岩土类材料的损伤本构模型及其在冲击动力学问题中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石、混凝土材料等非均匀和各向异性材料的动态本构和冲击损伤破坏规律的研究,是现阶段冲击动力学领域的重要的科学问题之一。这一科学问题的研究对材料变形损伤破坏的非线性效应、应变率效应的耦合表征提出了新的挑战。
     本文首先对岩土材料本构模型的研究概况和进展进行了较为全面、系统的回顾和总结。对现有的主要的冲击载荷下的动态损伤模型进行了较系统的评述和比较,并对当前的研究热点及趋势作了讨论。在此基础上,阐述了解决本课题理论问题的思路和方法。
     岩土类材料的重要特征是其静压相关塑性屈服行为,本文在静水压相关的广义热粘塑性本构的理论框架下,从修正Drucker公设和应力空间中的屈服函数出发,以材料本构关系的内变量理论为工具,推导并建立了一般形式的,特别是静水压相关的热塑性和热粘塑性增量型本构关系的普适形式,其所得到的本构关系可以包含各种内变量硬(软)化行为、应变率硬(软)化行为、损伤软化、温度软化行为以及相互间的耦合作用。所给出的本构关系是以应力屈服面为基础的,具有普适性;对任何动态程序都特别适用和方便,易于嵌入到损伤材料的冲击动力学数值计算程序,具有很强的实用性。考虑到应用的重要性,文中特别给出了若干常用的岩土本构模型的增量本构关系计算公式和流程。
     在较详细地论述了分形、分形维数概念及分形测量方法的基础上,将之与岩土材料损伤破坏所具有的分形特点相联系,尝试性地将分形几何引入到岩土材料损伤定义,详细地推导了岩土材料的拉伸状态下损伤演化方程。其损伤演化方程中,分形维数及其与损伤能量耗散率的关系的引入,不仅解决了损伤的确定问题,减少了损伤模型中的所涉及的岩土特性参数,而且新构造的分形损伤模型可计及岩土的天然损伤影响和应力波传播过程中引起的裂纹扩展效应新进展。
     以岩土损伤分形本构模型的研究成果为基础,由岩石损伤分形维数和能量耗散率之间的关系,建立了拉压两种不同状态下的损伤演化方程,并以等效模量理论为基础建立了岩土材料含损伤的动态本构关系;利用本文所建立的含损伤本构模型,采用有限差分方法对砂岩冲击载荷下一维应变波传播问题进行了数值模拟,得到了应力波传播过程中,应力、分形维数、裂纹密度及损伤等量得演化规律,其结果对工程应用有指导意义。
     弹体对岩石、混凝土等岩土类材料侵彻问题是涉及冲击损伤破坏的另一类问题,这是防护工程的基本问题之一。本文针对弹体对岩石材料侵彻深度问题,将量纲分析方法和神经网络理论相结合,建立了弹的长径比l_p/d、弹体形状系数ψ、弹体与岩土的比σ_(yt)/σ_(yp)强度、弹体与岩土材料的密度比ρ_p/ρ_t等神经网络输入量与弹体侵彻深度h网络输出量之间的非线性映射关系。在非线性映射关系基础上,由神经网络理论建立了弹体侵彻岩土材料的神经网络模型;并分别采用改进BP及RBF网络模型,通过对岩石、混凝土类材料的文献资料试验数据的整理,得到了对网络模型进行训练的样本及检测样本;通过对网络模型的训练,获得了弹体对混凝土、花岗岩等材料侵彻深度的满意输出结果。目前将人工神经网络引入弹体侵彻岩土材料深度的这一方面的研究工作及文献资料及研究成果尚不多见。
     本文的研究工作对岩土材料应力波作用下的损伤、裂纹密度及分形维数的变化发展特性,以及基于人工神经网络的弹体侵彻岩土材料深度模型研究都具有重要的理论价值和工程实际意义。
Dynamic constitutive and regularity of damage of rock and concrete,which is non-uniform and anisotropic,etc,is one of important scientific problems of impact dynamics at present. Research of the important scientific problem is real challenge to couple between nonlinear effect of deformation and damage for material and rate of straining.
     In this paper,progress and general research of the constitutive model of rock and concrete,ect. are critically reviewed.Various dynamic damage models are described and compared.At same time,the trends of damage constitutive models and researches needed for further development are discussed.Based on the above discussion,the key points of difficulty that may be met in the problem are clear and some new ideas to solve it are found.
     Under theory of generalized them-visco-plastic constitutive related with hydrostatic pressure, the universal form of the thermoplastic and thermo-visco-plastic incrernental constitutive relations related with hydrostatic pressure and the computational routine are established from the modified Drucker's postulate and theory of internal variables in the constitutive relations and yield function in stress space.This constitutive relation can cover various kinds of plastic hardening(softening) behaviors,thermo-softening behaviors,damage-softening behaviors and their coupling effects between each other.This constitutive is based on stress yield surface in stress space and has universality.At same time,it can be used in program or commercial software of dynamics and can be easily inserted in program of numerical calculation of impact dynamics.The practicability is obvious.
     Base on describing of fractal,fractal dimension and measuring of fractal in detail,relationship or comparison of fractal characteristics in damage of rock and concrete,ect is established by analysis.At same time,evidences for fractal distribution of micro-crack are given by documentation.Then variable of damage of material is defined related with fractal.Through describing damage of materials by fractal dimension,evolutionary equations of damage of rock and concrete,ect.under state of tension is are deduced in detail.Through introducing relationship between fractal dimension and dissipation of energy of damage in evolutionary equation,problem of excessive variables of damage model of rock or concrete,etc.is solved.The new model of fractal damage have advantages in influence of self-damage and in law of development of cracks in rock or concrete,ect.under stress waves.Fractal damage dynamic constitutive model is based on theory of model of equivalent modulus.Numerical simulations are carried out by existing program code of impact damage model.
     Numerical simulations is based on fractal damage constitutive of rock or concrete,ect.And evolutionary damage equations are established by relationship between fractal dimension and dissipation of energy of damage.Numerical simulations on impulse loads are carried out by implementing the constitutive model of fractal damage sandrock in one dimcnsional strain stress by finite difference code.The variables such as waveforms of stress,mean density of crack,fractal dimension,and damage ect.are obtained.The numerical results such as variation of fractal,mean density of crack,and damage,ect.with propagation of stress are show good agreement with documents.
     Penetration depth of projectiles into geo-medium,such as:rock and concrete etc.,is one of important problems of protective projects.In this article,nonlinear mapping relation between input of variables of l_p/d andσ_(yt)/σ_(yp) etc and output of penetration depth h is established by dimensional analysis and theory of artificial neural networks for problem of penetration depth of projectiles into geo-medium.Neural model of penetration depth of projectiles into geo-medium is got by nonlinear mapping relation.At same time,samples of neural network model is got from document data,which is treated according to need of modeling.Moreover,a satisfied output about penetration dcpth from modified BP neural networks and RBF neural network are gotten by a group of input sets and corresponding output sets,which comes from experimental data of document about concrete and granite.
引文
[1]陈(?),黄庭芳.岩石物理学[M].北京:北京大学出版社,2001.9
    [2]Atkinson,B.K.,Subcritical crack growth in geological materials,J.Geophys.Res.,89,4077-4114,1984.
    [3]陈良森,李长春.关于岩石的本构关系[J],力学进展,1992,22(2):173-179.
    [4]席道英 编著,《岩石物理及本构模型》,中国科学技术大学讲义,2000.
    [5]俞茂宏..强度理论百年总结[J],力学进展,2004,34(4):529-560.
    [6]Murrell SAF,The effect of triaxial stress system on the strength of rocks at atmospheric temperature,Geophys.J.1965,10,231-282.
    [7]Ashton MD,Cheng DCH,Farley R.and Valentin FHH,Rheol.Acta,1965,4,206.
    [8]Hock.E.and Brown.E.T,Empirical strength criterion for rock masses,J.Geotech.Eng.,1980,106(9):1013-1035.
    [9]Pramono E and Willam K,Implicit integration of composite yield surfaces with corners,Eng,Comput.,1989,6,186-197.
    [10]Pramono E and Willam K,Fracture energy-based plasticity formulation of plain concrete,J.Eng.Mech.Div.,1989,115(6):1183-1203.
    [11]Drucker D.C and Prager W,Soil mechanics and plastic analysis for limit design.Q.Appl.Math.,1952,10(2):157-165.
    [12]Humpheson C and Naylor D.J,The importance of the form of the failure criterion,1975,C/R/243/75,Swansea.
    [13]Zienkiewcz.O.C and Pande G.N..Some useful forms of isotropic yield surfaces for soil and rock mechanics.Finite Elements in Geomechanics,G Gudehus.(ed),John Wiley &Sons Ltd,1977,179-190.
    [14]Chen WF,Plasticity in Reinforced Concrete,McGraw-Hill,New York,1982,190-252.
    [15]Chen WF and Saleeb AF,Constitutive Equations for Engineering Matcrials,Vol.1,Elasticity and Modeling;Vol.2,Plasticity and Modeling.Wiley,New York;Elasticity and modeling.Revised Edition,Elsevier,Amsterdam,1994,259-304,462-489.
    [16]Chen WF et al,Constitutive Equations for Engineering Materials,Vol.2,Plasticity and modeling,Elsevier,Amsterdam,1994.
    [17]俞茂鋐,岩土类材料的统一强度理论及其应用,岩土工程学报,1994,16(2):1-10.
    [18]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998.
    [19]俞茂鋐,工程强度理论,高等教育出版社,北京,1999.
    [20]Drucker D C,Gibson R E,Henkel D J,Soil mechanics and work hardening theory of plasticity,Trans.,ASCE,122(1957):338-346
    [21]Roscoe K H,Schofield A,Wroth C P,On the yielding of soils,Geotechnique,1958 (8):22-53.
    [22]Roscoe K H,Poorooshasb H B,A theoretical and experiment study of stress-strain in triaxial compression tests on normally consolidated clays,ibid,13(1963):12-28.
    [23]Roscoe K H,Schofield A,Thurairajah A,Yielding of clays in state Wetter than critical,ibid,13,3(1963):211-240.
    [24]Roscoe K H,Burland J B,On the generalized stress-strain behavior of "Wst" clays,Engineering Plasticity(Heyman J and Leckie F A eds),Cambridge Univ.Press,Cambridge(1968).
    [25]DiMaggio F L,Sandler I S,Material model for granular soils,J.Eng.Mech,Div.,ASCE,97,EM3(1971):935-950.
    [26]Sandier I S,Baron M L,Recent Developments in the constitutive modeling of geological materials,Proc.,3~(rd) Int.Conf.Num.Math.In Geomech.(Aachen W Germany,W Wittke Eds),Balkema Press,Rotterdam,1(1979):363-376.
    [27]Simo J.C.,Ju J.W.,Pister K.S.,et al,Assessment of Cap Model:Consistent Returen Algorithms and Rate-dependent Extension.J.EngMech.,1988,114:191-218.
    [28]G.Hofstetter,J.C.Simo.,et al,A Modified Cap Model-Closest Point Solution Algorithms.Compute Struct.,46(2):203-214.
    [29]S.N.Abduljauwad et al Mixed Hardening,Three-lnvariants Dependent Cap Model.J.Engrg Mech.1992,118(3):620-637.
    [30]谢和平,岩石混凝土损伤力学,中国矿业大学出版社,1990.
    [31]杨军,金乾坤,黄风雷.岩石爆破理论模型及数值计算.科学出版社,1999.
    [32]谢和平,岩石蠕变损伤非线性大变形分析及微观断裂的FRACTAL模型,中国矿业大学北京研究生部博士论文,1987.
    [33]Harries,G.,A Mathematical Model of Cratering and Blasting,National Symposium on Rock Fragmentation,Adelaide,41-45,1973.
    [34]Favreau,R.F,台阶爆破岩石位移速度,第一届国际爆破破岩会议论文集(译文集),408-417,1983.
    [35]Mchugh,S.,动力引起的破坏和破碎的模拟,第一届国际爆破破岩会议论文集(译文集),234-243.1983.
    [36]Margolin,L.G等,破坏的数值模拟,第一届国际爆破破岩会议论文集(译文集),218-226,1983.
    [37]Margolin,L.G.and Adams,T.E,Spatial Differencing for Finite Difference Code,LA-10249 Los Alamos National Laboratory Report,1985.
    [38]楼志文,损伤力学基础,西安交通大学出版社,1991.
    [39]Seaman.L.,Curran.D.R.,Shockey.D.A.,Computational models for ductile and brittle fracture,J.Appl.Phys.,1976,47(11):4814-4826.
    [40]Curran.D.R.,Shockey.D.A.,Seaman.L.,Austin.M.,Mechanisms and Models of Cratering in Earth Media,in Impact and Explosion Cratering,Edited by D.J.Roddy.,R,O.Pepin.,R.B.Merrill.,Pergmon Press,1977,pp:1057-1087.
    [41]Kipp.M.E,Grady.D.E.,Numerical Studies of Rock Fragmentation,SAND-79-1582,1980.
    [42]Chen.E.P,Taylor.L.M.,Fracture of Brittle Rock under Dynamic Loading Condition,SAND-84-2358c,1985.
    [43]Kuszmaul.J.S.,A New Constitutive Model for Fragmentation of Rock under Dynamic Loading,2nd Int.Symp.on Rock Fram.by Blast.,412-424,1987.
    [44]O'Connell.R.J.,Budiansky.B.,Seismic Velocities in Dry and Saturated Cracked Solids,J.Geophys.Res.,1974(79):5412-5426.
    [45]白以龙 微损伤系统演化的一种统计模型,《塑性力学和地球动力学文集》,余同希.王大钧编,1990,北京大学出版社,北京,17-22.
    [46]白以龙,柯孚久,夏蒙芬,固体中微裂纹系统统计演化的基本描述,力学学报,1991,23(30).
    [47]柯孚久,白以龙,夏蒙芬,理想微裂纹系统演化的特征。中国科学(A辑),1990,20,621-631
    [48]Liqing Liu.,R D.Katsabanis.,Development of a Continuum Damage Model for Blasting Analysis,Int.J.Rock Mech.Min.Sci.,1997,4(2):217-231.
    [49]Liqing Liu.P.D.Katsabanis.,A numerical study of the effects of accurate timing on rock fragmentation,.Int.J.Rock Mech.Min.Sci.,1997,34(5):817-835.
    [50]R.Yang el al.,A Number study of the effects of accurate timing on rock fragmentation,Int.J.Rock Mech.Min.Sci.and(leomech.Abstr.,1996,33(3):245-254.
    [51]Bawden.W.F.,Katsabanis.P.,Yang.R.L.,Blast Damage Study by Measurement and Numerical Modeling of Blast Damage and Vibration in thc Area Adjacent to Blasl Hole,Innovative Mine Design for the 21st Century,Bawden and Archibald,Balkema,Rotterdam,853-861,1993.
    [52]Ahrens.T.J.,Rubin.A.M.,Impact-Induced Tensional Failure in Rock,J.G.R.,1993,98(E1),1185-1203.
    [53]B.B.Mandelbrot,The Fractal Geometry of Nature,New York,Freeman.1982.
    [54]B.B.Mandelbrot,Fractals:Form,Chance and Dimension,San Francisco,Freeman.1977.
    [55]董连科.分形与应用,辽宁科技出版社(1992).
    [56]孙霞,吴自勤,黄畇.分形原理及其应用,合肥:中国科学技术大学出版社,2003.
    [57]谢和平,高峰.岩石损伤过程中的分形描述,岩石力学与工程学报,1991,10,55-67.
    [58]钱平皋,谢和平,高峰.空隙岩体损伤演化的分形描述,江苏大学,河海大学出版社,1994.
    [59]杨军,王树仁.岩石爆破分形损伤模型研究,爆炸与冲击,1996,16(1):5-10.
    [60]Zeng.Q.,Navidi.P.,Zarka.J.,An Optimal Design of Blasting,Rock Fragmentation by Blasting,Mohanty(ed.),Balkema,Rotterdam,45-53,1996.
    [61]李宁等,岩石在爆振下的动力损伤特性研究,工程爆破,1997,13(2):18-22.
    [62]阎平凡,张长水.人工神经网络与模拟进化计算[M].清华大学出版社,2000.
    [63]Proceedings of the 1991 International Conference on Artificial Neural Networks (ICANN-91),Espoo,Finland,1991,Vol.1 edited by Teuvo.K.
    [64]靳藩,范俊波,谭永东.神经网络与神经计算机原理·应用.西南交通大学出版社,1991.
    [65]逯静洲,林皋.人工神经网络技术在混凝土本构模型中的应用,土木工程学报,2003,36(4):38-48.
    [66]郭连军 等,爆破优化的神经网络模型,工程爆破,1996,2(2):11-15.
    [67]张成良 等,岩壁梁爆破参数优化的神经网络模型,工程爆破,2006,12(1):22-51.
    [68]段宝福,费鸿禄,神经网络模型在台阶爆破块度预测中的应用,工程爆破,1999,5(4):25-29.
    [69]沈蔚,徐全军等,中深孔爆破振动参数的BP神经网络预报,爆炸与冲击,2002,22(4):353-357.
    [70]徐全军,刘强 等,爆破地震峰值预报神经网络研究,爆炸与冲击,1999,19(2):133-138.
    [71]吕国云 张景森 等,神经网络在工程爆破应力波规律探讨中的应用,应用力学学报,2002,19(4):68-70.
    [72]孙道恒.胡俏,徐灏,固体力学有限元神经计算原理,机械工程学报,1996,32(6):20-25.
    [73]孙道恒,胡俏,徐灏,弹性力学的实时神经计算原理与数值仿真.力学学报,1998,30(3):348-352.
    [74]孙道恒,孙训方,胡俏,徐灏,弹塑性力学问题的神经网络计算模型,计算力学学报,2000,17(3):273-286.
    [75]任小强,陈务军等,弹塑性接触问题的神经网络计算模型,应用力学学报,2005,22(1):55-58.
    [76]张学言 等,岩土塑性力学基础,天津:天津大学出版社,2004.
    [77]章根德,地质材料本构模型的最近进展,力学进展,1994年,Vol.24,No.3 pp:374-385.
    [78]王志良,塑性力学与土的性质模拟,塑性力学和地球动力学文集,北京大学出版社,1990.
    [79]殷有泉,曲圣年.弹塑性耦合和广义正交法则[J],力学学报,1982.第一期:63-70.
    [80]A.C.Palmer,G.Mailer.D.C.Drucker.Normality relations and convexity of yield surfaces for unstable materials or structural elements.J.Appl.Mech.1967,Vol 34:464-470.
    [81]李永池,唐之景,胡秀章关于Drucker公设和塑性本构关系的进一步研究,中国科学技术大学学报,1988,18(3):339-345.
    [82]李永池.材料的塑性行为及其波动和层裂效应,《塑性力学和地球动力学文集》,余同希,王大钧编,1990,北京大学出版社,北京,132-139.
    [83]Li Y.C.,Wang X.J.,Huang C.Y.,Further study on the constitutive relations in dynamic plasticity and the application to stress waves,《Research and application in dynamic deformation and fracture of solids》,1998,Hefei,Press of USTC:111-119.
    [84]李永池,周光泉,王肖钧,胡时胜,刘孝敏,胡秀章,唐之景等.《航天工程材料本构关系得理论和应用研究》研究报告集,1990,4.
    [85]李永池,王红五,江松青,袁福平,含损伤材料热塑性本构关系的普适表述,《塑性力学和地球动力学进展(王仁院士八十寿辰庆贺文集)》,万国学术出版社,2000.
    [86]郭扬,铝锂合金材料动态力学特性的实验利理论研究,博士学位论文,中国科学技术大学,2003.
    [87]张伟,含损伤塑性本构关系的研究及在柱壳破裂问题中的应用,硕士学位论文,中国科学技术大学,1998.
    [88]王红五,材料的含损伤热粘塑性本构关系及柱壳破裂规律研究,硕士学位论文,中国科学技术大学,2001.
    [89]金咏梅,动塑体本构关系研究及在波动计算中的应用,硕士学位论文,中国科学技术大学,1997.
    [90]李国琛,M.耶纳 著.塑性大应变微结构力学,北京:科学出版社,1998.
    [91]曹结东.含损伤热粘塑性本构数值算法和铝锂合金动态响应研究,博士学位论文,中国科学技术大学,2006.
    [92]姚磊,应力波的演化机制及其对防护工程中的应用,博士学位论文,中国科学技术大学,2005.
    [93]杨军,金乾坤.应力波衰减基础上的岩石爆破损伤模型,爆炸与冲击,2000,20(3):241-246.
    [94]陈(禺页),陈凌,分形几何学,地震出版社,1998.
    [95]张志三,漫谈分形,湖南教育出版社,1993.
    [96]文志英 著,分形几何理论与应用,浙江科学技术出版社,1998.
    [97]Michaecl Frame and Benoit B.Mandelbrot,Mathematical of America,2002.
    [98]张济忠 编著,分形,清华大学出版社,1995.
    [99]谢和平 著,分形-岩石力学导论,北京:科学出版社,1996.
    [100]Nolen-Hoeksema,R.G.and Gordon,R.B.,Optical Detection of Crack Patterns in the Opening-mode Fracture on Marble,Int.J.Rock Mech.and Min.Sic.1987,24:135-144.
    [101]许江等,对单轴应力状态下砂岩微观断裂发展全过程的实验研究·力学与实践,1986,8(4):16-20.
    [102]倪玉山,常规三轴压缩下的花岗岩断裂表明的分形研究,岩石力学与工程学报,1992,11(3):295-303.
    [103]凌建明,节理裂隙岩体损伤力学研究中的若干问题,力学进展,1994,25(2):257-264.
    [104](法)J.勒迈特著,损伤力学教程,科学出版社,1996.
    [105]余天庆,损伤理论及其应用,国防工业出版社,1993.
    [106]Turcotte,D.L.,Fractal and Fragmentation,J.Geophys.Res.1986,91(B2):1921-1926.
    [107]大野博之.小岛圭二,岩石破裂系的分形维,应用地质(日),1988,29(4):11-18.
    [108]董连科,分形生长中的运动边界问题,地球科学,1993,18(2).
    [109]谢和平,高峰,岩石类材料损伤演化的分形特征,岩石力学与工程学报,1991,10(1):74-78.
    [110]王勖成,邵敏,有限单元法基本原理和数值方法,北京:清华大学出版社,1997.
    [111]刘儒勋,舒其望 编著,计算流体动力学,国防科技大学出版社,1998.
    [112]复旦大学数学系主编,差分方程和常微分方程,复旦大学出版社,2002.
    [113]杨军,岩石爆破分形损伤模型研究,中国矿业大学博士论文,1995.
    [114]经福谦等,《实验物态方程导引》(第二版),北京,科学出版社,1999.
    [115]胡时胜,材料动力学,中国科学技术大学五系,2002.
    [116]刘文韬,岩石含损伤本构模型和地下爆炸效应研究,博士学位论文,中国科学技术大学,2002.
    [117]彭国伦 编著,Fortran 95程序设计,北京:中国电力出版社,2002.6.
    [118]王礼立,《应力波基础》,国防工业出版社,北京,1985.
    [119]Cangli Liu,Ahrens,T.J.,Stress Wave Attenuation in Shock-Damaged Rock,J.Geophys.Res.1997,102(B3):5423-5250.
    [120]Rubin,A.M.,Ahrens,T.J.,Dynamic Tensile Failure Induced Velocity Deficits in Rock,Geophys.Res.Letters,1991,18(2):219-222.
    [121]Ahrens,T.J.,Rubin,A.M.,Impact-Induced Tensional Failure in Rock,J.G.R.1993,98(E1),1185-1203.
    [122]Heuze F E.An review of projectile penetration into geologic materials with emphasis on rocks[J].International Journal of Rock Mechanics and Mining Sciences,1991,27(1):39-45.
    [123]Vorobiev O Yu,Liu B T,Lomov I N,Antoun T H.Simulation of penetration into porous geologic media[J].International Journal of Impact Engineering,2006,In Press,Corrected Proof
    [124]Thomas L.Warren,Stephen J.Hanchak and Kevin L.Poormon.Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles:experiments and simulations,Int.J.Impact Engineering,2004,Vol.30(10):1307-1331.
    [125]Industrial engineering study to establish safety design criteria for use in engineering of explosive facilities and operations wall response.New Jersey,Dover,Picatinny Arsenal,APMED,Report Submitted to Process Engineering Branch,1963.
    [126]Frcw D.J.,Forrestal M.J.,Hanchak S.J.Penetration Experiments with Limestone Targets and Ogive Steel Projectiles[J],J.Appl.Mech.,2000,67:841-845.
    [127]文鹤鸣,混凝土靶板冲击响应的经验公式[J],爆炸与冲击,2003,23(3):267-274.
    [128]谈庆明,量纲分析[M].合肥:中国科学技术大学出版社,2005.
    [129]王礼立,余同希,李永池.冲击动力学进展[M],合肥:中国科学技术大学出版社,1992.
    [130]袁曾任,人工神经网络及其应用[M],北京:清华大学出版社,1999.
    [131]Forrestal M J,Frew D J,Hanchak S J,et al.Penetration of grout and concrete targets with ogive-nose steel projectiles[J].Int J Impact Eng,1997,18(5):465-476
    [132]张德志,张向荣,林俊德 等.高强钢弹对花岗岩正侵彻的实验研究[J].岩石力学与工程学报,2005,24(9):1612-1618.
    [133]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M],北京:清华大学出版社,2005.
    [134]The Mathworks Inc.MATLAB User's Guide[M].U S:Mathworks Press,1997.
    [135]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700