传蓄热熔盐的热物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液态熔盐由于体热容量大;低粘度、流动性好;低蒸汽压;较宽的工作温度范围;同时还具有较大的裂变材料溶解度,可用于熔盐堆中的最为燃料溶剂;是核能及太阳能传蓄热应用中良好的热工介质。熔盐的熔点、密度、粘度、热容、表面张力、导热系数等热物性参数是传热系统热工设计及安全分析中的基本参数,不但涉及到热量的传输的效率,更关系到整个系统的安全。论文针对熔盐堆物理、热工以及安全设计的需要,采用实验测量以及相图热力学计算的方法,系统研究用于传蓄热系统中的熔盐热物性。
     本文采用商用相图计算软件Facsage6.4和Pandat优化计算了LiF-NaF-KF熔盐体系的相图,并建立相关的热力学数据库。采用文献报道的较为可靠的LiF-BeF2-ThF4-UF4体系的的相图优化结果,建立了该体系的相图热力学数据库,为熔盐堆中液态燃料的制备与燃料盐配比的优化提供参考。
     本论文在详细调研熔盐热物性的测试方法与市场上的物性测试仪器情况的基础上,确定了熔盐物性参数测试的方法,即采用阿基米德法、步冷曲线法、最大气泡压力法、旋转法、激光闪光法、差示扫描量热法分别测量熔盐的密度、初晶温度/熔点、表面张力、粘度、导热系数和热容等参数。
     为此,自主研制了旋转法高温粘度仪,搭建了熔盐密度测试仪,改进了激光导热仪等熔盐物性测量设备,建立了熔盐密度、表面张力以及初晶温度的测试方法和实验规范,测量精度和误差均满足熔盐传热所需的要求。验证了旋转法用于低粘度熔盐测量的可行性,并取得了较好的常温低粘度测量结果。设计了闪光法液体热扩散测试的坩埚,确定了熔盐液体测试的样品制备方法及测试规范,测量结果与文献报道的结果基本吻合。建立了差示扫描量热法测量熔盐熔点、熔化焓和热容的实验方法和规范,测试结果满足传蓄热熔盐的设计要求。总的来说,实现了高温熔盐的粘度、密度、初晶温度、表面张力与导热系数的准确测定。
     利用上述仪器和建立的实验规范,测量了NaNO3-KNO3(60-40wt%)、NaNO3-NaNO2-KNO3(7-40-53wt%)、Li2CO3-Na2CO3-K2CO3(32.1-33.4-34.5wt%)、KCl-MgCl2(66-34mol%)、LiF-NaF-KF(46.5-11.5-42mol%)、KF-ZrF4(58-42mol%)等六个个典型的硝酸盐、碳酸盐、氯化盐和氟化盐体系热物性。这些结果为熔盐在核能和太阳能中的传热蓄热应用提供了具有参考价值的数据,尤其是FLiNaK的热物性参数的测定,为钍基熔盐堆二回路使用FLiNaK的确定提供了依据。
Molten salt is an ideal medium for heat transfer and storage in nuclear reactor andconcentrated solar power system because of its low viscosity, low vapor pressure at hightemperature, large specific capacity, high thermal conductivity and wide temperature range.Thermophysical properties such as liquidus temperature, density, viscosity, thermalconductivity, heat capacity are basic parameters for thermal hydraulics concerning theefficiency of heat transfer, and safety analysis involving the safty of the whole system.According to requirements of heat transfer system design and Molten Salt Reactor physicsanalysis, this paper focuses on the investigation on the thermophysical properties of moltensalts by experimental determination and CALPHAD(CALculation of Phase Diagram)method.
     Facsage6.4and Pandat were used to optimize the LiF-NaF-KF ternary phase diagrams,and the relevant databases were obtained. The phase diagrams of LiF-BeF2-ThF4-UF4werecalculated by using the well optimized parameters of each phase from literature.
     After a detailed investigation of the measurement method of thermophysical propertiesfor molten salts, the Archimedes, cooling curves, bubble maximum pressure, rotating anddifferential scanning calorimetry methods were adopted to determine the density, liquidustemperature, surface tension, viscosity and heat capacity of molten salts respectively.
     In order to get accurate levels of thermophysical properties of molten salts, theintegrated testing device for density, liquidus temperature and surface tension measurement,rotating viscometer, Laser flash themal analyzer and DSC were developed or improvedrespectively. The experimental results of density, liquidus temperature and surface tensionmeasurements were well enough for the needs of heat transfer design. The feasibility of lowviscosity measurement by rotating method was verified, and good experimental results wereobtained in conditions of room temperature. A special crucible was designed and thecorresponding method of sample preparation was established for the thermal diffusivitymeasurement of liquid salts. The experimental specifications of heat capacity measurementfor liquid salts by DSC were explored and preliminary results were gained.
     The thermophysical properties of NaNO3-KNO3(60-40wt%), NaNO3-NaNO2-KNO3(7-40-53wt%), Li2CO3-Na2CO3-K2CO(332.1-33.4-34.5wt%), KCl-MgCl2(66-34mol%),LiF-NaF-KF(46.5-11.5-42mol%), KF-ZrF4(58-42mol%) were obtained by experimentmeasurement, and the corresponding thermophysical properties database can providereference for the applications of these salts in heat transfer and storage.
引文
[1]谢刚.熔融盐理论及应用[M].1998.
    [2]段淑贞,乔芝郁.熔盐化学—原理和应用[M].1987.
    [3] CHEN Y, WU Y, REN N, et al. Experimental study of viscosity characteristics of high-temperatureheat transfer molten salts[J]. Science China Technological Sciences,2011,54(11):3022-3026.
    [4]吴玉庭,马重芳.熔盐理化性质及传热研究进展[C]熔盐化学研讨会,上海应用物理研究所,上海,嘉定.
    [5]别略耶夫.熔盐物理化学[M].1963.
    [6]沈向阳,丁静,彭强等.高温熔盐在太阳能热发电中的应用[J].广东化工,2007,34(175):4.
    [7] LANTELME F, GROULT H. Molten salts chemistry-from lab to applications[M].2013.
    [8] MEER J V D. Thermochemical investigation of molten fluoride salts for Generation IV nuclearapplications-an equilibrium exercise[M].2006.
    [9] WILLIAMS D F. ORNL/TM-2006/12Assessment of candidate molten salt coolants for theAdvanced High-Temperature Reactor (AHTR)[R].2006.
    [10] WILLIAMS D F. ORNL/TM-2006/69Assessment of candidate molten salt coolants for theNGNP/NHI Heat-transfer loop[R].2006.
    [11] COTTRELL W B. ORNL-1234Aircraft nuclear propulsion project[R]. ORNL,1952.
    [12] BRIANT R C. ORNL-1294Aircraft nuclear propulsion project quarterly progress report[R].1952.
    [13] PRINEE B E, BALL S J, ENGEL J R, et al. Zero-power physics experiments on the molten-saltreactor experiment[R].1968.
    [14] ROBERTSON R C, SMITH O L, BRIGGS R B, et al. ORNL-4528Two-fluid molten-salt breederreactor design study (status of January1,1968)[R].1970.
    [15] L.ZHEREBTSOV A. ISTC-1606ISTC Project#1606final report[R].2004.
    [16]孙李平.太阳能高温熔盐优选及腐蚀特性试验研究[D]. City:北京工业大学,2007.
    [17] ZAVOICO A B. Solar power tower design basis document revision [R].2001.
    [18]胡宝华,丁静,魏小兰等.高温熔盐的热物性测试及热稳定性分析[J].无机盐工业,2010,42(1):3.
    [19] S. C, WARD W T, MOYNIHAN C T. Viscosity and density in molten BeF2–LiF solutions[J]. TheJournal of Chemical Physics,1969,50(7):2874.
    [20] BENES O, CABET C, DELPECH S, et al. Assessment of LIquid Salts for Innovative Applications(ALISIA)[R].2009.
    [21]潘竹.多元铝合金相图拓扑关系理论和实验研究[D]. City:中南大学,2007.
    [22]黄勇,崔国文.相图与相变[M].1987.
    [23]张圣弼,李道子.相图-原理、计算及在冶金中的应用[M].1986.
    [24]聂秩笛.材料科学研究中常用的热力学模型评述[J].陶瓷学报,2005,26(2):9.
    [25]徐祖耀,李麟.材料热力学[M].3.科学出版社,2005.
    [26] PELTON A D, BLANDER M. Thermodynamic analysis of ordered liquid solutions by a modifiedquasichemical approach-application to silicate slags[J]. METALLURGICAL AND MATERIALSTRANSACTIONS B,1986,17B:805-816.
    [27] PELTON A D, CHARTRAND P. The modified quasi-chemical model: part II. multicomponent[J].METALLURGICAL AND MATERIALS TRANSACTIONS A,2001,32A:1355-1361.
    [28] CHARTRAND P, PELTON A D. The modified quasi-chemical model: part III. two sublattices[J].METALLURGICAL AND MATERIALS TRANSACTIONS A,2001,32A:11.
    [29] BALE C W, CHARTRAND P, DEGTEROV S A. FactSage thermochemical software anddatabases[J]. Calphad,2002,26(2):40.
    [30] Pandat2012user's guide [M]//LLC C.2012.
    [31] HOLM J L. Phase relations in the systems NaF-LiF, NaF-KF, and NaF-RbF[J]. ACTA CHEMICASCANDINAVICA,1965,19(3):7.
    [32] MACLEOD A C, CLELAND J. Ethalpies of mixing in some binarymolten akali fluoride mixtures[J].J Chem Thermodynamics,1975,7:103-118.
    [33] VAN DER MEER J P M, KONINGS R J M. Thermal and physical properties of molten fluorides fornuclear applications[J]. Journal of Nuclear Materials,2007,360(1):16-24.
    [34]王坤,安学会,张鹏等. LiF-NaF-KF体系的相图计算[J].北京科技大学学报,2012,34:12.
    [35] VAN DER MEER J P M, KONINGS R J M, JACOBS M H G, et al. A miscibility gap in LiF–BeF2and LiF–BeF2–ThF4[J]. Journal of Nuclear Materials,2005,344(1-3):94-99.
    [36] CANTOR S. Density and viscosity of several molten fluoride mixtures[R].1973.
    [37] CANTOR S. ORNL-TM-2316Physical properties of molten-salt reactor fuel, coolant, and flushsalts[R].1968.
    [38] GRIMES W R. ORNL-4076Reactor chemistry division annual progress report for period endingDecember[R].1966.
    [39]王常珍.冶金物理化学研究方法[M].1992:454.
    [40]边茂恕,马禄铭,王景唐.高温熔体密度测试新方法[J].金属学报,1986,22(2):7.
    [41] SHARTSIS L, SPINNER S. Viscosity and density of molten optical glasses[J]. Journal Research ofthe National Bureau of Standards,1951,46(3):19.
    [42]印永嘉.物理化学简明手册[M].高等教育出版社,1988.
    [43] JANZ G J, DAMPIER F W, LAKSHMINARAYANAN G R, et al. NSRDS-NBS15Molten salts:volume1, electrical conductance, density, and viscosity data[R].1968.
    [44] YAN H, YANG J, LI W. Surface tension and density in the KF–NaF–AlF3-based electrolyte[J].Journal of Chemical&Engineering Data,2011,56(11):4147-4151.
    [45] CHENG J H, ZHANG P, AN X H, et al. A Device for Measuring the Density and LiquidusTemperature of Molten Fluorides for Heat Transfer and Storage[J]. Chinese Physics Letters,2013,30(12):126501.
    [46] BENE O, KONINGS R J M. Thermodynamic properties and phase diagrams of fluoride salts fornuclear applications[J]. Journal of Fluorine Chemistry,2009,130(1):22-29.
    [47] SERRANO-L PEZ R, FRADERA J, CUESTA-L PEZ S. Molten salts database for energyapplications[J]. Chemical Engineering and Processing: Process Intensification,2013,73:87-102.
    [48] SOHAL M S, EBNER M A, SAHARWALL P, et al. INL/EXT-10-18297Engineering database ofliquid salt thermophysical and thermochemical properties[R].2010.
    [49] B.KUB KOV, M.KCHAR K, R.VASOLJEV, et al. Phase equilibria, volume properties, surfacetension,and viscosity of the (FLiNaK)eut+K2NbF7melts[J]. J Chem Eng Data,2009,54:4.
    [50]胡鑑安,秦毅.旋转式粘度计工作原理及其主要部件设计[J].同济大学学报,1994,22(3):5.
    [51]时迎亮.高温液态金属粘度仪的研究与设计[D]. City:山东大学,2007.
    [52] SHVIDKOVSKIY Y G. Certain problems related to the viscosity of fused metals[M].1962.
    [53]气膜悬浮熔滴法—非接触式超高温粘度,接触角/表面张力测试系统[R].2011.
    [54]章凯羽. KNO3-NaNO2系熔盐的物理化学性质研究[D]. City:东北大学,2008.
    [55] COHEN S I, JONES T N. ORNL-2278Viscosity measurements on molten fluoride mixtures [R].1957.
    [56]温诗铸.摩擦学原理[M].清华大学出版社,1990.
    [57]郭瑞.表面张力测量方法综述[J].计量与测试技术,2009,36(4):3.
    [58] SONG B, SPRINGER J. Determination of interfacial tension from the profile of a pendant drop usingcomputer-aided image processing[J]. Journal of colloid and interface science,1996,184:13.
    [59]奚新国, CHEN P.表面张力测定方法的现状与进展[J].盐城工学院学报,2008,21(3):4.
    [60] JANZ G J, ALLEN C B, BANSAL N P. Physical properties data comilations relevant to energystorage. II.molten salts: data on single and multi-comonent salt sysmsI[M]. NSRDS,1979.
    [61]闵凯,刘斌,温广.导热系数测量方法与应用分析[J].保险研究,2005,5(6):4.
    [62]黎爱纯.稳态热流计法导热仪测试人造板导热系数[J].南京林业大学学报,1997,21(3):4.
    [63]刘明.瞬态热线法测量液体导热系数的研究[D]. City:浙江大学,2010.
    [64]李东风.流体导热系数测定仪的研制与开发[D]. City:西北大学,2005.
    [65] TUFEU R, PETITET J P. Experimental determination of the thermal conductivity of moltenpure salts and salt mixtures[J]. International Journal of Thermophysics,1985,6(4):16.
    [66] T.OMOTANL, A.NAGASHIMA. Thermal conductivity of molten salt, HTS and the LiNO3-NaNO3System, using a modified transient hot-wire method[J]. J Chem EngData,1984,29:3.
    [67] HOSHI M. Transient method to measure the thermal conductivity of high-temperature melts using aliquid-metal probe[J]. Review of Scientific Instruments,1981,52(5):755.
    [68] DUSZA L. Combined solution of the simultaneous heat loss and finite pulse correction with the laserflash method[J]. High Temperature-High Pressures,1995,27/28:7.
    [69] JAMES H M. Some extensions of the flash method of measuring thermal diffusivity[J]. Journal ofApplied Physics,1980,51(9):4666.
    [70] PARKER W J, JENKINS R J, BUTLER C P, et al. Flash method of determining thermal diffusivity,heat capacity, and thermal conductivity[J]. Journal of Applied Physics,1961,32(9):1679-1686.
    [71] CAPE J A, LEHMAN G W. Temperature and finite pulse-time effects in the flash method formeasuring thermal diffusivity[J]. Journal of Applied Physics,1963,34(7):1909.
    [72] COWAN R D. Pulse method of measuring thermal diffusivity at high temperatures[J]. Journal ofApplied Physics,1963,34(4):926.
    [73] STANKUS S V, SAVCHENKO I V. Laser flash method for measurement of liquid metals heat tranfercoefficients[J]. Thermphysics and Aeromechanics,2009,16(4):8.
    [74] SHIBATA H, SUZUKI A, OHTA H. Measurement of thermal transport properties for molten silicateglasses at high temperatures by means of a novel laser flash technique[J]. Materials Transactions,2005,46(8):5.
    [75] OHTA H, OGURA G, WASEDA Y, et al. Thermal diffusivity measurements of molten salts using athree-layered cell by the laser flash method[J]. Review of Scientific Instruments,1990,61(10):2645.
    [76]蔡正千.热分析[M].解放军出版社,1993.
    [77] SCHLESINGER M E, JACOB S. Advances in high-temperature calorimetry:a comparison[J]. JOM,2004,56(12):4.
    [78] BENE O, KONINGS R J M, WURZER S, et al. A DSC study of the NaNO3–KNO3system usingan innovative encapsulation technique[J]. Thermochimica Acta,2010,509(1-2):62-66.
    [79] ASTM. Standard test method for determining specific heat capacity by differential scanningcalorimetry[S].2011:1-6.
    [80] JANZ G J, TOMKINS R P T. Physical properties data compilations relevant to energy storage IV.molten salts:data on additional single and multi-component salt systems[M].1981.
    [81] JANZ G J. Thermodynamic and transport properties for molten salts:correlation equations forcritically evaluated density, surface tension, electrical conductance, and viscosity data[J]. Journal ofPhysical and Chemical Referance Data,1988,17(Supplement No.2).
    [82]廖敏,丁静,魏小兰等.高温碳酸熔盐的制备及传热蓄热性质[J].无机盐工业,2008,40(10):3.
    [83] KOJIMA T, MIYAZAKI Y, NOMURA K, et al. Density, surface tension, and electrical conductivityof ternary molten carbonate system Li2CO3–Na2CO3–K2CO3] and Methods for Their Estimation[J].Journal of The Electrochemical Society,2008,155(7): F150-F156.
    [84] LIU Q, LANGE R A. New density measurements on carbonate liquids and the partial molar volumeof the CaCO3component[J]. Contributions to Mineralogy and Petrology,2003,146(3):370-381.
    [85] JANZ G J, GARDNER G L, KREBS U, et al. Journal of Physical and Chemical Referance Data3,1974:115.
    [86] WILLIAMS D F. ORNL/GEN4/LTR-06-033Additional physical property measurements andassessment of salt compositions proposed for the intermediate heat transfer loop[R].2006.
    [87] ROGERS D J, YOKO T, JANZ G J. Fusion properties and heat capacities of the eutectic LiF-NaF-KFmelt[J]. J Chem Eng Data,1982,27:2.
    [88] JANZ G J, ALLEN C B. Physical properties data compilations relevant to energy storage I. moltensalts: eutectic data[R].1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700