聚乳酸(PLA)增粘改性及其发泡材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸(PLA)是一种以可再生的植物资源为原料经化学合成制备的生物降解高分子,制备的各种薄膜、纤维等产品可以广泛应用在服装、纺织、无纺布、包装、农业、林业、医疗卫生用品、日常生活用品等领域。PLA具有优良的生物相容性、生物可降解性,最终降解产物是二氧化碳和水,不会对环境造成污染。可由于PLA分子链中长支链少,熔体粘度很小,导致熔体强度低,应变硬化不足,使其加工成型方法受到限制,尤其是发泡成型十分困难,很难得到高倍率的发泡成型体。高分子链的支化,与另一种共聚物接枝,或共混支化聚合物和线性聚合物是增加其粘度的基本方法,以使其能够发泡。
     本论文首先通过端羧基聚酯(CP)与固体环氧(SE)的原位交联反应,采用熔融挤出及模压方法制备PLA/SE与PLA/CP/SE复合材料,并系统研究了其流变性能、热性能、形态结构、机械性能。我们发现对于PLA/SE复合材料,随着SE含量的增加,平行板流变仪表明其粘度先增加后基本不变;DSC及偏光显微镜表明结晶度表现为先降低后增加;SEM与DSC表明二者相容性较好,但仍为不相容的体系;拉伸测试表明断裂伸长率有一定程度的增加,拉伸强度略有下降。而对于PLA/CP/SE复合材料,随着CP/SE含量的增加,平行板流变仪表明粘度有显著地增加;DSC及偏光显微镜表明结晶度明显降低;SEM与DSC表明复合材料为不相容体系;拉伸测试表明拉伸强度明显增加,断裂伸长率变化不明显。我们成功制备了具有高粘度的PLA/CP/SE复合材料。
     其次本论文采用传统的模压化学发泡方法来制备聚乳酸发泡材料,力图使现有传统发泡企业就能进行聚乳酸发泡材料的制备与生产。本论文详细研究了发泡剂偶氮二甲酰胺用量,发泡助剂氧化锌用量,CP/SE用量以及发泡工艺等因素对聚乳酸发泡过程及泡沫材料的性能影响。找到了较合适的成功发泡配方和工艺条件,可以成功地制备聚乳酸发泡材料,并且聚乳酸发泡材料的密度可以在0.155-0.546g/cm3可控,同时该发泡材料具有良好的吸水性,最高吸水率可达到11%。
Polylactide (PLA) is a kind of biodegradable polymer prepared by chemical synthesis through renewable plant as raw materials, which can be processed into a variety of film, sheet, fibers and other products widely used in garment, textile, non-woven fabrics, packaging, agriculture, forestry, medical and health supplies, daily necessities and other fields. PLA has excellent biocompatibility, biodegradability, and the ultimate degradated products are carbon dioxide and water, which have no pollution to the environment. However, due to the molecular chain of PLA lacks of long-branched, the melt viscosity is very small, leading to particularly low melt strength, lacking of strain hardening makes it difficult for foaming, and it’s difficult to get high magnification of the foaming material. Branching polymer chains, copolymerizing with another monomer, and blending branched or cross-linked polymers are the basic methods to increase its viscosity so that it can be suitable for foaming.
     In this paper, first through the in situ cross-linking reaction of terminal carboxyl polyester (CP) and epoxy (SE), using melt extrusion and molding method to prepare PLA/SE and PLA/CP/SE composites materials. The effect of the various factors on their rheological properties, thermal properties, morphological structure and mechanical properties has been studied in detail. The results show that the viscosity of the PLA/SE composite materials firstly increases and reaches a level with the increase of SE concentration; DSC and polarized optical microscopy show that the crystallinity firstly reduced and then increasd; SEM and DSC indicate that the PLA/SE system is immiscible; their elongation at break increase, while tensile strength decreased slightly compare to pure PLA. As for the PLA/CP/SE composite materials, with the CP/SE content increasing, their viscosity has a significant increase; DSC and polarized optical microscopy show that the crystallinity obviously decreased; SEM indicates that there exists reaction-induced phase separation in binary polymer; tensile tests show a marked increase in tensile strength, elongation at break did not change significantly. We have successfully prepared high viscosity PLA/CP/SE composite.
     Secondly, PLA foam can be successfully prepared through traditional compression molding chemical foaming method. The effect of the different factors such as foaming agent content, CP/SE content and process conditions on the properties of PLA foam material has been discussed. Optimal process conditions and appropriate formulas have been found. The density of PLA foam can be controlled from 0.546-0.155g/cm3.
引文
[1]Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic Acid Technology. Adv. Mater., 2000, 12(23), 1841-1846.
    [2]康宏亮,陈成,董丽松,聚乳酸共混体系的研究进展.高分子通报,2004,10,10-19.
    [3]陈坚,堵国成等,环境友好材料的生产及应用.北京,化学工业出版社,2004.
    [4]邢玉清等,化学合成全降解塑料-PLA.工程塑料应用,2002,30(12), 57-58.
    [5]宇恒星,王朝生,黄南薰等,聚乳酸的聚合方法.化工新型材料,2002,3, 16-18.
    [6]郝国庆,可降解高分子材料聚乳酸综述.太原科学技术.2006,10,13-14.
    [7]李文涛,唐颂超,生物降解高分子材料.上海塑料, 2002,1, 3-8.
    [8]汪朝阳,赵耀明,生物降解材料聚乳酸的改性.合成树脂及塑料, 2004, 21(4), 79-81.
    [9]罗丙红,全达萍,聚乳酸与乙烯基吡咯烷酮接枝共聚的研究.中山大学学报, 2001, 9(5), 62.
    [10]周海欧,史铁钧,王华林等,聚乳酸改性的研究进展和方向.化工科技市场, 2004(1), 13-17.
    [11]弗莱克斯曼,韧性聚(乳酸)组合物.中国, 1894338[P]. 2007-01-10.
    [12]Martin, O.; Avérous, L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 2001, 42(14), 6209-19.
    [13] Okada, M. Chemical syntheses of biodegradable polymers. Prog. Polym. Sci. 2002, 27(1), 87-133.
    [14]富露祥,秦航,李立,完全生物降解塑料PLA/PPC合金的结构与性能研究.塑料工业, 2006, 34 (11), 14-16.
    [15]顾书英,詹辉,任杰出,聚乳酸/PBAT共混物的制备及其性能研究.中国塑料, 2006, 20(10), 39-42.
    [16]钱欣,沈兆宏,潘柯良,增塑剂对聚乳酸性能的影响.塑料工业, 2006, 34(12), 63-65.
    [17]江涛,胡平,生物医用高分子材料自增强的工艺的研究.功能材料, 2001, 32(4), 353.
    [18] Majola, A.;Vainionpaa, S.; Vihtonen, K. et al. Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clin. Orthop. Relat. Res., 1991, 268, 260-9.
    [19]俞耀庭,张兴栋,生物医用材料.天津,天津大学出版社,2000.
    [20]Kasuga, T.; Ota, Y.; Nogami,M. et al. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials, 2001, 22(1):19-23
    [21]万稚波,陈东生,唐淑娟,医疗用吸收性高分子材料.化工新型材料,1997,25(6),13-15.
    [22]张颂培,王锡臣,生物降解性医用高分子材料-PLA,北工新型材料,1995,23(8),9一11
    [23]唐明义,耿奎士,高分子药物缓释材料闭.化工新型材料,1998,26(9), 26-28.
    [24]程玲妹,徐若璞,黄华惠等,可生物降解长效缓释抗肿瘤药物的研究.合成化学,1994,2(1),70-74.
    [25]朱家葱,沈正荣,马臻等,生物降解PLA中空纤维的制备及其药物体外释放的研究,生物医学工程学杂志,1997,14(3),247一51.
    [26]李笑梅,生物可吸收性聚合物及其在口腔医学中的应用.口腔颁面外科杂志,1998,8(l),41-43.
    [27]陈贻炽,生物可降解高分子材料在外科手术中的应用.高分子材料,1995,2(4),28-30.
    [28]Hilyard, N. C.; Cunningham, A. Low Density Cellular Plastics. Physical Basis of Behaviour; Chapman & Hall: New York, 1994.
    [29]Klempner, D.; Frisch, K. C. Handbook of Polymeric Foams and Foam Technology. Hanser: NewYork, 1991.
    [30]钱志屏,泡沫塑料.北京,中国石化出版社, 1998.
    [31]刘培生,多孔材料引论.北京,清华大学出版社, 2004.
    [32]Hilyard, N.C. Mechanics of Cellular Plastics. Applied Sci Publisher, 1982.
    [33]上海塑料制品工业研究所编,聚乙烯泡沫塑料.北京,中国轻工业出版社,1978.
    [34]Hans,P.;Fleumer. US 258804,October 14,1941.
    [35]Henry, R.; Lasman. Formerly National Poly Chemical:Blowing Agents Encyclopedia of Polymer Science and Technology,1965, 2, 532~560.
    [36]张亨,发泡剂研究进展.塑料助剂,2001(4),1~10
    [37]钱军民,李旭详,EPR改性PVC泡沫材料吸声性能的研究.橡胶工业,2001,48 (8),463~465
    [38]张俊扬,EVA/EPDM/PVC三元塑料合金软质泡沫体的生产及应用.现代塑料加工应用,1995,7(1),15~19
    [39]汪艳,刘安华,吴璧耀,NBR/PVC泡沫弹性体的研制.橡胶工业,2002,49(1),26~28.
    [40]张军,梁亚军,化学交联模压一步法制备改性PVC泡沫塑料.中国塑料,2000,14(7),55~60.
    [41]关吉勋,泡沫塑料的成型工艺.四川化工与腐蚀控制. 1998, 2(1),57-58.
    [42]Willett,J. L.; Doane, W. M. Effect of moisture content on tensile properties of starch/poly(hydroxyester ether) composite materials. Polymer, 2002, 43(16), 4413-20.
    [43] Fang, Q et al. Cereal. Chem., 2000, 77(6), 779.
    [44] Di, Y. W.; Iannace, S.; Maio, E. D. et al. Reactively Modified Poly(lactic acid): Properties and Foam Processing. Macromol. Mater. Eng. 2005, 290(11), 1083–90.
    [45] Gruber, P. R. (Cargill Inc). US 5359062. 1994.
    [46] Drumright, R. E. (Cargill Dow LLC).WO 02100921. 2002.
    [47] Yoshida, I. (Mitsui Chemicals Inc). JP 2001026658. 2001.
    [48] Nemoto, T. (Mitsubishi Plastic Ind). JP 2005239932 2005.
    [49] Randall, J. WO 2006002372. 2006.
    [50] Hitomi, M. (Sekisui Co Ltd). JP 10017756. 1998.
    [51] Hitomi, M (Sekisui Co Ltd). JP 10077395. 1998.
    [1] Martin, O.; Avérous, L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 2001, 42(14), 6209-19.
    [2] Fang, Q.; Hanna, M.A. Rheological properties of amorphous and semicrystalline polylactic acid polymers. Ind. Crop. Prod. 1999, 10(1), 47-53.
    [3] Kanebo Ltd., Japan, website: www.kanebotx.com (accessed Aug 27, 2002).
    [4] Tsuji, H.; Fukui, I. Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer, 2003, 44(10), 2891-96.
    [5] Park, E.S.; Cho, H.C.; Kim, M.N. et al. Chain extension and mechanical properties of unsaturated aliphatic copolyesters based on poly(L-lactic acid). J. Appl. Polym. Sci., 2003, 90(7),1802–07.
    [6] Carlson, D.; Dubois, P.; Nie, L. et al. Free radical branching of polylactide by reaction extrusion. Polym. Eng. Sci., 1998, 38(2), 311–18.
    [7] Soedergaard, A.; Niemi, M.; Selin, J.F. et al. Changes in peroxide melt-modified poly(L-lactide). Ind. Eng. Chem. Res., 1995, 34(4), 1203-07.
    [8] Sarasua ,J.R.; Arraiza, A.L.; Balerdi, P. et al. Crystallinity and mechanical properties of optically pure polylactides and their blends. Polym. Eng. Sci., 2005, 45(5), 745-53.
    [9] Shirahase ,T.; Komatsu, Y.; Tominaga, Y. et al. Miscibility andhydrolytic degradation in alkaline solution of poly(L-lactide) and poly(methyl methacrylate) blends. Polymer, 2006, 47(13), 4839-44.
    [10] Schmaljohann, D.; Pǒtschke, P.; Hǎ1ssler, R.et al. Blends of amphiphilic, hyperbranched polyesters and different polyolefins. Macromolecules, 1999, 32(19), 6333-39.
    [11] Meaurio, E.; Zuza ,E.; Sarasua, J.R. Miscibility and specific interactions in blends of poly(L-Lactide) with poly(vinylphenol). Macromolecules, 2005, 38(4), 1207-15.
    [12] Qi,R.R..;Jin, X.; Nie, J.H. et al. Synthesis and properties of polystyrene–clay nanocomposites via in situ intercalative polymerization. J. Appl. Polym. Sci., 2005,97(1), 201–07.
    [13] Chopra, D.; Kontopoulou, M.; Vlassopoulos, D. et al. Effect of maleic anhydride content on the rheology and phase behavior of poly(styrene-co-maleic anhydride)/poly(methyl methacrylate) blends. Rheol. Acta., 2002;,41(1),10-24.
    [14] Sheth ,M.; Kumar, R.A.; Dave, V. et al. Biodegradable polymer blends of poly (lactic acid) and poly (ethylene glycol ). J. Appl. Polym. Sci .,1997, 66(8), 1495-505.
    [15] Inoue ,T. Reaction-induced phase decomposition in polymer blends. Prog. Polym. Sci .,1995, 20 (1),119-53.
    [16] Chen ,W.J.; Li, X.L.; Dong, T. et al. Spinodal decomposition induced by cross-linking reaction in a binary polymer mixture. Macromol. Chem. Ph.s. 1998, 199 (3), 327–33.
    [1] Benning, C. J. Plastics Foam. John Wiley and Sons Inc., 1969.
    [2]成都科技大学编,塑料成型工艺学,北京,轻工出版社,1983.
    [3]上海塑胶制品工业研究所编,聚乙烯泡沫塑料,北京,轻工出版社,1978.
    [4] Klempner, D. Frisch, K. C. Ploymeric Foam. Hanger, 1991.
    [5] Callari, J. Plactics World. May, 1991, 15.
    [6] Oepen, R. et al.Clin Mater, 1992, 10,21.
    [7] Atlanta, G.A. USA: Soc Plast Eng, Brookfield, CT, USA.
    [8] Prasad, A., Shanker, M. Quantitative analysis of azodicarbonamide, a chemical-blowing agent for foamed plastics by differential scanning calorimeter.Cellular Polymers. 1999, 18(1), 35-51.
    [9]黄锐,塑料成型工艺学,北京,中国轻工业出版社.1997.
    [10]张殿荣,马占兴,杨清芝,现代橡胶配方及设计.北京,化学工业出版社, 1994.
    [11]刘灿培,林金火,超轻EVA发泡材料的研制与生产.中国塑料. 2004,18(2), 58~62.
    [12]王平阶,塑料橡胶加工助剂.北京,化学工业出版社. 1983.
    [13]杨治伟,王国全等.纳米氧化锌/AC复合发泡剂在PP发泡中的应用研究.塑料, 2003, 32(3),6-8.
    [14] Kim, D. J.; Kim, S. W.; Kang, H. J. et al. J. Appl. Polym. Sci., 2001, 81, 2443-2454.
    [15]刘灿培,注射超轻EVA/Fusabond材料的交联发泡动力学.高分子材料科学与工程, 2005, 21(4).
    [16] Guriya, K.C.; Tripathy, D.K. Morphology and physical properties of closed cell microcellular ethylene propylene diene terpolymer (EPDM) rubber vulcanizates-effect of silica filler and blowing agent. Plastics, Rubber and Composites Processing and Applications. 1995, 23(3), 193-200.
    [17] Guriya, K.C., Tripathy D.K. Morphology and physical properties of closed-cell microcellular ethylene-propylene-diene terpolymer (EPDM) rubber vulcanizates: effect of blowing agent and carbon black loading. J.Appl. Polym. Sci.,1996. 62(1), 117-127.
    [18] Mahapatra, S.P.; Tripathy, D.K. Morphology and physico-mechanical properties of closed cell microcellular EPDM rubber vulcanizates: Effect of conductive carbon black and blowing agent. Cellular Polymers. 2004, 23(3), 127-144.
    [19]李学锋,彭少贤等, LDPE/ EVA发泡材料的研制.现代塑料加工应用, 2000, 12(3), 9-12.
    [20]连荣炳,张卫勤,黄锐等,一步法模压成型软质PVC鞋底发泡材料.现代塑料加工应用, 2006, 18(1), 1-4.
    [21]杨美娟,薛平,李建立,生物降解材料制备及降解方法的研究进展.塑料科技,2009,37(6),70-76.
    [22]麦杭珍,赵耀明,陈军武,聚乳酸的成型加工及其降解性能.塑料工业,2000,28(5),28-30.
    [23]余浩川, NR-g-(GMA-co-St)/PVC共混物及其泡沫材料的研究.华南热带农业大学.硕士论文. 2007.05.
    [24]钱志屏,泡沫塑料.北京,中国石化出版社.1998.
    [25] Smits,G. Effect of cellsize reduction on polyurethane foam physical properties. Journal of Thermal Insulation and Building Envelopes.1994, 17, 309-330.
    [26] Goods, S.; Neuschwanger, C.; Henderson, C. et al. Mechanical properties of crete, a polyurethane foam. J. Appl. Polym. Sci.,1998, 68, 1045-1055.
    [27] Philip, C.; Miller, T.; Sina, T. Compression properties of rigid polyurethane foams. Polym. Polym. Compos., 1999, 7(2): 117-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700