谐振式传感器输出信号的高分辨率测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工农业生产对产品质量的要求决定了对过程参数控制精度的要求越来越高,与实验室仪器仪表相比,现场仪器仪表特别是用于油井探边的高温高精度电子压力计更应结构简单、体积小、分辨率高、高温性能好。
     谐振式传感器被广泛地应用于现场仪器仪表上对力、压力、湿度、温度、角速度、加速度、位移、质量流量、气体成分进行测量和进行生物分子识别及磁场的检测。压电石英晶体压力温度传感器在探边用压力温度计上有其他传感器无法比拟的优势。
     谐振式传感器的零点输出具有一定的初始频率,范围为几kHz到几百kHz,测量参数引起的频率变化量比初始频率小很多。分辨率是精度的基础,怎样高分辨率测量有一定初始频率的小频率增量问题一直未能很好地解决。本文从高分辨率测量谐振式传感器输出信号入手,对小频率增量的测量方法、逻辑混(差)频器的输入输出特性、频率测量的方法及算法进行了深入研究,并取得以下创新成果:
     第一,提出了一种适合现场仪器仪表采用的高分辨率测量由待测参量引起的小频率增量的测量方法。
     第二,理论上研究了D触发器差频器的输入输出特性;提出了输入信号需要满足的条件,找出了产生测量误差的主要原因;提出了为减少误差,输入信号与D触发器的连接方式及参考信号的取值范围;通过对测量数据的有机取舍,得到了比较高的测量分辨率。
     第三,理论上研究了逻辑门混频器的混频特性,进行了归类,选出了作为混频器的最佳逻辑门;在此基础上,通过理论分析,提出了基于异或门,仅使用一阶RC滤波器、特性优良的差频电路,并通过实验验证了理论的正确性。
     第四,通过理论分析,提出了一种电路简单、测量分辨率高的连续计数间隔标记的频率测量方法及算法(标记法),并通过实验对理论进行了验证。
     第五,进行了谐振式传感器高分辨率测量方法的比较。使用D触发器对待测信号和参考信号进行差频,以D触发器输出信号的周期为闸门,连续对基准信号进行计数,得到测量数组,对测量数组中的数据进行有机取舍,能得到较高的测量分辨率且电路简单,可供使用谐振式传感器的现场仪器仪表使用;标记法的测量分辨率远远高于混(差)频法,在进行一定的技术实现方法完善后,有望成为一种电路简单、成本低、高分辨率的频率测量方法,应用前景相当广阔。
     标记法是本论文最主要的理论与实践创新。它优于间接法,因为间接法只利用整个测量时间内进入计数器的时钟脉冲数,根据它来确定待测频率;而标记法不仅利用整个测量时间内进入计数器的时钟脉冲数,而且利用每一小段时间进入计数器的时钟脉冲数变化所提供的信息,来共同确定待测频率。标记法优于回归法,是因为回归法主要利用进入计数器的时钟脉冲数的平均速度;而标记法充分利用在各个时段计数器的时钟脉冲数变化的细节,嵌套数越多,细节信息越丰富,标记法的优越性越明显。
Compared with laboratory equipments, downhole probes for testing reservoirlimit should have the advantages of simple structure, small size, high resolution andexcellent high temperature performance.
     Resonator-based sensors are utilized in a wide range of applications in fieldinstruments. The resonant quartz crystal sensor is one of the most widely used in theoil field for testing reservoir limit.
     Resonator-based sensors output includes initial frequency and variation of thefrequency caused by the change of the measured parameter. The range of initialfrequency is several thousand to several hundred thousand Hz. The variation of thefrequency is much smaller than the initial frequency. The uncertainty ofmeasurement can never be smaller than its resolution. Measuring small frequencyincrements with high resolution remains a problem. In order to solve the problem,the measuring method of small frequency increments, the input and outputcharacteristics of logic mixers, the measuring method and processing algorithm offrequency are studied in this paper. The main contributions and innovation points areas follows:
     Firstly, a high resolution measuring method on small frequency increments forfield instruments was proposed.
     Secondly, the input and output characteristics of a D flip-flop mixer werestudied in theory. Its application conditions were given. The main reasons resultingin its output measurement errors were analyzed. The electric connection mode of theinput signal with D flip-flop and the range of reference signal value were putforward to reduce the measurement error. High measuring resolution has beenobtained through proper selection of measurement signals.
     Thirdly, the frequency mixing characteristics of logic gate mixers were studiedin theory and mixers were classified according to their mixing characteristics. TheXOR and XNOR mixers have better performances than the others. A new frequencysubtracting circuit based on XOR gates with a first-order RC filter was presentedand validated in experiments..
     Fourthly, based on the theoretical analysis and experimental validation, a highresolution frequency measurement method and algorithm, Continuous Counting andPeriod Marking with its shortened form Marking Method, was introduced.
     Finally, using the real sensor output, a comparison among several methods mentioned in this thesis was carried out. A D-type flip-flop mixer which receivestwo input signals of different frequencies forms an output signal whose frequency isequal to the frequency difference between these two input signals. Counting thenumber of rising or falling edges of a reference frequency within each cycle of the Dflip-flop mixer output, a measurement array is obtained. By selecting valid data fromarray and calculating, the frequency of the unknown signal can be obtained withhigh resolution. This method is very suitable for field instruments usingresonator-based sensor systems. The resolution of Marking Method is much higherthan other methods. With some further improvements; this method will be ahigh-resolution frequency measurement method with very broad applicationprospects.
     Marking method is the main creative contribution of this thesis. It is superior tomethod based of period measurement since the period measuring method paysattention only to the total number of pulses counted during certain period of time,where as the marking method takes into consideration also the numbers of pulsescounted during each individual short interval. Marking method is superior toregression method since the later one is based on calculation the average pulse rateper unit of time where as the marking method takes into account all the details ofpulse rate variations within the whole measuring time as well. The advantage ofthe marking method becomes even more significant when there are multiple loopsinvolved in the counting process.
引文
[1] Langdon RM. Resonator sensors-a review. Journal of Physics E: ScientificInstruments,1985,18(2):103-115.
    [2]崔玉亮,邓铁六,于风.谐振式传感器理论及测试技术.北京:煤炭工业出版社,1997,1-1.
    [3] Christine B, Yves T, Claudine G, et al. Resonant force sensor using a PLLelectronic.Sensors and Actuators A: Physical,2003,104(2):143-150.
    [4] Risch MR. Precision pressure sensor using quartz saw resonators.Sensorsand Actuators,1984,6(2):127-133.
    [5] Braga ER, Nakano AY, da Cunha MP. A SAW resonator sensor systememployed in humidity measurements. International Microwave andOptoelectronics Conference,1999,1:342-345.
    [6] Nosek J, Zelenka J. Quartz strip resonators as a temperature sensor.Ultrasonics,2001,39(6):465-468.
    [7] Yook KY,Patel M. A new angular velocity sensor using the temperaturestable AT-cut quartz.IEEE International Frequency Control Symposium,2008,95-98.
    [8] Pohl A, Steindl R, Reindl L. Measurements of Vibration and AccelerationUtilizing SAW sensors. Proceedings of Sensor99,1999,2:53-58.
    [9] Isa K, Coskun K, Atilla A. Integrated micro ring resonator displacementsensor for scanning probe microscopies. Journal of Micromechanics andMicroengineering,2004,14(3):374-381.
    [10] Enoksson P, Stemme G, Stemme E. A silicon resonant sensor structure forCoriolis mass-flow measurements.Journal of MicroelectromechanicalSystems,1997,6(2):119-125.
    [11] Nanto H, Dougamia N, Mukai T, et al. A smart gas sensor usingpolymer-film-coated quartz resonator microbalance.Sensors and Actuators B:Chemical,2000,66(1-3):16-18.
    [12] Melikhova EV, Kalmykova EN, Eremin SA, et al. Using a piezoelectric flowimmunosensor for determining sulfamethoxazole in environmentalsamples.Journal of Analytical Chemistry,2006,61(7):687-693.
    [13] Yoshizawa N, Shimada Y. Magnetic field sensing by apiezoelectric/magnetostrictive resonator. Digests of the IEEE InternationalOn Magnetics Conference.2005,411-412.
    [14] Sang JK, Ono T, Esashi M. Mass Detection Using Capacitive ResonantSilicon Sensor.5th IEEE Conference on Sensors,2006,1285-1288.
    [15] Temnov VS. Using a Resonant Inductive Sensor in the Inspection of RotorSystems. Measurement Techniques,2003,46(5):458-461(4).
    [16] Schulze MH, Heuer H, Küttner M,et al. High-resolution eddy current sensorsystem for quality assessment of carbon fiber materials. MicrosystemTechnologies,2010,16(5):791-797.
    [17] Waggoner PS, Craighead HG. The relationship between material properties,device design, and the sensitivity of resonant mechanical sensors. Journal ofApplied Physics.2009,105(5):054306-14.
    [18] Zvyagin AA, Nenakhov DV, Korchagina SN. Determination of ammonia inthe air using piezoelectric resonance sensors coated with humic acids.Journal of Analytical Chemistry,2010,65(4):414-417.
    [19] Sreeshylam P, Ravisankar K, Parivallal S,et al. Condition monitoring ofprestressed concrete structures using vibrating wire sensors. InternationalJournal of COMADEM,2008,11(3):46-54.
    [20] Northway BW, Hancock NH, Tran-Cong T. Liquid level sensors using thinwalled cylinders vibrating in circumferential modes. Measurement Science&Technology,1995,6(1):85-93.
    [21] Zhang Y, Fan SC. Vibration membrane liquid density sensor. SixthInternational Symposium on Instrumentation and Control Technology,2006,6358(2):63580S.1-63580S.4.
    [22] Johann J, Fuchs H. Quartz crystal resonator as a sensor in scanning probemicroscopy. Proceedings of the IEEE International Frequency ControlSymposium and Exposition,2007,483-487.
    [23] Nakayama H, Watanabe K. Improved walking motion for a biped robot usingpiezoelectric ceramic sensors. Proceedings of ICCAS-SICE,2009,1218-1221.
    [24] Kryshtal RG, Medved AV. Sensors based on saw resonator with“nontraditional formats” of output signal.Journal of Electroceramics,2006,17(2-4):987-993.
    [25]冯冠平.谐振传感理论及器件.北京:清华大学出版社,2008,1-2.
    [26]马洛夫BB,翁善臣等译.压电谐振传感器.北京:国防工业出版社,1984,121-122.
    [27] Ward R, Wiggins R. Pressure transducer assembly.United States Patent,5231880,1993-08-03.
    [28] Jha CM,Bahl G,Melamud R,et al. CMOS-Compatible Dual-ResonatorMEMS Temperature Sensor with Milli-Degree Accuracy.Proceedings ofsolid-state sensors, actuators and Microsystems Conference,2007,229-232.
    [29] Quartzdyne, Inc.Frequency Transducer,http://www.quartzdyne.com/pdfs/FreqManual.pdf,2009,11.
    [30]董永贵.精密测控与系统.北京:清华大学出版社,2005,1-6.
    [31] Paroscientific Inc. Series3000&4000Absolute PressureTransducers.http://www.paroscientific.com/pdf/3000&4000.pdf,2005,9.
    [32]古天祥,王厚军,习友宝,等.电子测量原理.北京:机械工业出版社,2004,82.
    [33] Kasparis T, Voulgaris NC, Halkias CC.Method for the precise measurementof the difference between two low frequencies.IEEE Transactions onInstrumentation and Measurement,1985, IM-34(1):95-96.
    [34] Djurdje PM. Digital frequency subtractor and/or adder based on hybridPLL.Electronics Letters,1981,17(1):28-29.
    [35] Schell R. Make a frequency mixer with op AMPS.Electronic Design,2006,54(27):73-74.
    [36] Nefedov VN, Savvin DD. Frequency subtraction circuit.MeasurementTechniques.1986,29(1):34-36.
    [37] Roby KP. Flip-flop measures frequency difference between two signals.Electronic Design,1969,17(25):101-103.
    [38] Eernisse EP, Ward RW. Transducer and sensor apparatus. United StatesPatent,4802370,1989-02-07.
    [39] Javeri RJ. Frequency subtractor. United States Patent,4683437,1986-06-06.
    [40] Wlodzimierz SC. Electronic pressure transducer. United States Patent,1985-11-05.
    [41] Karrer HE, Leach JG. Quartz resonator pressure transducer. United StatesPatent,1971-02-09.
    [42] Shankar I, Morris SA, Hutchens CG. A novel frequency measurementtechnique for quartz microbalance systems and other resonator-based sensorsystems.2nd ISA/IEEE Sensors for Industry Conference,2002,(19-21):134-138.
    [43] Shivalingappa L, Srinivasan MP, Mohan S. Digital mixer for quartz crystalthickness monitor.Vacuum,1996,47(1):87-89.
    [44] Bruckenstein S,Shay M. Experimental aspects of use of the quartz crystalmicrobalance in solution.Electrochimica Acta.,1985,30(10):1295-1300.
    [45]黄晓东,张筱朵,王斌,等.单片集成MEMS电容式压力传感器接口电路设计.微纳电子技术,2007,44(7):502-504.
    [46]张景文,梁大开,徐明辉.基于石英谐振式力敏传感器的数字式测力系统.传感技术学报,2005,18(1):98-100.
    [47]付红桥,文玉梅,李平.石英谐振式称重传感器的数据获取及处理.传感器技术,1998,17(5):25-28,32.
    [48]孙振东,赵玉春,范世福,等.新型石英晶体粘度测量仪的研制.仪器仪表学报,2000,21(3):270-272,292.
    [49]熊兴良,蔡绍皙,王翔.压电传感器在血浆粘度检测中的应用.重庆大学学报,2003,26(12)58-60,73.
    [50]熊兴良,蔡绍皙,王翔,等.一种同时测量液体粘密度的传感器研究.仪器仪表学报,2005,26(10):1007-1010.
    [51]王斌,黄晓东,秦明,等.一种微电容式传感器检测电路的分析与改进.传感技术学报,2008,21(2):265-268.
    [52]刘娜,黄庆安,秦明.一种新型CMOS电容式绝对压力传感器的设计.传感技术学报,2006,19(5):1863-1870.
    [53] Antonio C,Jacqueline W,Tomlin TD. Characterization of a Flip-FlopMetastability Measurement Method.IEEE Transactions on Circuits andSystems—I:Regular Papers.2007,54(5):1032-1040.
    [54] McLeod NW,Wise J. Clock averaging circuit.Electronics Letters,1975,11(18):428–429.
    [55] Shaw DI,Bennett JC,Clements AM. Analysis of 'D type' flip-flop frequencychangers. Electronics Letters,1990,26(24):1995-1997
    [56]程坤,黄庆安,秦明,等.一种简单实用的差频方法原理研究及应用.电子器件,2006,29(6):473-475.
    [57] Boris S. Frequency difference measuring circuit. United StatesPatent,3187195,1965-06-01.
    [58]张承瑞,喻萍,吴净.介绍一种方波差频新方法.自动化与仪表,1996,11(1):22-23
    [59]张伟玉,董晋峰,张国雄.用与门实现差频测量.仪器仪表学报,2008,29(6):1260-1264.
    [60]李新恒,张哲.逻辑混频电路及逻辑混频方法.中国专利,ZL200610122282.8,2009-05-27.
    [61] Counselman CC, Hinteregger HF. Digital single-sideband mixer.Proceedings of the IEEE,1973,61(4):478-479
    [62] Juh Tzeng Lue. A new single-sideband digital mixer. Proceedings of theIEEE,1977,65(7):1083-1084.
    [63] Haward, AK. Counters and timers. Electronic Engineering,1979,51(630):61-70.
    [64] Bage,R. Time and frequency counting techniques. Electronic Engineering,1979,51(630):47-58.
    [65] Staffan J. New frequency counting principle improves resolution.Proceedings of the36Annual Precise Time and time interval (PTTI) Systemsand Application Meeting,2004,628-635.
    [66]天津大学数学系概率统计教研室.应用概率统计.天津:天津大学出版社,1990,215-216.
    [67] George K, Lombardi MA. Time and frequency users manual. revised1990.Washington DC:U.S. Government Printing Office,1990,41.
    [68] Tian X, Jien-Chung L. On-chip short-time interval measurement forhigh-speed signal timing characterization.12th Asian Test Symposium,2003,1:326~331.
    [69] Huang JL, Cheng KT. An on-chip short-time interval measurement techniquefor testing high-speed communication links.19th IEEE Proceedings on VLSITest Symposium,2001,1:380~385.
    [70] Kalisz J, Pawtowski M, Pelka R. Error analysis and design of the Nutttime-interval digitiser with picosecond resolution. Journal of Physics.E:Scientific Instruments.1987,20:1330~1341.
    [71] Ahola R, Myllyla R. A new method for measuring the time-of-flight in fastlaser range finding. Proc.SPIE,1986,65(4):19-25.
    [72] Kalisz J, Pawtowski M, Pelka R. Amultiple interpolation method for fast andprecise time digitizing. IEEE Transactions on Instrumentation andMeasurement,1986,35:163~169.
    [73] Kalisz J, Pawtowski M, Pelka R. A method for autocalibration of theinterpolation time interval digitiser with picosecond resolution. Journal ofPhysics. E: Scientific Instruments.1985,18:444~452.
    [74] Turko B. Space borne event timer.IEEE Transactions on Nuclear Science,1980,27:399~404.
    [75] Turko B. A modular125ps resolution time interval digitizer for10MHz stopburst rate and33ms range. IEEE Transactions on Nuclear Science,1979,26:737~745.
    [76] Wiedwald JD. A CAMAC High Resolution Time Interval Meter. IEEETransactions on Nuclear Science,1973,20:242~245.
    [77] Raisanen RE, Rahkonen T, Kostamovaara J. Time Interval MeasurementsUsing Time-to-Voltage Conversion with Built-in Dual-Slope A/DConversion. IEEE International Sympoisum on Circuits and Systems,1991,5:2573-2576.
    [78] Kalisz J, Pelka R. Improved time-interval counting techniques for laserranging systems. IEEE Transactions on Instrumentation and Measurement,1993,42:301-303.
    [79] Kalisz J, Pelka R, Poniecki. A Precision time counter for laser ranging tosatellites. Review of Scientific Instruments,1994,65:736-741.
    [80] Maatta K, Kostamovaara J. A High-Precision Time-to-Digital Converter forPulsed Time-of-Flight Laser Radar Applications.IEEE Transactions onInstrumentation and Measurement,1998,47:521-536.
    [81] Kalisz J. Review of methods for time interval measurements with picosecondresolution. Metrologia,2004,41:17-32.
    [82] Maatta K, Kostamovaara J. A high-precision time-to-digital converter forpulsed time-of-flight laser radar applications.IEEE Transactions onInstrumentation and Measurement,1998,47:521-536.
    [83] Porat DI. Review of Sub-Nanosecond Time-Interval Measurements. IEEETransactions on Nuclear Science,1973,20:36-51.
    [84] Stevens AE, Van Berg RP, Van der Spiegel J, et al. A sub-nanosecondtime-to-voltage converter and analog memory. IEEE InternationalSymposium on Circuits and Systems,1989,1:268-271.
    [85] Kalisz J, Pelka R. Improved time-interval counting techniques for laserranging systems. IEEE Transactions on Instrumentation and Measurement,1993,42:301-303.
    [86] Kalisz J, Pelka R, Poniecki A. Precision time counter for laser ranging tosatellites.Review of Scientific Instruments,1994,65(3):736-741.
    [87] Stanford Research Systems Inc.SR620Universal Time IntervalCounter. http://www.thinksrs.com/downloads/PDFs/Catalog/SR620c.pdf,2006,2.
    [88] Ryszard S, Kalisz J, Rafal Szymanowski. Interpolating Time Counter with100ps Resolution on a Single FPGA Device. IEEE Transactions onInstrumentation and Measurement,2000,49(4):879-883.
    [89] Kalisz J, Ryszard S, Ryszard P. Single-Chip Interpolating Time Counter with200-ps Resolution and43-s Range. IEEE Transactions on Instrumentationand Measurement,1997,46(4):851-856.
    [90] Pelka R, Kalisz J, Szplet R. Nonlinearity correction of the integratedtime-to-digital converterwith direct coding. IEEE Transactions onInstrumentation and Measurement,1997,46(2):499-452.
    [91] Kalisz J, Szplet R, Pasierbinski JJ, et al. Field programmable gate arraybased time-to-digital converter with200-ps resolution. IEEE Transactions onInstrumentation and Measurement,1997,46(1):51-55.
    [92] Raisanen RE, Rahkonen T, Kostamovaara, J. A low-power CMOStime-to-digital converter.IEEE Journal of Solid-State Circuits,1995,30(9):984-990.
    [93] Rahkonen TE, Kostamovaara JT. The use of stabilized CMOS delay lines forthe digitization of short time intervals. IEEE Journal of Solid-State Circuits,1993,28:887-894.
    [94] Kalisz J, Pawlowski M, Pelka R. Error analysis and design of the Nutttime-interval digitizer with picosecond resolution. Journal of Physics E:Scientific Instruments,1987,20:1330-1341.
    [95] Genat JF, Rossel F. Ultra high speed time to digital converter. United StatesPatent,4719608,1988-01-12.
    [96] Hoppe DR. Differential time interpolator.United States Patent,4433919,1984-02-28.
    [97] Hoppe DR. Time interpolator.United States Patent,4439046,1984-03-27.
    [98] Agilent Technologies.5370B Universal Time IntervalCounter. http://cp.literature.agilent.com/litweb/pdf/05370-90031.pdf,1995,10.
    [99] Otsuji T. A picosecond-accuracy,700-Mhz range si-bipolar time intervalcounter LSI. IEEE Journal of Solid-State Circuits,1993,28(9):941-947.
    [100] Chu DC, Allen MS, Foster AS. Universal counter resolves picoseconds intime interval measurements. Hewlett-Packard Journal,1980,29(12):2-10.
    [101] Chu DC. Double vernier time interval measurement using triggeredphase-locked oscillators.United States Patent,4164648,1979-08-14.
    [102] Hewlett-Packard Company.5370A Universal Time IntervalCounter.http://www.g8wrb.org/data/HP/HP5370A.pdf,1983,3.
    [103] Zhu X,Sun G,Yong S,et al. Anovel method with Ps accuracy for time intervalmeasurement. Proceedings of the IEEE International Frequency ControlSymposium and Exposition,2007,848-853.
    [104] Medved RB.Time interval measurement with application toelectronic/optoelectronic circuits and systems. Proceedings of theMediterranean Electrotechnical Conference-MELECON,2000,2:738-741.
    [105] Napolitano P, Moschitta A, Carbone P.A survey on time intervalmeasurement techniques and testing methods.2010IEEE InternationalInstrumentation&Measurement Technology Conference,2010,181-186.
    [106] Lu XH, Chen RJ, He ZX, et al. Atime interval measurement system based onFPGA used for frequency calibration.2010IEEE InternationalInstrumentation&Measurement Technology Conference,2010,1404-1408.
    [107] Gomez FC, Perez, PA. Discrete time interval measurement system:fundamentals, resolution and errors in the measurement of angularvibrations.Measurement Science&Technology,2010,21(7):075101.1-075101.11.
    [108] Song Y, Zeng D,Tian Y. Accurate time interval measurement method basedon vernier caliper principle.2010International Conference on ImageAnalysis and Signal Processing,2010,553-555.
    [109] Zielinski M. Review of single-stage time-interval measurement modulesimplemented in FPGA devices. Metrology and Measurement Systems,2009,16(4):641-647.
    [110] Salomon R, Joost R. BOUNCE: A new high-resolution time-intervalmeasurement architecture. IEEE Embedded Systems Letters,2009,1(2):56-59.
    [111] Nakagawa T,Fujiwara R, Ono G,et al. UWB-IR receiver with accuratetime-interval-measurement circuit for communication/location system,2009IEEE International Symposium on Circuits and Systems,2009,397-400.
    [112] Panek P. Time-interval measurement based on SAW filter excitation. IEEETransactions on Instrumentation and Measurement,2008,57(11):2582-2588.
    [113] Rashidzadeh R, Ahmadi M, Miller, WC. Short time interval measurementusing a time amplifier.2008Canadian Conference on Electrical andComputer Engineering,2008,321-324.
    [114] Panek P, Prochazka I. Time interval measurement device based on surfaceacoustic wave filter excitation, providing1ps precision and stability. Reviewof Scientific Instruments,2007,78(9):094701-094704.
    [115] Stoican OS. Frequency measurement of a pulsed RF oscillator. RomanianReports in Physics,2011,63(1):183-186.
    [116] Nikolay KI, Sergey Y,Nestor S,et al.Data Acquisition and Signal Processingfor Smart Sensors. New York: John Wiley&Sons, Inc.,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700