaction bands simulated is discrete element models. J.Struct. Geol.31,479-490.
    Mavko, G., Mukerji, T., Dvorkin, J.1998. The Rock Physics Handbook: Tools for SeismicAnalysis in Porous Media. Cambridge University Press, Cambridge.
    Menéndez, B., Zhu, W., Wong, T.-f.1996. Micromechanics of brittle faulting and cataclastic flowin Berea sandstone. J. Struct. Geol.18,1-16.
    Meyers, W. J.,1980. Compaction in Mississippian skeletal limestones, southwestern New Mexico.J. Sed. Petrol.50,457-474.
    Mogi, K.1966. Pressure dependence of rock strength and transition from brittle fracture to ductileflow. Bull. Earthquake Res. Inst. Tokyo Univ.44,215-232.
    Mollema, P. N., Antonellini, M. A.1996. Compaction bands: A structural analog for anti-mode Icracks in aeolian sandstone. Tectonophysics267,209-228.
    Mowar, S., Zaman, M., Stearns, D. W., Roegiers, J.-C.1994. Pore collapse mechanisms inCorboba Cream limestone. Proc. North Am. Rock Mech. Symp.1,767-773.
    Myer, L. R., Kemeny, J., Cook, N. G. W., Ewy, R., Suarez, R., Zheng, Z.1992. Extensile crackingin porous rock under differential compressive stress. Appl. Mech. Rev.45,263-280.
    Muir Wood, D.1990. Soil Behaviour and Critical State Soil Mechanics. Cambridge UniversityPress, Cambridge.
    Muir Wood, D.2007. The magic of sand-the20th Bjerrum Lecture. Can. Geotech. J.44,1329-1350.
    Muir Wood, D., Maeda, K.2008. Changing grading of soil: effect on critical states. Acta Geotech.3,3-14.
    Nagel, N. B.2001. Compaction and subsidence issues within the petroleum industry: FromWilmington to Ekofisk and beyond. Phys. Chem. Earth (A)26,3-14.
    Nguyen, G. D., Einav, I.2009. The energetics of cataclasis based on breakage mechanics. PureAppl. Geophys.166,1693-1724.
    Olsson, W. A.1999. Theoretical and experimental investigation of compaction bands in porousrock. J. Geophys. Res.104,7219-7228.
    Olsson, W.A., Peng, S.S.,1976. Microcrack nucleation in marble. Int. J. Rock Mech. Min. Sci.13,53-59.
    Papamichos, E., Tronvoll, J., Skj rstein, A., Unander, T. E., Vardoulakis, I., Sulem, J.2000.Constitutive testing of Red Wildmoor sandstone. Mech. Cohes.-Frict. Mater.5,1-40.
    Olsson, W. A., Holcomb, D. J.2000. Compaction localization in porous rock. Geophys. Res. Lett.27,3537-3540.
    Passchier, C. E., Trouw, R. A. J.2005. Microtectonics,2nd ed. Springer, Berlin.
    Paterson, M. S.1958. Experimental deformation and faulting in Wombeyan marble. Bull. Geol.Soc. Am.69,465-476.
    Paterson, M. S., Wong, T.-f.2005. Experimental Rock Deformation-The Brittle Field,2ndEdition. Spinger-Verlag, New York.
    Pestman, B. J., van Munster, J. G.1996. An acoustic emission study of damage development andstress-memory effects in sandstone. Int. J. Rock Mech. Min. Sci.33,585-593.
    Pittman, E. D.1971. Microporosity in carbonate rocks. AAPG Bulletin55,1873-1878.
    Poirier, J. P.1980. Shear localization and shear instability in materials in the ductile field. J. Struct.Geol.2,135-142.
    Potyondy, D. O., Cundall, P. A., Lee, C.1996. Modeling rock using bonded assemblies of circularparticles. Proc. North Am. Rock Mech. Symp.2,1937-1944.
    Potyondy, D. O., Cundall, P. A.2004. A bonded-particle model for rock. Int. J. Rock Mech. Min.Sci.41,1329-1364.
    Rath, A., Exner, U., Tschegg, C., Grasemann, B., Laner, R., Draganits, E.2011. Diageneticcontrol of deformation mechanisms in deformation bands in a carbonate grainstone. AAPG Bull.95,1369-1381.
    Riley, P. R., Goodwin, L. B., Lewis, C. J.2010. Controls on fault damage zone width, structure,and symmetry in the Bandelier Tuff, New Mexico. J, Struct. Geol.32,766-780.
    Risnes, R., Kristensen, C. N., Andersen, M. A.1996. Triaxial tests on high porosity chalk withdifferent saturating fluids. In: Fifth North Sea Chalk Symposium, Reimes, France,12.
    Rowe, K. J., Rutter, E. H.,1990. Paleostress estimation using calcite twinning: experimentalcalibration and application to nature. J. Struct. Geol.12,1-17.
    Rudnicki, J. W.2002. Conditions for compaction and shear bands in a transversely isotropicmaterial. Int. J. Solids Struct.39,3741-3756.
    Rudnicki, J. W.2007. Models for compaction band propagation. In: Rock Physics andGeomechanics in the Study of Reservoirs and Repositories (edited by David, C.&LeRavalec, M.).Geological Society of London Special Publication284,107-126.
    Rudnicki, J. W., Rice, J. R.1975. Conditions for the localization of deformation in pressuresensitive dilatant materials. J. Mech. Phys. Solids23,371-394.
    Rutter, E. H.1986. On the nomenclature of mode of failure transitions in rocks. Tectonophysics122,381-387.
    Rutter, E. H., Hadizadeh, J.1991. On the influence of porosity on the low-temperaturebrittle-ductile transition in siliciclastic rocks. J. Struct. Geol.13,609-614.
    Rutter, E. H., Llana-Funez, S., Brodie, K. H.2009. Dehydration and deformation of intactcylinders of serpentinite. J. Struct. Geol.31,29-43.
    Sammis, C.G., Ashby, M.F.,1986. The failure of brittle porous solids under compressive stressstates. Acta metall.34,511-526.
    Schatz, J. F.1976. Models of inelastic volume deformation for porous geologic materials. In: TheEffects of Voids on Material Deformation (edited by Cowin, S. C., Carroll, M. M.) AMD.A.S.M.E.,141-170.
    Schofield, A. N., Wroth, C. P.1968. Critical State Soil Mechanics. McGraw Hill, New York.
    Sch pfer, M. P. J., Abe, S., Childs, C., Walsh, J. J.2009. The impact of porosity and crack densityon the elasticity, strength and friction of cohesive granular materials: Insights from DEMmodeling. Int. J. Rock Mech. Min. Sci.46,250-261.
    Schock, R. N., Heard, H. C., Stevens, D. R.1973. Stress-strain behavior of a granodiorite and twograywackes on compression to20kilobars. J. Geophys. Res.78,5922-5941.
    Scholz, C. H.2002. The Mechanics of Earthquakes and Faulting,2nd edition. CambridgeUniversity Press, Cambridge.
    Schultz, R. A.,2009. Scaling and paleodepth of compaction bands, Nevada and Utah. J. Geophys.Res.114, B03407, doi:10.1029/2008JB005876.
    Schultz, R. A., Siddharthan, R.2005. A general framework for the occurrence and faulting fordeformation bands in porous granular rocks. Tectonophysics411,1-18.
    Schultz, R. A., Fossen, H.2008. Terminology for structural discontinuities. AAPG Bulletin92,853-867.
    Schultz, R. A., Okubo, C. H., Fossen, H.2010. Porosity and grain size controls on compactionband formation in Jurassic Navajo sandstone. Geophys. Res. Lett.,37, L22306,doi:10.1029/2010GL044909.
    Senseny, P. E.1986. A microcrack model for the deformation and strength of Algerie granite.Proc. U. S. Rock Mechanics Symp.27,11-15.
    Sheldon, H. A., Barnicoat, A. C., Ord, A.2006. Numerical modelling of faulting and fluid flow inporous rocks: An approach based on critical state soil mechanics. J. Struct. Geol.28,1468-1482.Shinn, E. A., Halley, R. B., Hudson, J. H., Lidz, B. H.,1977. Limestone compaction: An enigma.Geology5,21-24.
    Shinn, E. A., Robbin, D. M.,1983. Mechanical and chemical compaction in fine-grainedshallow-water limestones. J. Sed. Petrol.53,595-618.
    Shipton, Z. K., Cowie, P. A.2001. Damage zone and slip-surface evolution over μm to km scalesin high-porosity Navajo sandstone, Utah. J. Struct. Geol.23,1825-1844.
    Stefanov, Y. P., Chertov, M. A., Aidagulov, G. R., Myasnikov, A. V.2011. Dynamics of inelasticdeformation of porous rocks and formation of localized compaction zones studied by numericalmodeling. J. Mech. Phys. Solids in press.
    Sternlof, K. R., Rudnicki, J. W., Pollard, D. D.,2005. Anticrack-inclusion model for compactionbands in sandstone. J. Geophys. Res.110, B11403, doi:10.1029/2005JB003764.
    Tembe, S., Vajdova, V., Baud, P., Zhu, W., Wong, T.-f.2007. A new methodology to delineatethe compactive yield cap of two porous sandstones under undrained condition. Mech. Mat.39,513-523.
    Tembe, S., Baud, P., Wong, T.-f.2008. Stress conditions for the propagation of discretecompaction bands in porous sandstone. J. Geophys. Res.113, B09409,doi:10.1029/2007JB005439.
    Timoshenko, S., Goodier, J. N.1951. Theory of Elasticity. McGraw Hill, New York.
    Tondi, E., Antonellini, M., Aydin, A., Marchegiani, L., Cello, G.2006. The role of deformationbands, stylolites and sheared stylolites in fault development in carbonate grainstones of MajellaMountain, Italy. J. Struct. Geol.28,376-391.
    Townend, E., Thompson, B. D., Benson, P. M., Meredith, P. G., Baud, P., Young, R. P.2008.
    Imaging compaction band propagation in Diemelstadt sandstone using acoustic emission locations.Geophys. Res. Lett.35, L15301, doi:10.1029/2008GL034723.
    Turner, F.J., Griggs, D.T., Heard, H.C.,1954. Experimental deformation of calcite crystals. Geol.Soc. Am. Bull.65,883-954.
    Tullis, J., Yund, R. A.1992. The brittle-ductile transition in feldspar aggregates: An experimentalstudy. In: Fault Mechanics and Transport Properties of Rocks (edited by Evans, B., Wong, T.-f.).Academic, San Diego, Calif.,89-117.
    Underhill, J. R., Woodcock, N. H.1987. Faulting mechanisms in high-porosity sandstones; NewRed Sandstone, Arran, Scotland. In: Deformation of Sediments and Sedimentary Rocks (edited byJones, M. E., Preston, R. M. F.) Special Publication. Geol. Soc., London,91-105.
    Vajdova, V., Wong, T.-f.2003. Incremental propagation of discrete compaction bands: Acousticemission and microstructural observations on circumferentially notched samples of Bentheimsandstone. Geophys. Res. Lett.30(14),1775, doi:10.1029/2003GL017750.
    Vajdova, V., Baud, P., Wong, T.-f.,2004a. Compaction, dilatancy and failure in porous carbonaterocks. J. Geophys. Res.109, B05204, doi:10.1029/2003JB002508.
    Vajdova, V., Baud, P., Wong, T.-f.,2004b. Permeability evolution during localized deformation inBentheim sandstone, J. Geophys. Res.,109, B10406, doi:10.1029/2003JB002942.
    Vajdova, V., Zhu, W., Chen, T.-M. N., Wong, T.-f.,2010. Micromechanics of brittle faulting andcataclastic flow in Tavel limestone. J. Struct. Geol.,32,1158-1169.
    Vajdova, V., Baud, P., Wu, L., Wong, T.-f.2011. Micromechanics of inelastic compaction in twoallochemical limestones. J. Struct. Geol. submitted.
    Veeken, C. A. M., Walters, J. V., Kenter, C. J., Davis, D. R.1989. Use of plasticity models forpredicting borehole stability. In: Rocks at Great Depth (edited by Maury, V., Fourmaintraux, D.)2.A.A. Balkema, Rotterham, Netherlands,835-844.
    Wang, B., Chen, Y., Wong, T.-f.2008. A discrete element model for the development ofcompaction localization in granular rock. J. Geophys. Res.113, B03202,doi:10.1029/2006JB004501.
    Wimmer, S. A., Karr, D. G.1996. Compressive failure of microcracked porous brittle solids.Mech. Mat.22,265-277.
    Wong, T.-f.1990. Mechanical compaction and the brittle-ductile transition in porous sandstones.In: Deformation Mechanisms, Rheology and Tectonics (edited by Knipe, R. J., Rutter, R. H.).Geol. Society Special Publication Vol.54, London,111-122.
    Wong, T.-f., Zhu, W.1999. Brittle faulting and permeability evolution: hydromechanicalmeasurement, microstructural observation, and network modeling. In: Faults and Subsurface FluidFlow in the Shallow Crust, Geophysical Monograph113(edited by Haneberg, W. C., Mozley, P.S., Moore, C.&Goodwin, L. B.). American Geophysical Union, Washington, DC,83-99.
    Wong, T.-f., David, C., Zhu, W.,1997. The transition from brittle faulting to cataclastic flow inporous sandstones: Mechanical deformation. J. Geophys. Res.102,3009-3025.
    Wong, T.-f., Baud, P., Klein, E.2001. Localized failure modes in a compactant porous rock.Geophys. Res. Lett.28,2521-2524.
    Wong, T.-f., David, C., Menéndez, B.2004. Mechanical compaction. In: Guéguen, Y., Boutéca,M.(Eds.) Mechanics of Fluid-Saturated Rocks. Elsevier Academic Press, Amsterdam,55-114.
    Wu, X. Y., Baud, P., Wong, T.-f.,2000. Micromechanics of compressive failure and spatialevolution of anisotropic damage in Darley Dale sandstone. Int. J. Rock Mech. Min. Sci.37,143-160.
    Xiao, X., Evans, B.2003. Shear-enhanced compaction during non-linear viscous creep of porouscalcite-quartz aggregates. Earth Planet. Sci. Lett.216,725-740.
    Xie, S. Y., Shao, J. F., Xu, W. Y.2011. Influences of chemical degradation on mechanicalbehaviour of a limestone. Int. J. Rock Mech. Min. Sci.48,741-747.
    Yarushina, V., Podladchikov, Y.2010. Low-frequency attenuation due to pore-scale inelasticity.Geophysics,75,51-63.
    Zeuch, D. H., Grazier, J. M., Argüello, J. G., Ewsuk, K. G.2001. Mechanical properties and shearfailure surfaces for two alumina powders in triaxial compression. J. Mat. Sci.36,2911-2924.
    Zhang, J., Wong, T.-f., Davis, D. M.,1990a. Micromechanics of pressure-induced grain crushingin porous rocks. J. Geophys. Res.95,341-352.
    Zhang, J., Wong, T.-f., Yanagidani, T., Davis, D. M.1990b. Pressure-induced microcracking andgrain crushing in Berea and Boise sandstones: acoustic emission and quantitative microscopymeasurements. Mech. Mater.9,1-15.
    Zhu, W.2010. Micromechanics of Failure in Porous Carbonate and Volcanic Rocks. UnpublishedPh.D. thesis, Stony Brook University.
    Zhu, W., Baud, P., Wong, T.-f.2010. Micromechanics of cataclastic pore collapse in limestone. J.Geophys. Res.115, B04405, doi:10.1029/2009JB006610.
    Zhu, W., Baud, P., Vinciguerra, S., Wong, T.-f.2011. Micromechanics of brittle faulting andcataclastic flow in Alban Hills tuff. J. Geophys. Res.116, B06209, doi:10.1029/2010JB008046.Zimmerman, R. W.1991. Compressibility of Sandstones. Elsevier, Amsterdam.
    Abe, S., and K. Mair (2005), Grain fracture in3D numerical simulations of granular shear, J.Geophys. Res.,32, L05305, doi:05310.01029/02004GL022123.
    Aydin, A., R. I. Borja, and P. Eichhubl (2006), Geological and mathematical framework forfailure modes in granular rock, J. Struct. Geol.,28,83–98.
    Baud, P., E. Klein, and T.-f. Wong (2004), Compaction localization in porous sandstones:spatial evolution of damage and acoustic emission activity, J. Struct. Geol.,26,603-624.
    Baud, P, P. G. Meredith, and Townend, E (2012), Permeability evolution during triaxialcompaction of an anisotropic porous sandstone., J. Geophys. Res., submitted.
    Baud, P., W. Zhu, and T.-f. Wong (2000), Failure mode and weakening effect of water onsandstone, J. Geophys. Res.,105,16371-16390.
    Eichhubl, P., J. N. Hooker, and S. E. Laubach (2010), Pure and shear-enhanced compactionbands in Aztec Sandstone, J. Struct. Geol.,32,1873-1886.
    Eshelby, J. D.(1957), The determination of the elastic field of an ellipsoidal indusion andrelated problems, Proc. Roy. Soc. London, A241,376-396.
    Fortin, J., A. Schubnel, and Y. Guéguen (2005), Elastic wave velocities and permeabilityevolution during compaction of Bleurswiller sandstone, Int. J. Rock Mech. Min. Sci.,42,873-889.
    Fortin, J., S. Stanchits, G. Dresen, and Y. Guéguen (2006), Acoustic emission and velocitiesassociated with the formation of compaction bands in sandstone, J. Geophys. Res.,111,B10203, doi:10210.11029/12005JB003854.
    Fossen, H., R. A. Schultz, and A. Torabi (2011), Conditions and implications for compactionband formation in the Navajo sandstone, Utah, J. Struct. Geol.,33,1477-1490.
    Hill, R. E.(1989), Analysis of deformation bands in the Valley of Fire State Park, Nevada, M.S.thesis,68pp, University of Nevada, Las Vegas.
    Holcomb, D. J., and W. A. Olsson (2003), Compaction localization and fluid flow, J. Geophys.Res.,108(B6),2290, doi:2210.1029/2001JB000813.
    Holcomb, D., J. W. Rudnicki, K. A. Issen, and K. Sternlof (2007), Compaction localization in theEarth and the laboratory: State of the research and research directions, Acta Geotech.,2,1-15.
    Klein, E.(2002), Micromécanique des Roches Granulaires Poreuses: Expérimentation etModélisation,158pp, Université Louis Pasteur de Strabourg, Strasbourg, France.
    Klein, E., P. Baud, T. Reuschlé, and T.-f. Wong (2001), Mechanical behaviour and failure modeof Bentheim sandstone under triaxial compression, Phys. Chem. Earth (A),26,21-25.
    Klein, E., and T. Reuschlé (2004), A pore crack model for the mechanical behaviour of porousgranular rocks in the brittle deformation regime, Int. J. Rock Mech. Min. Sci.,41,975-986.
    Louis, L., T.-f. Wong, P. Baud, and S. Tembe (2006), Imaging strain localization by X-raycomputed tomography: discrete compaction bands in Diemelstadt sandstone, J. Struct.Geol.,28,762-775.
    Mollema, P. N., and M. A. Antonellini (1996), Compaction bands: A structural analog foranti-mode I cracks in aeolian sandstone, Tectonophysics,267,209-228.
    Rudnicki, J. W.(2007), Models for compaction band propagation, in Rock Physics andGeomechanics in the Study of Reservoirs and Repositories, edited by C. David and M.Ravalec, pp.107-126, Geological Society of London Special Publication284.
    Sammis, C., G. King, and R. Biegel (1987), The kinematics of gouge deformation, Pure ApplGeophys.,125,777-812.
    Schultz, R. A.(2009), Scaling and paleodepth of compaction bands, Nevada and Utah, J.Geophys. Res.,114, B03407, doi:03410.01029/02008JB005876.
    Schultz, R. A., C. H. Okubo, and H. Fossen (2010), Porosity and grain size controls oncompaction band formation in Jurassic Navajo sandstone, Geophys. Res. Lett.,37, L22306,doi:22310.21029/22010GL044909.
    Sternlof, K. R., J. W. Rudnicki, and D. D. Pollard (2005), Anticrack-inclusion model forcompaction bands in sandstone, J. Geophys. Res.,110, B11403,doi:11410.11029/12005JB003764.
    Tembe, S., P. Baud, and T.-f. Wong (2008), Stress conditions for the propagation of discretecompaction bands in porous sandstone, J. Geophys. Res.,113, B09409,doi:09410.01029/02007JB005439.
    Townend, E., B. D. Thompson, P. M. Benson, P. G. Meredith, P. Baud, and R. P. Young (2008),Imaging compaction band propagation in Diemelstadt sandstone using acoustic emissionlocations, Geophys. Res. Lett.,35, L15301, doi:15310.11029/12008GL034723.
    Vajdova, V., P. Baud, and T.-f. Wong (2004), Permeability evolution during localizeddeformation in Bentheim sandstone, J. Geophys. Res.,109, B10406,doi:10410.11029/12003JB002942.
    Wang, B., Y. Chen, and T.-f. Wong (2008), A discrete element model for the development ofcompaction localization in granular rock, J. Geophys. Res.,113, B03202,doi:03210.01029/02006JB004501.
    Winkler, K. W.(1983), Frequency dependent ultrasonic properties of high-porositysandstones, J. Geophys. Res.,88,9493-9499.
    Wong, T.-f., C. David, and W. Zhu (1997), The transition from brittle faulting to cataclasticflow in porous sandstones: Mechanical deformation, J. Geophys. Res.,102,3009-3025.
    Wong, T.-f., P. Baud, and E. Klein (2001), Localized failure modes in a compactant porous rock,Geophys. Res. Lett.,28,2521-2524.
    Zhang, J., T.-f. Wong, and D. M. Davis (1990), Micromechanics of pressure-induced graincrushing in porous rocks, J. Geophys. Res.,95,341-352.
    [1] Yamaguchi I. A laser-speckle strain gauge [J]. Journal of Physics E: Scientific Instruments,1981,14:1270~1273
    [2] Peters W H, Ranson W F. Digital Imaging Techniques in Experimental StressAnalysis, Opt. Eng.1981,21:427~431
    [3]刘新卫,刘荣勋.光纤-数字散斑相关方法的原理及应用.北京化工学院学报(自然科学版),1994,21(4):46~52
    [4] Gui L, Merzkirch W. A method of tracking ensembles of particle images.Experiments in fluids.1996,21:465~468
    [5] Gui L, Merzkirch W. A comparative study of the MOD method and severalcorrelation-based PIV evaluation algorithms. Experimental in fluids2000,28:36~44
    [6] Lourenco L, Krothapalli A. On the accuracy of velocity and vorticity measurements withPIV. Experimental in fluids.1995,18:421~428
    [7] Westerweel J. Theoretical analysis of the measurement precision in particle imagevelocimetry. Experimental in fluids.2000, suppl: s3~s12
    [8] Scarano F, Riethmuller M L. Advances in iterative multigrid PIV image processing.Experimental in fluids.2000, suppl: s51~s60
    [9] Zhou Peng, Goodson K E. Subpixel displacement and deformation gradient measurementusing digital image/speckle correlation (DISC). Opt. Eng.,2001,40(8):1613~1620
    [10] Russo N A, Pomarico J A, Et al. Extended range optical velocimetry thtough spatialcorrelation of image speckle sub-patterns. Optics communications.1999,169:23~28
    [11] Vendroux G, Knauss W G. Submicron deformation field measurements: Part2. Improveddigital image correlation. Experimental Mechanics.1998,38(2):86~92
    [12] Lu H, Cary P D. Deformation measurements by digital image correlation: Implementationof a second-order displacement gradient. Experimental mechanics.2000,40(4):393~400
    [13] Schreier W S, Braasch J R, Sutton M A. Systematic errors in digital image correlationcaused by intensity interpolation. Opt. Eng.2000,39(11):2915~2921
    [14] Huang H T, Fiedler H E, Wang J J. Limitation and improvement of DPIV, Part I:Limitation of conventional techniques due to deformation of particle image patterns.Experimental in fluids.1993,15:168~174
    [15]芮嘉白,金观昌,徐秉业.一种新的数字散斑相关方法及应用.力学学报,1994,26(5):599~607
    [16] Fincham A M, Spedding G R. Low cost, high resolution DPIV for measurement ofturbulent fluid flow. Experiments in fluids.1997,23:449~462
    [17] Okamoto K, Hassan Y A, Schmidi W D. New tracking algorithm for particle imagevelocimetry. Experimental in fluids.1995,19:342~347
    [18] Roesgen T, Totaro R. Two-dimensional on-line particle imaging velocimetry. Experimentalin fluids1995,19:188~193
    [19] Zhang D, Zhang X, Cheng G. Compression strain measurement by digital specklecorrelation. Experimental mechanics.1999,39(1):62~65
    [20] Rohaly J, Nakajima T, Ikeda Y. Identification of true particle image displaceme ntbased on false correlation symmetry at poor signal peak detectability. Experimentsin Fluids.2000, suppl: S23~S33
    [21]潘一山,杨小彬,马少鹏,等.岩土材料变形局部化的实验研究.煤炭学报,2002,27(3):281~284
    [22] Ma Shaopeng, Jin Guanchang. New correlation coefficients designed for digital specklecorrelation method (DSCM). Proceedings of SPIE-The International Society for OpticalEngineering,2003,5058:25-33
    [23]金观昌.计算机辅助光学测量.北京:清华大学出版社,1997:143~174
    [24] Chu T C, Ranson W F, Sutton M A, et al. Applications of Digital Image CorrelationTechniques to Experimental Mechanics. Exp. Mech,1985,25:232~244
    [25] Bruck H A, McNeill S R, Sutton M A, et al. Digital image correlation usingNewton-Raphon method of partial differential correction. Exp.Mech.1989,29:261~267
    [26] Sutton M A, McNeill S R, Jang J, et al. The Effects of Subpixel Image Restorationon Digital Correlation Error Estimates. Opt. Eng.,1988,27:173~185
    [27] Sutton M A, Cheng M, McNeill S R, et al. Application of an Optimized Digital CorrelationMethod to Planar Deformation Analysis. Image Vis. Comput,1998,4:143~156
    [28]孟利波,马少鹏,金观昌.数字散斑相关测量中亚像素位移测量方法的比较.实验力学,2003,8(3):343~348
    [29] Ma SP, Jin GC. Digital speckle correlation method improved by genetic algorithm.ACTA MECHANICA SOLIDA SINICA,2003,16(4):366-373
    [30]侯振德,秦玉文.基于图像分形相关位移测量新方法的研究.光学学报,2002,22(2):210~214
    [31]亓东平,滕树云,程传福.频率域数字散斑相关方法的研究.光学学报,2000,20(4):489~493
    [32]刘东红.频率域数字散斑相关法及其应用.应用激光,2000,20(4):179~181
    [33] Dai X, Chan YC, So ACK. Digital speckle correlation method based on wavelet-packetnoise-reduction processing. Applied Optics,1999,38(16):3474-3482
    [34]林碧森,金观昌,姚学峰.正交小波变换在散斑图象相关计算中的应用.光子学报,2002,31(2):235~240
    [35]姚学锋,吴震,金观昌.数字散斑相关法中的小波减噪分析.清华大学学报(自然科学版),2001,41(4):108~111
    [36] Hong Miao, Fei Ge, Zhen Jiang, et al. Wavelet transform based on digital specklecorrelation method: principle and algorithm. Proc. SPIE,2002,4537:420~405
    [37] Jin Guanchang, Wu Zhen, Bao Nikeng, Yao Xuefeng. Digital speckle correlation methodwith compensation technique for strain field measurements. Optics and Lasers inEngineering,2003,39:457–464
    [38] Zhang Jun, Jin Guanchang, Ma Shaopeng, Meng Libo. Application of an improved subpixelregistration algorithm on digital speckle correlation measurement. Optics and Lasers inEngineering,2003,35:533~542
    [39] Sviram P, Hanagud S. Projection speckle digital correlation method for surfacedisplacement measurement. Experimental Mechanics,1988,28:340~345
    [40] Kahn-Jetter Z L, Chu T C. Three dimensional displacement measurement using digitalimage correlation and photogrammic analysis. Experimental Mechanics,1990,30:10~16
    [41] Chao, Y J, Sutton M A, Peter W H, et al. Measurement of three-dimensional displacementsin deformable bodies by digital image processing.1989SEM Spring Conference onExperimental Mechanics,1989,139~146
    [42] Helm J D, McNeil S R, Sutton M A. Improved three-dimensional image correlation forsurface displacement measurement. Opt. Eng.1996,35(7):1911~1920
    [43] He Z H, Peters W H, Sutton M A, et al. Two-Dimensional Fluid Velocity Measurementsby Use of Digital Speckle Correlation Techniques. Exp. Mech.,1984,24:117~121
    [44] Wu W, Peters W H, Hammer M. Basic Mechanical Properties of Retina in SimpleTension, Trans. ASME, J. Biomech. Eng.,1987,109:65~67
    [45] Durig B R, Peters W H, Hammer M A. Digital Image Correlation Measurements ofStrain in Bovine Retina. Proc. SPIE,1988,954:438~446
    [46] Zink A G, Davidson R W, Hanna R B. Effects of Composite Structure on Strain and Failureof Laminar and Wafer Composites, Compos. Mater. Struct.1997,4:345~352
    [47] Gonzalez Javier, Knauss W G. Strain inhomogeity and discontinuous crack growth in aparticulate composite. J. Mech. Phys. Solids,1998,46(10):1981~1996
    [48] Zink A G, Davidson R W, Hanna R B. Strain Measurement in Wood Using a Digital ImageCorrelation Technique, Wood Fiber Sci.1995,27:346~356
    [49] Zink A G, Hanna R B, Stelmokas J W. Measurement of Poisson’s ratios for yellow-poplar.For. Prod. J.1997,47(3):78~80
    [50] Zink A G, Davidson R W, Hanna R B. Experimental measurement of the strain distributionin double overlap wood adhesive joints. J. Adhesion,1996,56,27~43
    [51] Sutton M A, Bruck H A, Chae T L, et al. Experimental Investigations ofThree-Dimensional Effects Near a Crack-Tip Using Computer Vision, Int. J. Fract.1991,53:201~228
    [52] Han G, Sutton M A, Chao Y J. A Study of Stable Crack Growth in Thin SEC Specimens of304Stainless Steel, Eng. Fract. Mech.1995,52:525~555
    [53] Han G, Sutton M A, Chao Y J. A Study of Stationary Crack-Tip Deformation Fields inThin Sheets by Computer Vision, Exp. Mech.1994,34:125~140
    [54] Dawicke D S, Sutton M A. CTOA and Crack Tunneling Measurements in Thin Sheet2024-T3Aluminum Alloy, Exp. Mech.1994,34:357~368
    [55] McNeill S R, Sutton M A, Miao Z, et al. Measurement of Surface Profile Using DigitalImage Correlation, Exp. Mech.1997,37:13~20
    [56] Lyons J S, Liu J, Sutton M A. Deformation Measurements at650.C with Computer Vision,Exp. Mech.1996,36:64~70
    [57] Vendroux G, Knauss W G. Submicron Deformation Field Measurements: Part III,Demonstration of Deformation Determination, Exp. Mech.1998,38:154~160
    [58] Chasiotis I, Knauss W G. A new microtensile tester for the study of MEMS materials withthe aid of atomic force microscopy. Exp. Mech.,2002,42(1):51~57
    [59] Sun Zili, Lyons J S, McNeill S R. Measuring Microscopic deformations with digital imagecorrelation. Optics and Lasers in Engineering,1997,27:409~428
    [60] Jin G C, Meng L B, Ma S P. Digital speckle correlation method and its application tomicro-mechanics. Proceedings of SPIE.2002,4920:126~131.
    [61] Yamaguchi I, Kobayashi K, Yaroslavsky L. Measurement of surface roughness by specklecorrelation. Opt. Eng.2004,43(11):2753~2761
    [62] Zhao W Z, Jin G C. An experimental study on measurement of Poisson’s ratio withdigital speckle correlation method. J. Appl. Polym. Sci.1996,60:1083~1088
    [63] Chan Y C, Dai X, Jin G C et al. Nondestructive detection of delaminations inmultilayer ceramic capacitors using improved digital speckle correl ation method.Microwave and Optical Technology Letters,1997,16(2):80~85
    [64] Jin G C, Yao X F, Bao N K. Applications of speckle metrology to vibration anddeformation measurements of electronic. In: Proceedings of the IntersocietyConference. Las Vegas, ITherm2000,2000:253-255
    [65]马少鹏,金观昌,潘一山.白光DSCM方法用于岩石变形观测的研究.实验力学,2002,17(1):10~16
    [66]马少鹏,金观昌,潘一山.岩石材料基于天然散斑场的变形观测方法研究.岩石力学与工程学报,2002,21(6):792~796
    [67] Jin Guanchang, Ma Shaopeng, Pan Yishan. Analysis of localization in rock materialsthrough DSCM. Proceeedings. SPIE,2002,4537:103~106
    [68] Yao X F, Meng L B, Jin G C. Full-field deformation measurement of fiber compositepressure vessel using digital speckle correlation method. Polymer Testing,2005,24(2):245-251
    [69]计宏伟,秦玉文,陆华.非常应变模式数字相关方法的初值估计.实验力学,2001,16(1):49~55
    [70]计宏伟.数字相关图像测量方法与应用的研究:[博士学位论文].天津:天津大学,1997
    [71]邢冬梅,李鸿琦,李林安.梯度功能材料稳态温度场下的热应力分析.功能材料,2002,33(5):505~507
    [72]李明.固体炸药模拟材料有关力学问题的实验研究:[硕士学位论文].北京:北京大学,2000
    [73] Chao Y J, Sutton M A. Accurate measurement of two-and three-dimensional surfacedeformations for facture specimens by computer vision. Exp. Techniques Fracture,1993:59~93
    [74] Luo P F, Chao Y J, Sutton M A, et al. Accurate measurement of three-dimensionaldisplacement in deformable bodies using computer vision. Experimental Mechanics,1993,33(2):123~132
    [75] Luo P F, Chao Y J, Sutton M A. Application of stereo vision to three-dimensionaldeformation analyses in fracture experiments. Opt. Eng.1994,33(3):981~990
    [76] Luo P F, Liou S S. Measurement of curved surface by stereo vision and error analysis.Optics and Lasers in Engineering,1998,30:471~486
    [77] Luo P F, Chen J N. Measurement of curved surface deformation in cylindrical coordinates.Experimental Mechanics,2000,40(4):345~350
    [78] Sutton M A, McNeill S R, Helm J D, et al. Advances in two-dimensional andthree-dimensional computer vision. P. K. Rastogi (Ed.): Photomechanics, Topics Appl.Phys.2000,77:323~372
    [79] Sutton M A, Bruck H A, Chae T L, et al. Experimental investigations of three-dimensionaleffects near a crack-tip using computer vision, Int. J. of Fracture mechanics.1991,53:201~208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700