以聚丁二烯为核的球形聚电解质刷制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳米球形聚电解质刷的研究得到了广泛的关注。纳米球形聚电解质刷为丰富和完善聚电解质和聚合物刷理论提供了理想的模型体系,为胶体及胶体稳定性的研究增添了新的内容,并为大分子组装理论的研究开辟了新的思路。纳米球形聚电解质刷在废水处理、生物微反应器制备、纳米金属催化剂制备,及膜催化等领域有着广阔的应用前景。
     本文分别利用光引发乳液聚合和热引发乳液聚合的方法,成功地以聚丁二烯(PB)为核制备了一系列新的纳米球形聚电解质刷。该纳米球形聚电解质刷由核、壳两部分组成:核为直径320nm的聚丁二烯胶乳微球,壳为在其表面生成的长度和接枝密度可控的线性聚丙烯酸(PAA)链。研究了pH值和离子强度对纳米球形聚电解质性能的影响,并以此球形聚电解质刷为纳米反应器,通过吸附镍离子并将其还原,在聚电解质刷壳层内生成了纳米镍金属颗粒,制备出高比表面积的镍催化剂。将此纳米金属复合物应用于4-硝基苯酚催化还原反应,考察了其催化活性。主要工作如下:
     (1)光引发乳液聚合法制备纳米球形聚电解质刷(photo-brush)。先在聚丁二烯(PB)胶乳颗粒的表面接枝一层光引发剂HMEM,然后利用自制紫外光反应器引发聚丙烯酸单体聚合反应,从而在PB胶乳颗粒表面原位聚合生成了PAA刷。线性PAA链可控制在0-220nm范围内。通过调节乳液的pH值和离子强度,可控制PAA链的伸缩程度,从而控制球形聚电解质刷的尺寸大小。利用强碱切断HMEM分子与PB颗粒之间的酯键,将PAA链从PB颗粒表面切除,PB核失去稳定性从乳液中浮起并在液面聚集。然后利用紫外分光光度计检测出下层清液中PAA的浓度,利用乌氏粘度计测试并计算出PAA链的分子量,结合原PB胶乳的固含率和PB核粒径的大小,从而计算出PAA刷在PB颗粒表面的接枝密度。
     (2)热引发乳液聚合法制备纳米球形聚电解质刷(thermal-brush)。在PB胶乳中加入热引发剂过硫酸钾(KPS),加热至80℃。KPS受热分解引发PB颗粒表面双键产生自由基,从而引发丙烯酸单体在PB胶乳颗粒表面聚合生成PAA刷。同样,可以通过控制加入丙烯酸单体的浓度来调节PAA链的长度,此外,pH值和离子强度同样可影响PAA链的伸缩程度及球形聚电解质刷的大小。.利用修正后的Daoud-Cotton模型估算了thermal-brush的接枝密度,发现thermal-brush比photo-brush的接枝密度略高。
     (3)分别用以上两种方法合成的球形聚电解质刷作为纳米反应器,吸附加入到溶液中的镍阳离子。由于静电吸附和Donnann效应,镍金属阳离子在阴离子型聚电解质刷壳层内富集。加入硼氢化钠(NaBH4)后,在无氧条件下还原镍离子,在聚电解质刷层内镍离子被还原为镍单质微粒,包裹在纳米微球的表面。制备出具有高稳定性和高比表面积的Ni-brush纳米复合物。将该Ni-brush纳米复合物作为催化剂,在水溶液体系中催化还原4-硝基苯酚,发现photo-brush负载镍纳米颗粒和thermal-brush负载镍纳米颗粒在该反应中均具有较好的催化活性,但前者比后者的催化活性更高。同时考察了催化剂含量和Ni/brush比例对表观催化反应速率常数的影响。
     本文首次通过在聚丁二烯胶乳颗粒上接枝聚丙烯酸制备了新的球形聚电解质刷,丰富了球形聚电解质刷的种类。并且,第一次利用热引发乳液聚合的方法直接在聚丁二烯胶乳颗粒表面制备了聚电解质刷,大大简化了纳米球形聚电解质刷的制备方法。
In this paper, new spherical polyelectrolyte brushes consisted of a poly(butadiene) (PB) latex with diameter of 320 nm as core and chemically grafted linear poly (acrylic acid) (PAA) chains as shell were synthesized by photoemulsion polymerization and conventional emulsion polymerization respectively. The length and grafting density of PAA chains could be controlled. We studied the catalytic activity of nickel nanoparticles prepared and immobilized in spherical polyelectrolyte brushes acting as nano-reactors.
     (1) SPB prepared by photo-emulsion polymerization (photo-brushes). The poly (butadiene) (PB) latex particles were coated by a thin layer of photoinitiator HMEM firstly. Then the polymerization of acrylic acid (AA) was initiated by radiation of UV light and PAA brushes were produced on the surface of PB particles. The linear PAA chains can be 0 to 220 nm by controlling the AA monomer content. The pH and ionic strength are the most important factors to affect the size of SPB, which can be determined by dynamic light scattering. The ester bond of the photoinitiator HMEM was cleaved by a strong aqueous base, so the PAA chains were removed from the surface of the particles and analyzed separately. Thus, we obtained the grafting density of PAA brushes.
     (2) SPB prepared by thermal-emulsion polymerization (thermal-brushes). Adding K2S2O4(KPS) into PB latex, radicals were produced on the surface of PB particles at 80℃, which initiate the polymerization of AA. The PAA chains grafted from the surface of PB particles. The length of PAA chains can be controlled by the concentration of AA monomer. The stretching of PAA chains were affected by pH and ionic strength remarkably like photo-brushes. The improved Daoud-Cotton model was applied to estimate the grafting density of thermal-brushes, which was found to be higher than that of photo-brushes.
     (3) Adding NiCl4 to photo-brush and thermal-brush latex respectively, the Ni4+ ions concentrated in polyelectrolyte brushes layer. Then Ni4+ was reduced to metallic Ni by added NaBH4, and Ni-brushes nanocomposite particles with catalytic activity were prepared. The application of Ni-brushes nanoparticles to p-nitrophenol reduction in water solution shows that both Ni-photo-brushes and Ni-thermal-brushes have catalytic activity in this reaction. And the former have a higher catalytic activity than the later.
引文
[1]Milner S T. Polymer Brushes. [J]. Science.1991,251:905-914
    [2]Marc R, Leduc, Craig J, Hawker, Julian Dao, Jean M. J, Frechet. Dendritic Initiators for "Living" Radical Polymerizations:A Versatile Approach to the Synthesis of Dendritic-Linear Block Copolymers [J]. Journal of the American Chemical Society.1996, 118(45):11111-11118
    [3]Inoue K. Functional dendrimers, hyperbranched and star polymers [J]. Progress in Polymer Science.2000,25(4):453-571
    [4]Edward Parsonage, Matthew Tirrell, Hiroshi Watanabe, Ralph G. Nuzzo. Adsorption of poly(2-vinylpyridine)-poly (styrene) block copolymers from toluene solutions [J]. Macromolecules,1987,24(8):1987-1995
    [5]David Guzonas, Daniele Boils, Michael L. Hair. Surface force measurements of polystyrene-block-poly(ethylene oxide) adsorbed from a nonselective solvent on mica. [J]. Macromolecules,1991,24(11):3383-3387
    [6]ALEXSANDER S. Adsorption of chain molecules with a polar head. A scaling description [J]. Journal de Physique,1977,38:977
    [7]Yasuhisa Tsukahara, Kiyoharu Tsutsumi, Yuya Yamashita, Shigetaka Shimada. Radical polymerization behavior of macromonomers.2. Comparison of styrene macromonomers having a methacryloyl end group and a vinylbenzyl end group. [J]. Macromolecules, 1990,23(25):5201-5208.
    [8]Kenji Yamada, Masayuki Miyazaki, Kohji Ohno, Takeshi Fukuda, and Masahiko Minoda. Atom Transfer Radical Polymerization of Poly(vinyl ether). [J]. Macromonomers. 1999,32(2):290-293.
    [9]Chiefari J, Rizzardo E. Control of Free-Radical Polymerization by Chain Transfer Methods. [M]. Handkook of Radical Polymerization. New York:Wiley,2002,629-690
    [10]Michael W. Neiser, Jun Okuda, and Manfred Schmidt. Polymerization of Macromonomers to Cylindrical Brushes Initiated by Organolanthanides. [J]. Macromolecules,2003,36(15):5437-5439
    [11]Krzysztof Matyjaszewski, Shuhui Qin, Jamie R. Boyce, David Shirvanyants, and Sergei S. Sheiko. Effect of Initiation Conditions on the Uniformity of Three-Arm Star Molecular Brushes. [J]. Macromolecules,2003,36(6):1843-1849
    [12]Y.-Z. You, C.-Y. Hong, C.-Y. Pan and P.-H. Wang. Synthesis of a Dendritic Core-Shell Nanostructure with a Temperature-Sensitive Shell. [J]. Advanced Materials.2004,16(21): 1953-1957
    [13]Shuhui Qin and Krzysztof Matyjaszewski, Hui Xu and Sergei S. Sheiko. Synthesis and Visualization of Densely Grafted Molecular Brushes with Crystallizable Poly(octadecyl methacrylate) Block Segments. [J]. Macromolecules,2003,36(2):605-612
    [14]Guanglou Cheng, Alexander Boker, Mingfu Zhang, Georg Krausch, and Axel H. E. Miiller. Amphiphilic Cylindrical Core-Shell Brushes via a "Grafting From" Process Using ATRP. [J]. Macromolecules,2001,34(20):6883-6888
    [15]Johannes J. Vosloo, Matthew P. Tonge, Christopher M. Fellows, Franck D'Agosto, Ronald D. Sanderson, and Robert G. Gilbert. Synthesis of Comblike Poly(butyl methacrylate) Using Reversible Addition-Fragmentation Chain Transfer and an Activated Ester. [J]. Macromolecules.2004,37(7):2371-2382
    [16]Alain Deffieux, Michel Schappacher. Synthesis and Characterization of Star and Comb Polystyrenes Using Isometric Poly(chloroethyl vinyl ether) Oligomers as Reactive Backbone. [J]. Macromolecules.1999,32(6):1797-1802
    [17]Kotohiro Nomura, Shinya Takahashi, Yukio Imanishi. Synthesis of Poly(macromonomer)s by Repeating Ring-Opening Metathesis Polymerization (ROMP) with Mo(CHCMe2Ph)(NAr)(OR)2 Initiators. [J]. Macromolecules.2000,34(14): 4712-4723
    [18]Neugebauer D, Zhang Y, Pakula T, et al. Polymer,2003,44:6863-6871
    [19]Alexander S. Adsorption of chain molecules with a polar head. A scaling description[J]. Journal de Physique.1977,38:977
    [20]Zhao B, Brittain W J. Polymer brushes:Surface immobilized macromolecules [J]. Progress in Polymer Science.2000,25(5):677-710
    [21]Ruhe J, et al. Polyelectrolyte brushes. [J].Advances in Polymer Science 2004,165: 79-150
    [22]Advincula RC, Brittain WJ, Caster KC, Ruhe J, editors. Polymer brushes. Weinheim: Wiley-VCH; 2004
    [23]Biesalski M, Ruhe J. Preparation and characterization of a polyelectrolyte monolayer covalently attached to a planar surface. [J]. Macromolecules 1999,32(7):2309-2316
    [24]Ahrens H, Forster S, Helm Ch. Polyelectrolyte brushes grafted at the air/water interface. [J]. Macromolecules 1997,30(26):8447-8452
    [25]Currie EPK, Sieval AB, Avena M, Zuihof H, Sudholter EJR, Cohen SMA. Weak polyacid brushes:preparation by LB deposition and optically detected titration. [J]. Langmuir. 1999,15(21):7116-7118
    [26]Bendejacq D, Ponsinet V, Joannicot M. Water-dispersed lamellar phases of symmetric poly (styrene)-block-poly (acrylic acid) diblock copolymers:model systems for flat dense polyelectrolyte brushes. [J]. The European Physical Journal E.2004,13:3-13
    [27]Zhang L, Yu K, Eisenberg A. Ion-induced morphological changes in "crew-cut" aggregates of amphiphilic block copolymers. [J]. Science.1996,272:1777-1779
    [28]Biver C, Hariharan R, Mays JW, Russel WB. Neutral and charged polymer brushes:a model unifying curvature effects from micelles to flat surfaces. [J]. Macromolecules 1997,30(6):1787-1792
    [29]Guo X, Weiss A, Ballauff M. Synthesis of spherical polyelectrolyte brushes by photo-emulsion polymerization. [J]. Macromolecules 1999,32(19):6043-6046
    [30]Muller F, Fontaine P, Delsanti M, Belloni L, Yang J, Chen YJ, et al. Counterion distribution in a spherical charged sparse brush. [J]. The European Physical Journal E. 2001,6:109-115
    [31]Lee A, Butun V, Vamvakaki M, Armes SP, Pople JA, Gast AP. Structure of pH-dependent block copolymer micelles:charge and ionic strength dependence. [J]. Macromolecules 2002,35(22):8540-8551
    [32]Forster S, Hermsdorf N, Bottcher Ch, Lindner P. Structure of block copolymer micelles. [J]. Macromolecules 2002,35(10):4096-105
    [33]Muller F, Delsanti M, Auvray L, Yang J, Chen YJ, Mays JW, et al. Ordering of urchin-like charged copolymer micelles:electrostatic packing and polyelectrolyte correlations. The European Physical Journal E.2000,3:45-53
    [34]Philip Pincus. Colloid stabilization with grafted polyelectrolytes. [J]. Macromolecules. 1991,24(10):2912-2919
    [35]Ross R S, Pincus P. The polyelectrolyte brush:poor solvent. [J]. Macromolecules.1992, 25(8):2177-2183
    [36]Israels R, Leermakers FAM, Fleer GJ, Zhulina EB. Charged Polymeric Brushes: Structure and Scaling Relations. [J] Macromolecules.1994,27(12):3249-3261
    [37]Borisov OV, Zhulina EB, Birshtein TM. Diagram of the States of a Grafted Polyelectrolyte Layer. [J]. Macromolecules.1994,27(17):4795-4803
    [38]Zhulina EB, Borisov OV. Structure and interaction of weakly charged polyelectrolyte brushes:Self-consistent field theory. [J]. Journal of Chemical Physics.1997,107(15): 5952-5968
    [39]X. Guo, M. Ballauff. Spherical polyelectrolyte brushes:Comparison between annealed and quenched brushes. [J]. PHYSICAL REVIEW E.2001,64,051406
    [40]Israels R, Leermarkers FAM, Fleer GJ. On the Theory of Grafted Weak Polyacids. [J]. Macromolecules,1994.27(11):3087-3093
    [41]Israels R, Leermarkers FAM, Fleer GJ. Charged Polymeric Brushes:Structure and Scaling Relations. [J]. Macromolecules,1994.27(12):3249-3261
    [42]Geeta Sharma, Matthias Ballauff. Cationic Spherical Polyelectrolyte Brushes as Nanoreactors for the Generation of Gold Particles. [J]. Macromolecular Rapid Communications.2004,25,547-552
    [43]Biesalski M, Ruhe J, Kugler R, Knoll W. Polyelectrolytes at solid surfaces. [M]. In: Tripathy SK, Kumar J, Nalwa HS(eds) Handbook of polyelectrolytes and their applications. American Scientific Publishers, San Diego,2002, chap 2, p 39
    [44]Borisov OV, Birshtein TM, Zhulina EB. Collapse of grafted polyelectrolyte layer. [J]. Journal de Physique Ⅱ (France).1991,1:521-526
    [45]Mays JW. Synthesis of model branched polyelectrolytes. [J] Polymer Communication. 1990,31:170-172
    [46]Jusufi A, Likos CN, Lowen H. Counterion-induced entropic interactions in solutions of strongly stretched, osmotic polyelectrolyte stars. [J]. Journal of Physical Chemistry. 2002;116:11011-11027
    [47]Jusufi A, Likos CN, Ballauff M. Counterion distribution and effective interaction in spherical polyelectrolyte brushes. [J]. Colloid and Polymer Science.2004,282:910-917
    [48]Pyun J, Kowalewski T, Matyjaszewski K. Synthesis of polymer brushes using atom transfer radical polymerization. [J]. Macromolecular Rapid Communications. 2003,24:1043-1059
    [49]Boyes SG, Cyrus C, Akgun B, Caplan A, Mirous B, Brittain JW. Synthesis and application of polyelectrolyte brushes, in stimuli-responsive polymeric films and coatings. [J]. ACS Symposium Series.2005,912:55-67
    [50]Muller F, Fontaine P, Delsanti M, Belloni L, Yang J, Chen YJ, et al. Counterion distribution in a spherical charged sparse brush. [J]. The European Physical Journal E. 2001,6:109-115
    [51]Russel WB, Saville DA, Schowalter WR. Colloidal dispersions. [J]. Cambridge: Cambridge University Press,1989
    [52]X. Guo and M. Ballauff. Spatial Dimensions of Colloidal Polyelectrolyte Brushes As Determined by Dynamic Light Scattering. [J] Langmuir.2000,16,8719-8726
    [53]Hariharan, R.; Biver, C.; Mays, J.; Russel, W. B. Ionic Strength and Curvature Effects in Flat and Highly Curved Polyelectrolyte Brushes. [J]. Macromolecules.1998,31(21): 7506-7513
    [54]Clayfield E J, Jumb E C. A theoretical approach to polymeric dispersant action I. Calculation of entropic repulsion exerted by random polymer chains terminally adsorbed on plane surfaces and spherical particles. [J]. Journal of Colloid and Interface Science. 1996,22(3):269-284
    [55]Rill Randolph L, Liu Ying-jie. Pluronic copolymer Liquid crystal:Unique, replaceable media for capacity gel electrophoresis [J]. Journal of Chromatograghy,1998, A 817: 287-295
    [56]Katakai A, Seko N, Kawakami T, et al. Adsorption of uranium in sea water using amidoxime adsorbents prepared by radiation-induced cografting [J]. Journal of the Atoms Society of Japan,1998,40:878-880
    [57]Thorsten Neumann, Bjorn Haupt, Matthias Ballauff. High Activity of Enzymes Immobilized in Colloidal Nanoreactors.[J] macromolecular bioscience.2004,4:13-16
    [58]Yu Mei, Geeta Sharma, Yan Lu, and Matthias Ballauff. High Catalytic Activity of Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes. [J]. Langmuir. 2005,21(26):12229-12234
    [59]Yu Mei, Yan Lu, Frank Polzer, and Matthias Ballauff. Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core-Shell Microgels.[J] Chemistry of Materials.2007,19:1062-1069
    [1]王德海,江棂编.紫外光固化材料[M].北京:科学出版社,2001
    [2]Alexsander S. Adsorption of chain molecules with a polar head. A scaling description [J]. Journal de Physique (Paris).1977,38:977
    [3]Parsonage E, Tirrjell M, Watanabe H, et al. Adsorption of poly (2-vinylpyridine)-poly (styrene) block copolymers from toluene solutions [J]. Macromolecules.1991,24(8): 1987-1995
    [4]Harald L, Friederike S. Surface anchoring on liquid crystalline polymer brushes [J]. Computer Phvsics Communications.2002.147:276-281
    [5]Mahsky P, Liu Y, Huang E, et al. Controlling polymer surface interactions with random copolymer brushes [J]. Science,1997,275:1458-1460
    [6]Saito K, Tsuneda S. Radiation-induced graft polymerization is the key to develop High-performance functional materials for protein purification [J]. radiation physics and chemistry,1999,54:517-525
    [7]Guo X,Weiss A,Ballauff M. Synthesis of spherical polyelectrolyte brushes by photoemulsion polymerization [J]. Macromolecules,1999,32(19):6043-6046
    [8]Prucker O, Ruhe J. Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators [J]. Macromolecules,1998, 31(3):592-601
    [9]Szwarc M. Living polymers [J]. Nature,1956,178:1168-1169
    [10]Koutsos V, Vander Vegte E M, Hadziioannou G. Direct View of Structural Regimes of End-Grafted Polymer Monolayers:A Scanning Force Microscopy Study [J].Macromolecules,1999,32(4):1233-1236
    [11]Koutsos V, Vander Vegte E M, Pelletier E, et al. Structure of Chemically End-Grafted Polymer Chains Studied by Scanning Force Microscopy in Bad-Solvent Conditions[J]. Macromolecules,1997,30(16):4719-4726
    [12]Yang X, Shi J, Johnson S, et al. Growth of Ultrathin Covalently Attached Polymer Films: Uniform Thin Films for Chemical Microsensors [J]. Langmuir,1998,14(7):1505-1507
    [13]Park Y S, Ito Y, Imanishi Y Photocontrolled Gating by Polymer Brushes Grafted on Porous Glass Filter [J] Macromolecules,1998,31(8):2606-2610
    [14]Beers L K, Gaynor S G, Matyjaszewski K, et al. The Synthesis of Densely Grafted Copolymers by Atom Transfer Radical Polymerization [J]. Macromolecules,1998, 31(26):9413-9415
    [15]Matyjaszewski K, Qin S, Boyce J R, et al. Effect of Initiation Conditions on the Uniformity of Three-Arm Star Molecular Brushes [J]. Macromolecules,2003,36(6): 1843-1849
    [16]Li C M, Gunari N, Fischer K, et al. Angewandte Chemie International Edition.2004,43: 1101-1104
    [17]You Y Z, Hong C Y, Pan C Y, et al. Synthesis of a Dendritic Core-Shell Nanostructure with a Temperature-Sensitive Shell [J]. Advanced Materials.2004,16(21):1953-1957
    [18]Borner H G, Duran D, Matyjaszewaki K, et al. Synthesis of Molecular Brushes with Gradient in Grafting Density by Atom Transfer Polymerization [J]. Macromolecules. 2002,35(22):3387-3394
    [19]王正列, 周亚平.物理化学[M].北京:科学技术出版社,2001.
    [20]Hariharan, R., Biver, C., Mays, J., Russel, W. B. Ionic Strength and Curvature Effects in Flat and Highly Curved Polyelectrolyte Brushes [J]. Macromolecules 1998,31(21): 7506-7513
    [21]Brandrup, J., Immergut, E. H., Eds. Polymer Handbook,3rd ed., Wiley:New York,1989
    [1]Park Y S, Ito Y, Imanishi Y. Photocontrolled Gating by Polymer Brushes Grafted on Porous Glass Filter [J] Macromolecules,1998,31(8):2606-2610
    [2]Beers L K, Gaynor S G, Matyjaszewski K, et al. The Synthesis of Densely Grafted Copolymers by Atom Transfer Radical Polymerization [J] Macromolecules,1998,31(26): 9413-9415
    [3]Matyjaszewski K, Qin S, Boyce J R, et al. Effect of Initiation Conditions on the Uniformity of Three-Arm Star Molecular Brushes [J] Macromolecules,2003,36(6): 1843-1849
    [4]Li C M, Gunari N, Fischer K, et al. Angewandte Chemie International Edition.2004,43: 1101-1104
    [5]You Y Z, Hong C Y, Pan C Y, et al. Synthesis of a Dendritic Core-Shell Nanostructure with a Temperature-Sensitive Shell [J] Adv. Mater. Advanced Materials.2004,16(21): 1953-1957
    [6]Borner H G, Duran D, Matyjaszewaki K, et al. Synthesis of Molecular Brushes with Gradient in Grafting Density by Atom Transfer Polymerization [J] Macromolecules.2002, 35(9):3387-3394
    [7]Yu Mei, Yan Lu, Frank Polzer, and Matthias Ballauff. Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core Shell Microgels. [J]. Chemistry of Materials.2007,19:1062-1069
    [8]Lu, Y. Mei, Y. Ballauff, M, Drechsler, M.'Nano-tree'-type spherical polymer brush particles as templates for metallic nanoparticles.[J] Polymer.2006,47,4985-4995
    [9]Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Thermosensitive Core-Shell Particles as Carriers for Ag Nanoparticles:Modulating the Catalytic Activity by a Phase Transition in Networks [J]. Journal of Physical Chemistry B.2006,110,3930-3937
    [10]Biver,C. Hariharan,R. Mays, J. Russel,W.B. Neutral and Charged Polymer Brushes:A Model Unifying Curvature Effects from Micelles to Flat Surfaces [J]. Macromolecules 1997,30(6),1787-1792
    [11]Hariharan, R. Biver, C. Russel, W. B. Ionic Strength Effects in Polyelectrolyte Brushes: The Counterion Correction [J]. Macromolecules 1998,31(21),7514-7518
    [12]X, Guo. M, Ballauff. Spatial Dimensions of Colloidal Polyelectrolyte Brushes As Determined by Dynamic Light Scattering. [J]. Langmuir 2000,16(23),8719-8726
    [1]Burda, C. Chen, X. Narayanan, R. El-Sayed, M. Chemistry and Properties of Nanocrystals of Different Shapes [J]. Chemical Reviews.2005,105(4):1025-1102
    [2]Henglein, Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chemical Reviews.1989,89(8): 1861-1873
    [3]Frederix, F.; Friedt, J.; Choi, K.; Laureyn, W.; Campitelli, A.;Mondelaers, D.; Maes, G.; Borghs, G. Biosensing Based on Light Absorption of Nanoscaled Gold and Silver Particles [J]. Analytical Chemistry.2003,75(24):6894-6900
    [4]Praharaj, S.; Nath, S.; Ghosh, S.; Kundu, S.; Pal, T. Immobilization and Recovery of Au Nanoparticles from Anion Exchange Resin:Resin-Bound Nanoparticle Matrix as a Catalyst for the Reduction of 4-Nitrophenol [J]. Langmuir 2004,20(23):9889-9892
    [5]Campbell, C. T.; Parker, S. C.; Starr, DE. The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering [J]. Science 2002,298:811-814
    [6]Li, Y.; Boone, E.; El-Sayed, M. A. Size Effects of PVP-Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution [J]. Langmuir 2002,18(12):4921-4925
    [7]Esumi, K.; Isono, R.; Yoshimura, T. Preparation of PAMAM-and PPI-Metal (Silver, Platinum, and Palladium) Nanocomposites and Their Catalytic Activities for Reduction of 4-Nitrophenol [J]. Langmuir 2004,20(1):237-243
    [8]Zhao, M.; Crooks, R. M. Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles [J]. Angewandte Chemie International Edition.1999,38:364.
    [9]Zhang, J.; Xu, S.; Kumacheva, E. Polymer Microgels:Reactors for Semiconductor, Metal, and Magnetic Nanoparticles [J]. Journal of the American Chemistry Society.2004, 126(25):7908-7914
    [10]Bonnemann, W.; Brijoux, A.; Schulze, T.; Siepen, K. Application of heterogeneous colloid catalysts for the preparation of fine chemicals [J]. Topics in Catalysis 1997,4, 217-227
    [11]Liang, Z.; Susha, A.; Caruso, F. Gold Nanoparticle-Based Core-Shell and Hollow Spheres and Ordered Assemblies Thereof [J]. Chemistry of Material.2003,15(16): 3176-3183
    [12]Kidambi, S.; Bruening, M. L. Multilayered Polyelectrolyte Films Containing Palladium Nanoparticles:Synthesis, Characterization, and Application in Selective Hydrogenation [J]. Chemistry of Material.2005,17(2):301-307
    [13]Yu Mei, Geeta Sharma, Yan Lu, and Matthias Ballauff. High Catalytic Activity of Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes [J]. Langmuir 2005,21(26):12229-12234
    [14]Yu Mei, Yan Lu, Frank Polzer, and Matthias Ballauff. Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core Shell Microgels [J]. Chemistry of Material.2007,19(5):1062-1069
    [15]Stefanie Wunder, Frank Polzer, Yan Lu, Yu Mei, and Matthias Ballauff. Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes [J]. Journal of Physical Chemistry 2010,114(19): 8814-8820
    [16]Sharma, G.; Ballauff, M. Cationic Spherical Polyelectrolyte Brushes as Nanoreactors for the Generation of Gold Particles [J]. Macromolecular Rapid Communications.2004,25: 547-552
    [17]Pradhan, N.; Pal, A.; Pal, T. Silver nanoparticle catalyzed reduction of aromatic nitro compounds [J]. Colloids and Surfaces A.2002,196,247-257
    [18]X. Guo and M. Ballauff. Spherical polyelectrolyte brushes:Comparison between annealed and quenched brushes. [J]. PHYSICAL REVIEW E.64,051406
    [19]X. Guo and M. Ballauff. Spatial Dimensions of Colloidal Polyelectrolyte Brushes As Determined by Dynamic Light Scattering. [J]. Langmuir 2000,16(23),8719-8726

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700