稠油电磁防蜡降粘机理分析及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在稠油集输过程中,由于管线结蜡严重,导致集输管线输送能力下降,甚至停输,这一现象已成为世界石油工业迫切需要解决的技术难题之一。国内外稠油生产基地集输管线主要以加热加压方式防蜡,每年耗费大量的能源和资金。而磁防蜡降粘技术以其设备安装简单、使用方便、无污染、成本低、能有效提高稠油在集输管道中的流动性的特点越来越广泛地应用于油田。但是,目前对磁防蜡降粘机理认识还不够深入,导致所生产的磁防蜡器通用性不好,致使磁防蜡降粘技术在稠油集输领域没有被广泛应用。
     针对这一情况,本文找出石蜡沉积的内因,得出主要是由于石蜡结晶后,通过色散力相互作用形成三维网状结构所致;其中,蜡的组成、含量、性质及其在稠油中的形态等是导致稠油流变性质复杂及粘度异常的根本原因。同时,基于核磁共振理论,进行了磁防蜡降粘的机理分析,得出磁防蜡机理是蜡分子按能级规则排列与热运动共同作用的结果。其中分子按能级规则排列,使石蜡分子在结晶过程中间距增大,突破色散力,难以聚集形成三维网状结构,是磁防蜡降粘作用的主要机理。
     基于磁防蜡降粘机理的分析,研制了具有良好性能的磁防蜡降粘实验系统,其磁感应强度可在0~200mT内调节,并应用有限元仿真软件对其磁感应强度及分布进行仿真分析,磁场强度达到实验要求。
     采用研制的磁防蜡降粘实验系统对磁防蜡降粘机理进行了实验验证,并分析了蜡含量对稠油粘度的影响规律,及不同含蜡量稠油在磁处理后的降粘规律。结果表明,低温下稠油的粘度受蜡含量影响很大,随着蜡含量的增加,稠油粘度增大迅速;磁处理可以使稠油的粘度降低,各种含蜡量油样经磁处理,其降粘率都随着温度降低不断升高,且低温(粘度值在140~200mP·s范围内)降粘效果比较好,此后降粘率基本稳定;降粘率随磁感应强度增大而升高,在磁感应强度达160~170mT附近时降粘率达到峰值,此后随磁感应强度增大,降粘率基本稳定;磁处理后,稠油冷却过程中析蜡速度加快,释放潜热增多;磁处理使蜡分子规则排列是磁防蜡降粘主要原因。
Paraffin-depositing in the pipelines, causing the transportation capacity of the pipelines decline or even shutdown during the transportation of heavy oil, has become one of the most severe problems in the world oil industry. And the oil fields, at home and abroad, guard against paraffin depositing for heavy oil transportation by heating and pressing, have resulted in significant operational costs. Magnetic treatment is now widely applied to guard against paraffin depositing because of its outstanding characteristics, such as the equipments easy to be fixed and operated, non-pollution, low cost, can effectively enhance the fluid of heavy oil in the pipelines. Nevertheless, researchers haven’t understood thoroughly the mechanism of that how magnetism affects paraffin depositing so far, which causes the electromagnetic equipments using for paraffin-controlling aren’t versatile.
     In view of this situation, this paper finds out that a huge amount of small crystals generated by nucleation stick to each other by the London forces among them and form 3D network is the major internal cause of paraffin deposition. The components, content, and morphology properties of the wax in heavy oil lead to the changes on the rheological properties and viscosity of the heavy oil.
     The mechanism of paraffin-controlling and viscosity-reducing in heavy oil using magnetic treatment is analyzed, based on the theory of nuclear magnetic resonance, and come to the conclusion the magnetism is attributable to a novel opinion proposed by the authors that the magnetic nucleuses in the paraffin are arranged regularly by the energy level and processing around the direction of magnetic flux density, and the former function, which increases the space among paraffin molecules, reduces the London forces among crystals, and prevents paraffin molecules to form the 3D network during that time of the crystallization, is the main reason for paraffin-controlling and viscosity-reducing.
     An experimental system with good performances is developed, on the basis of the analysis of the above, whose magnetic flux density can be regulated from 0 to 200mT. And the simulation analysis carried out by the authors to the intensity and distribution of magnetic induction generated by the device using the software of ANSYS, has demonstrated that the performances of which meet the requirements for the experiments.
     The mechanism of the paraffin-controlling and viscosity-reducing has been proved experimentally using the developed experimental system. Furthermore, the influences of wax content on the viscosity of the heavy oil and the laws of the viscosity-reducing of the heavy oil with different wax content after the magnetic treatment are analyzed by the author. The results show that the viscosity of heavy oil increases with increasing wax content in it, which can be reduced after the magnetic treatment. And the viscosity reduction rates of all kinds of heavy oil with different wax content after magnetic treatment, which are higher when the oil is at the lower temperature (when the viscosity is about 140~200 mP?s ), are rising as the oil’s temperature decreases, and after that temperature they are basically stable with the decreasing temperature; In addition, the higher the magnetic intensity, the more the viscosity decreases, and the viscosity reduction rate reaches the peak value when the magnetic intensity is about 160~170 mT, then it is basic stability or even decreases with increasing intensity of magnetic induction; Besides, the velocity of the crystallization becomes faster after magnetic treatment, which enhances the heat that is released during the time of crystallization. Finally, experiments carried out by the authors have demonstrated that the magnetic nucleuses in the paraffin are arranged regularly by the energy level is the main reason for paraffin-controlling and viscosity-reducing in heavy oil.
引文
1 Siddhartha Seth, Brian F.Towler. Diachronic viscosity increase in waxy crude oils. Journal of Petroleum Science and Engineering. 2004, 43:13~23
    2 R.Davidson, et al. A model for restart of a pipeline with compressible gelled waxy crude oil. J.Non-Newtonian Fluid Mech. 2004,123:269–280
    3 R.Banki, et al. Mathematical formulation and numerical modeling of wax deposition in pipelines from enthalpy–porosity approach and irreversible thermodynamics. International Journal of Heat and Mass Transfer. 2008,10:1~11
    4 Shukun Chen. Rheological Properties of Water in Oil Emulsions and Particulate Suspensions. Doctoral Theses at the Norwegian University of Science and Technology. 2006:10~12
    5 R. Venkatesan, et al. The strength of paraffin gels formed under static and flow conditions. Chemical Engineering Science. 2005, 60(13):3587~3598
    6高长虹.海洋石油管线结蜡规律的实验研究.钻采工艺. 2007,30(1): 111~113
    7罗锐尼,白静.防蜡降粘增油技术现场应用效果及认识.大庆石油地质与开发. 2006,增刊:59~61
    8林名桢.含蜡稠油输送管道再启动模型的研究.中国石油大学硕士学位论文. 2007:1~2
    9马秀波,郑海霞.磁处理原油防蜡降黏的机理.西安石油大学学报(自然科学版). 2005,20(4):50~52
    10 W.A.Canas, et al. Thermodynamics of Wax Precipitation under the Influence of Magnetic Fields. American Institute of Chemical Engineers. 2006,52(8):2887~2897
    11韩善鹏,张劲军.原油磁处理降粘研究.油气储运. 2008,27(3):8~11
    12 N.P.Tung, et al. Perspective for using Nd–Fe–B magnets as a tool for the improvement of the production and transportation of Vietnamese crude oil with high paraffin content. Physica B. 2003,327:443~447
    13 J.Claracq, et al. Viscoelastic properties of magnetorheological fluids.Rheol. Acta. 2004,43:38~49
    14丁连东.世界稠油资源的分布及其开采技术的现状与展望.特种油气藏2001,8(2):98~103
    15黄戊生,荣丽辉.稠油资源的开发利用.资源开发与市场. 2000,16(6):362 ~363
    16赵炜,张志远.重油21世纪的重要能源.中国能源. 1999,6:29~30
    17关润伶.稠油组分的结构分析及降粘剂的研制.北京交通大学博士学位论文. 2007:1~2
    18敬加强,罗平亚,游万模.稠油特性及其输送技术研究.特种油气藏2001,8(2):53~55
    19 Moussa Kane et al. Morphology of paraffin crystals in waxy crude oils cooled in quiescent conditions and under flow. Fuel, 2003,82(2):127~135
    20 S. Correra, et al. Modelling wax diffusion in crude oils. Applied Mathematical Modelling. 2007,31(10):2286~2298
    21 Moussa Kane, et al. Rheology and structure of waxy crude oils in quiescent and under shearing conditions. Fuel. 2004, 83(11):1591~1605
    22孟江.稠油乳化集输工艺及理论研究.西南石油学院硕士论文. 2003:3~4.
    23 R.Davidson, et al. Restart model for a multi-plug gelled waxy oil pipeline. Journal of Petroleum Science and Engineering. 2007,59:1~16
    24刘文广,常景龙.景建庄.重质稠油输送技术.管道科技与信息. 1999,4:14~16
    25郑钦祥.稠油降粘技术及输送方法.油气田地面工程. 2006,25(4):6~7
    26 Svetgoff J. Paraffin problems can be resolved with chemical. Oil Gas J. 1984,82(9): 79~84
    27张付生,王彪等.稠油降凝剂在我国长输管线上的应用.油田化学. 1999,16(4):368~371
    28张付生,谢慧专,董丽坚.原油降凝降粘剂在原油开采和集输中的应用.精细石油化工. 1999,6:28~30
    29权忠舆.稠油改性处理的管道输送工艺.油气储运. 1996, (15 ):1~6
    30 Lukman Ismail, et al. On the effect of wax content on paraffin wax deposition in a batch oscillatory baffled tube apparatus. Chemical Engineering Journal. 2008,137:205~213
    31 H.Li, J.Zhang. A generalized model for predicting non-Newtonian viscosity of waxy crudes as a function of temperature and precipitated wax. Fuel. 2003,82:1387~1397
    32 M.Dirand, et al. Multi-component Paraffin Waxes and Petroleum Soliddeposits Structural and Thermodynamic state. Fuel. 1998,77(12): 1253~1260
    33侯光东,史存和.抽油井磁防蜡技术及其应用.国外油气田. 2005(2):43~ 46
    34 Josue da S.T.dos Santosa. Study of the paraffin deposit formation using the cold finger methodology forBrazilian crude oils. Journal of Petroleum Science and Engineering. 2004,45:47~60
    35胡博仲,周望,程子健.磁处理技术在大庆油田油水井中的应用研究.电工合金. 1997,(2):37~39
    36宋金璞,邵景玲,赵志伟.多极电磁器处理稠油生产性试验.哈尔滨建筑大学学报. 2001,(6):21~24
    37 Linear Kinetic Cell Paraffin Control System. U.S.Patent. 1992:3~5
    38胡博仲.磁技术在采油生产中的应用.石油工业. 1993:43~46
    39任福生,刘艳平.采油井磁防蜡器的矿场应用钻采工艺. 2004,27(1):76~77.
    40杨文军.一种新型稠油、高凝油开采工艺——磁降凝降粘技术.特种油气藏. 2003,10(2):57~59
    41覃艺.变强变频电磁防蜡降粘器的研制与实验.哈尔滨工业大学硕士论文. 2007:46~54
    42马秀波,周开学.磁处理对原油结蜡影响的机理分析.油气储运. 2004, 23 (4):35~39
    43汪仲清.液态流体的粘度及磁处理降粘作用机理.石油学报. 1995,16(4):154~200
    44陈佳莹.原油磁化防结蜡技术的研究.哈尔滨工业大学硕士论文. 2006:10~11
    45 K.J. Dunn, et al. Nuclear Magnetic Resonance Petrophysical and Logging Applications. Seismic Exploration. 2002, 32:56~58
    46 Corney,J.D. Advancements in the Use of Magnetics for Controlling Deposits and BS&W in Oil Wells. Southwest Petroleum Short Course, Texas Tech Univ. Lubbock, 1993:26~27
    47 Johnny Lamar Evans JR. Apparatus and Technique for the Evaluation of Magnetic Conditioning as a Means of Retarding Wax Deposition in Petroleum Pipelines. 1998:23~25
    48 M.Al-Zahrani, et al. A general model for the viscosity of waxy oils. Chemical Engineering and Processing. 1998,37:433~437
    49 Josuéda S. T. dos Santos, Antonio C. Study of the paraffin deposit formation using the cold finger methodology for Brazilian crude oils. Journal of Petroleum Science and Engineering. 2004, 45 (1&2): 47~60
    50 Mohsen, et al. Modification of multisolid phase model for prediction of wax precipitation.Fluid Phase Equilibria. 2000,173(5):65~80
    51 L.F.A.Azevedo, A.M.Teixeira. A critical review of the modeling of wax deposition mechanisms. Petrol.Sci.Technol. 2003 (3&4): 393~408
    52敬加强,杨莉,秦文婷,罗平亚.含蜡原油结构形成机理研究.西南石油学院学报. 2003,25(6):49-52
    53冯藴深.磁共振原理.高等教育出版社. 1992:15~30
    54纪永波.原油磁处理降粘技术在华北油田的应.油田地面工程. 1993,12(3): 23~26
    55耿宏章,潘举玲,周开学.原油磁化防蜡实验研究.油气地质与采收率. 2003,10(4):61~63
    56陈义平,蔡元利.己二酸十八酯(OAO)过饱和溶液成核研究.福州大学学报(自然科学版). 2000,28(4):78~80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700