菲并吲哚里西啶类生物碱13a-(S)-去氧娃儿藤宁的抗肿瘤作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菲并吲哚里西啶类生物碱是一类植物来源的小分子化合物,具有多种药理学活性。其结构母核完全不同于已上市的任何一种抗肿瘤药物。这类生物碱的生物学作用广泛,包括抗肿瘤作用、抗炎作用、抗阿米巴虫作用和抗病毒作用等。菲并吲哚里西啶类生物碱抗肿瘤作用瘤谱和其特异性的分子靶标尚不清楚。为此,本文对其抗肿瘤作用及其作用机制进行了较详尽地研究。
     右旋去氧娃儿藤宁((+)-13 a-(S)-Deoxytylophorinine,简称CAT)是最早从萝藦科(Asclepiadaceae)娃儿藤属(Tylophora)的植物三分丹(Tylophora atrofolliculata)和卵叶娃儿藤(Tylophora ovata)中提取出的菲并吲哚里西啶类化合物,因其植物中含量很低,来源有限,因此,对该化合物进行了化学全合成。
     我们首先检测了该化合物的体外和体内的抗肿瘤作用。该化合物及其多种结构衍生物在体外对多种组织细胞来源的肿瘤细胞具有良好的抗肿瘤作用,ICso在10-7-10-8mol/L的范围内。小鼠体内移植瘤实验表明,该化合物的多种给药方案均能够显著地抑制移植肿瘤的生长。
     由于该化合物的水溶性较差,为改善其溶解性,将其制成了马来酸盐、枸橼酸盐和酒石酸盐等多种盐。体外和体内的药效学研究表明,该化合物的体内外抗肿瘤作用与原型化合物相当或相近。以往的CAT原型化合物只能用羧甲基纤维素钠溶液制成悬液口服给药。成盐后,可注射给予。但由于该药的血管刺激性较强,动物耐受性较差,因此静脉注射给药的效果不佳。
     药动学上考察了该化合物在血液和脑组织中分布的情况。CAT及其盐给药后,可以透过血脑屏障,进入脑组织。口服给药后5min,脑组织中即可检测到原型化合物。给药后15min,脑组织中出现分布高峰,给药后2h,脑组织中仍能维持一定的药物水平。可见CAT可以透过血脑屏障进入脑组织。这一特性是该化合物的一大优点,这使得该化合物有可能用于治疗脑肿瘤。多数现有的细胞毒类的抗肿瘤药物都是注射给药,可以口服给药的相对较少,而能够口服给药并能够透过血脑屏障进入到脑组织,可治疗脑肿瘤的抗肿瘤药则更少。
     有文献报道,一些菲并吲哚里西啶类化合物具有神经毒性。为此我们对CAT的神经毒性进行了初步的评价,以考察该化合物是否有神经毒性及出现神经毒性的程度。我们采用大鼠嗜铬细胞瘤PC-12细胞神经突触生长试验进行评价,该试验可初步预测化合物的神经毒性。结果发现,与具有神经毒性的已经上市的抗肿瘤药物长春新碱相比,CAT基本不影响大鼠嗜铬细胞瘤PC-12细胞的神经突触的生长,因此提示,所用剂量范围内CAT无明显的神经毒性。
     针对已有的报道和我们实验室前期的研究工作,我们推测菲并吲哚里西啶类化合物CAT可能与核酸(包括DNA和RNA)存在某种相互作用,而核酸本身很可能就是这类药物的重要靶点。因此,我们在实验中对CAT与核酸的相互作用进行了细致地研究。采用圆二色谱法和荧光发射光谱法进行了检测,发现CAT与CT-DNA之间具有直接的、浓度依赖性的相互作用。并且,这种相互作用具有序列特异性。CAT偏好结合富含AT重复序列的DNA片段。以放线菌素D作为阳性对照,应用圆二色谱法检测了四种8bp寡核苷酸序列与CAT的相互作用,发现CAT偏好结合AT重复序列。我们进一步地将8bp序列延长到12bp和20bp,又进一步地证实了这种AT偏好结合的相互作用。我们又采用荧光发射光谱法对这四条8bp寡核苷酸序列与CAT的相互作用进行了检测,结果也证实了这一序列特异性的相互作用。进一步采用14种富含AT序列和缺乏AT的序列进行圆二色谱法及荧光发射光谱法的检测。检测结果也进一步得到证实,CAT与DNA相互作用的AT序列特异性。而且这种相互作用又进一步地被采用DNA粘度检测法证明为嵌入式的相互作用。我们的实验数据还显示CAT与RNA也具有直接的、浓度依赖性的相互作用。
     CAT的对映异构体-CAT与+CAT仅相差一个手性碳原子的构型,但是体内外活性却相差甚远。我们进一步地采用基因芯片技术和蛋白质组学的方法考察了去氧娃儿藤宁的两个对映异构体对人神经胶质瘤U251细胞的基因表达谱和蛋白表达谱影响的差异。结果发现,差异基因中包含有常规的与细胞凋亡、细胞周期调节、细胞信号转导、细胞生长调节等相关基因。此外,还包括相当多的与DNA复制和损伤修复、转录起始复合物和转录调节及核糖体翻译等相关基因。这些基因的变化与我们前期证明的+CAT能够序列特异性地嵌入到DNA的碱基对之间,以及能够与核糖体RNA直接地相互作用有关。通过蛋白质组学的技术方法找到了一些差异表达的蛋白,这些蛋白与细胞生长和分化调节、分子伴侣、激酶、细胞组成蛋白、能量代谢调节等多种功能有关。
     总之,CAT作为全新结构母核、作用机制与众不同、植物来源的抗肿瘤新型化合物,具有良好的开发前景。CAT脂溶性好,可口服给药,并可透过血脑屏障,且没有明显的神经毒性。因此,CAT有望开发成为口服治疗脑肿瘤的新型药物。
Phenanthroindolizidine alkaloids are a family of plant-derived compounds with various pharmacological activities. Its chemical structure is different from any known anticancer drugs. Phenanthroindolizidine alkaloid exhibits many biological activities, including anticancer, antiinfiamatory, anti-ameobicidal and anti-viral activities. Specific biomolecular targets of this kind of alkaloids have not yet been clearly identified. (+)-13a-(S)-Deoxytylophorinine (short for CAT) is a new phenanthroindolizidine alkaloid, originally extracted from the roots of Tylophora atrofolliculata and Tylophora ovata, which are from family of Asclepiadaceae. Its content from plant is very low. The total synthesis of this compound resolved the major problem of its low natural availability.
     At first, we tested the in vitro and in vivo anticancer activities of this compound and some of its derivatives. They exhibited favorable anticancer activities in many cancer cells from different tissue origins, with IC50 in the range of 10-7-10-8mol/L. In mouse xenograft model, CAT and its salts, in several dosage regimen, can well inhibit the growth of transplanted tumors.
     CAT's solubility in water is rather poor. In order to improve its water solubility, several salts of CAT were made, including malate, citrate and tartrate. In vitro and in vivo evaluations proved that the salts of CAT are equivalent to CAT in its anticancer activities. CAT can be administrated p.o. in CMC suspensions, while the salts can also be administrated i.v. However, due to the severe vescular irritation, the tolerance to animals is rather poor, the effects of intravenous administration were not better.
     The distributions of CAT in blood and brain tissues are also tested. CAT and its salts can come into brain through brain blood barrier.5min after oral administration, CAT can be detected in brain and it comes to its peak concentration after 15min.2 hours later, the concentration of CAT can still be maintained in certain concentration level. So, this proves that CAT can penetrate blood brain barrier and may be used to treat brain tumor by oral administrations.
     Several compounds from phenanthroindolizidine alkaloid family were reported to exhibit severe neurotoxicity. We also preliminarily evaluated the neurotoxicity of CAT by rat pheochromocytoma PC 12 cell neurite-outgrowth assay which is a dependable model for predicting neurotoxicity in vitro. Compared to vincristinine, an anticancer drug with severe neurotoxicity, CAT exerts no neurotoxicity even at relatively high concentrations.
     Interactions between this compound and DNA sequences were studied in details with circular dichroic spectroscopy and Fluorescence spectroscopy. Concentration-dependent interactions were observed and this compound seemed to interact sequence-specifically with AT-repeated sequence of double-helical DNA. Such interactions were proved to be intercalating rather than groove binding by viscosity measurements. Interactions between CAT and RNA were also tested, and concentration-dependent interactions were observed.
     The enantiomer of CAT,-CAT, has only one different chiral carbon atom with CAT. However,-CAT's in vitro and in vivo anticancer activities were far inferior to its enantiomer. We further userd gene chip and proteomic technology to detect the discrepancy of gene expression profile and protein expression profile of human glioma U251 cells, treated by CAT and its enantiomer. Several genes related to apoptosis, cell cycle regulation, signaling transduction and growth regulation as well as genes related to DNA replication, reparation, transcription regulation and ribosome translation were found upregulated or downregulated after the treatment of CAT, rather than its enantiomer. We also find several proteins by proteomic technology that expressed differentially after the treatment of CAT and its enantiomer.
     In short, CAT was a novel plant-derived anticancer alkaloid of distinct mechanisms, with broad perspect for further development. CAT can be orally administrated and can penetrate the blood brain barrier without obvious neurotoxicity. CAT or its derivatives can well be developed into a new anticancer drug for glioma or other brain cancers.
引文
[1]Newman DJ, Cragg GM,Snader KM. Natural products as sources of new drugs over the period 1981-2002. [J]. J Nat Prod,2003,66:1022-1037.
    [2]Balunas MJ,Kinghorn AD. Drug discovery from medicinal plants. [J]. Life Sci, 2005,78:431-441.
    [3]Graziose R, Lila MA,Raskin I. Merging Traditional Chinese Medicine with Modern Drug Discovery Technologies to Find Novel Drugs and Functional Foods [J]. Current Drug Discovery Technologies,2010,7:2-12.
    [4]Miller S, Stagl J, Wallerstedt DB, et al. Botanicals used in complementary and alternative medicine treatment of cancer:clinical science and future perspectives [J]. Expert Opin. Investig. Drugs,2008,17:1353-1364.
    [5]Boon H,Wong J. Botanical medicine and cancer:a review of the safety and efficacy [J]. Expert Opin. Pharmacother.,2004,5:2485-2501.
    [6]Khan IA. Issues related to botanicals [J]. Life Science,2006,78:2033-2038.
    [7]Parkin DM. Global cancer statistics in the year 2000. [J]. Lancet Oncology,2001, 2:533-543.
    [8]Parkin DM, Bray, F., Ferlay, J., Pisani, P., International Journal of Cancer 94 (2),153-156. Estimating the world cancer burden:Globocan 2000. [J]. Int J Cancer,2001,94:153-156.
    [9]Jemal A, Siegel R, Xu J, et al. Cancer Statistics,2010 [J]. CA Cancer J Clin,2010, 60:277-300.
    [10]Srivastava V, Negi AS, Kumar JK, et al. Plant-based anticancer molecules:a chemical and biological profile of some important leads [J]. Bioorg Med Chem, 2005,13:5892-5908.
    [11]Okouneva T, Hill BT, Wilson L, et al. The effects of vinflunine, vinorelbine, and vinblastine on centromere dynamics. [J]. Mol Cancer Ther,2003,2:427-436.
    [12]Islam MN,Iskander MN. Microtubulin binding sites as target for developing anticancer agents [J]. Mini Rev Med Chem,2004,4:1077-1104.
    [13]M M,Z D. Microtubule disruptors and their interaction with biotransformation enzymes [J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2005, 149:213-215.
    [14]D'Cruz SC, Vaithinathan S, Jubendradass R, et al. Effects of plants and plant products on the testis [J]. Asian J Androl,2010,12:468-479.
    [15]Gordaliza M, Garcia PA, del Corral JM, et al. Podophyllotoxin:distribution, sources, applications and new cytotoxic derivatives. [J]. Toxicon,2004,44: 441-459.
    [16]You Y. Podophyllotoxin derivatives:current synthetic approaches for new anticancer agents [J]. Curr Pharm Des,2005,11:1695-1717.
    [17]Seiter K. Toxicity of the topoisomerase Ⅱ inhibitors [J]. Expert Opin Drug Saf, 2005,4:219-234.
    [18]Gordaliza M, Garcia PA, del Corral JM, et al. Podophyllotoxin:distribution, sources, applications and new cytotoxic derivatives [J]. Toxicon,2004,44: 441-459.
    [19]Horwitz SB. Personal recollections on the early development of taxol. [J]. J Nat Prod,2004,67:136-138.
    [20]Yue QX, Liu X,Guo DA. Microtubule-binding natural products for cancer therapy [J]. Planta Med,2010,76:1037-1043.
    [21]Woodward EJ,Twelves C. Scheduling of taxanes:a review [J]. Curr Clin Pharmacol,2010,5:226-231.
    [22]Saloustros E, Mavroudis D,Georgoulias V. Paclitaxel and docetaxel in the treatment of breast cancer [J]. Expert Opin Pharmacother,2008,9:2603-2616.
    [23]Cragg GM,Newman DJ. A tale of two tumor targets:topoisomerase I and tubulin. The Wall and Wani contribution to cancer chemotherapy [J]. J Nat Prod,2004,67: 232-244.
    [24]Sasine JP, Savaraj N,Feun LG. Topoisomerase I inhibitors in the treatment of primary CNS malignancies:an update on recent trends [J]. Anticancer Agents Med Chem,2010,10:683-696.
    [25]Basili S,Moro S. Novel camptothecin derivatives as topoisomerase I inhibitors [J]. Expert Opin Ther Pat,2009,19:555-574.
    [26]Liew ST,Yang LX. Design, synthesis and development of novel camptothecin drugs [J]. Curr Pharm Des,2008,14:1078-1097.
    [27]Li Z, Jin Z,Huang R. Isolation, total synthesis and biological activity of phenanthroindoindolizidine and phenanthroiquinolizidine alkaloids. [J]. Synthesis, 2001,16:2365-2378.
    [28]Gellert E. The indolizidine alkaloids. [J]. J Nat Prod,1982,45:50-73.
    [29]Gopalakrishnan C, Shankaranarayan D, Kameswaran L, et al. Pharmacological investigations of tylophorine, the major alkaloid of tylophora indica. [J]. Indian J. Med. Res.,1979,69.
    [30]Donaldson GR, Atkinson MR,Murray AW. Inhibition of protein synthesis in Ehrlich Ascites-Tumor cells by the phenanthrene alkaloids tylophorine, tylocrebrine and cryptopleurine. [J]. Biochem Biophys Res Comm,1968,31: 104-109.
    [31]Ali M, Ansari SH,Grever MR. Cytotoxic alkaloids from Tylophora indica. [J]. Pharmazie,2001,56:188-190.
    [32]Staerk D, Christensen J, Lemmich E, et al. Cytotoxic activity of some phenanthroindolizidine N-oxide alkaloids from Cynanchum vincetoxicum. [J]. J Nat Prod,2000,63:1584-1586.
    [33]Staerk D, Lykkeberg AK, Christensen J, et al. In vitro Cytotoxic activity of phenanthroindolizidine alkaloids from Cynanchum vincetoxicum and Tylophora tanakae against drug-sensitive and multidrug-resistant cancer cells. [J]. J Nat Prod, 2002,65:1299-1302.
    [34]Gao W, Lam W, Zhong S, et al. Novel mode of action of tylophorine analogs as antitumor compounds. [J]. Cancer Res,2004,64:678-688.
    [35]Gao W, Busson S, Grill SP, et al. Structure-activity studies of phenanthroindolizidine alkaloids as potential antitumor agents. [J]. Bioorg Med Chem Lett 2007,17:4338-4342.
    [36]Shiah HS, Gao W, Baker DC, et al. Inhibition of cell growth and nuclear factor-kb activity in pancreatic cancer cell lines by a tylophorine analogue, DCB-3503. [J]. Mol Cancer Ther 2006,5:2484-2493.
    [37]Fu Y, Lee SK, Min HY, et al. Synthesis and structure-activity studies of antofine analogues as potential anticancer agents. [J]. Bioorg Med Chem Lett,2007,17: 97-100.
    [38]Gopalakrishnan C SD, Nazimudeen SK, Kameswaran L.1980;71:940-948. Effect of tylophorine, a major alkaloid of Tylophora indica, on immunopathological and inflammatory reactions. [J]. Indian J Med Res,1980,71: 940-948.
    [39]Bhutani KK, Sharma GL,Ali M. Plant Based Antiamoebic Drugs; Part I. Antiamoebic activity of phenanthroindolizidine alkaloids; common structural determinants of activity with emetine. [J]. Planta Med 1987,53:532-536.
    [40]Xi Z, Zhang R, Yu Z, et al. The interaction between tylophorine B and TMV RNA. [J]. Bioorg Med Chem Lett,2006,16:4300-4304.
    [41]Huang MT,Grollman AP. Mode of action of tylocrebrine:effects on protein and nucleic acid synthesis [J]. Mol Pharmacol,1972,8:538-550.
    [42]Rao KN, Bhattacharya RK,Venkatachalam SR. Thymidylate synthase activity in leukocytes from patients with chronic myelocytic leukemia and acute lymphocytic leukemia and its inhibition by phenanthroindolizidine alkaloids pergularinine and tylophorinidine [J]. Cancer Lett,1998,128:183-188.
    [43]Rao KN,Venkatachalam SR. Inhibition of dihydrofolate reductase and cell growth activity by the phenanthroindolizidine alkaloids pergularinine and tylophorinidine:the in vitro cytotoxicity of these plant alkaloids and their potential as antimicrobial and anticancer agents [J]. Toxicol In Vitro,2000,14: 53-59.
    [44]Garbett NC, Ragazzon PA,Bhaires JB. Circular dichroism to determine binding mode and affinity of ligand-DNA interactions [J]. Nat Protoc,2007,2: 3166-3172.
    [45]Berova N, Nakanishi K,Woody RW. Circular dichroism:principles and applications [M].2 ed. New York:Wiley-VCH,2000:703-718.
    [46]Lyng R, Hard T,Norden B. Induced CD of DNA intercalators:electric dipole allowed transitions [J]. Biopolymers,1987,26:1327-1345.
    [47]Bishop GR,Chaires JB. Characterization of DNA structures by circular dichroism[M]//Beaucage SL, Bergstrom DE, Glick GD, et al. Current Protocols in Nucleic Acid Chemistry New York:John Wiley & Sons Inc.,2003:7.11.
    [48]Olsthoorn CS, Bostelaar LJ, Derooij JF, et al. Circular dichroism study of stacking properties of oligodeoxyadenylates and polydeoxyadenylate [J]. Eur J Biochem,1981,115:309-321.
    [49]Yang XL,Wang AH. Structuaral studies of atom-specific anticancer drugs acting on DNA [J]. Pharmacol Ther,1999,83:181-215.
    [50]Palchaudhuri R,Hergenrother PJ. DNA as a target for anti cancer compounds: methods to determine the mode of binding and the mechanism of action [J]. Curr Opin Biotechnol,2007,18:497-503.
    [51]Strekowski L,Wilson B. Noncovalent interactions with DNA:an overview [J]. Mutat Res,2007,623:3-13.
    [52]Martinez R,Chacon-Garcia L. The search of DNA-intercalators as antitumoral drugs:what it worked and what did not work [J]. Curr Med Chem,2005,12: 127-151.
    [53]Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray [J]. Science,1995, 270:467-470.
    [54]Pollack JR, Perou CM, Alizadeh AA, et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. [J]. Nat Genet,1999,23:41-46.
    [55]Righetti PG. Bioanalysis:its past, present, and some future [J]. Electrophoresis, 2004,25:2111-2127.
    [56]Sivakumar A.2D gels and bioinformatics--an eye to the future [J]. In Silico Biol, 2002,2:507-510.
    [57]O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. [J]. J Biol Chem,1975,250:4007-4021.
    [58]Gorg A, Drews O, Luck C, et al.2-DE with IPGs [J]. Electrophoresis,2009,30.
    [59]Oh-Ishi M,Maeda T. Disease proteomics of high-molecular-mass proteins by two-dimensional gel electrophoresis with agarose gels in the first dimension (Agarose 2-DE) [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2007,849: 211-222.
    [60]Xi Z, Zhang R, Yu Z, et al. Selective interaction between tylophorine B and bulged DNA [J]. Bioorg Med Chem Lett,2005,15:2673-2677.
    [61]Zoubaa S KR, Piontek G, Schlegel J. Inhibition of NGF-induced neurite outgrowth of rat pheochromocytoma cells (PC12) following administration of dioxyamphetamine. [J]. Neuroscience Letters,2010,476:113-118.
    [62]Cutts SM, Swift LP, Rephaeli A, et al. Sequence specificity of adriamycin-DNA adducts in human tumor cells [J]. Mol Cancer Ther,2003,2:661-670.
    [63]Chen H, Liu X,Patel DJ. DNA bending and unwinding associated with actinomycin D antibiotics bound to partially overlapping sites on DNA [J]. J Mol Biol,1996,258:457-479.
    [64]Vives M, Tauler R,Gargallo ER. Spectroscopic study of the interaction of actinomycin D with oligonucleotides carrying the central base sequences-XGCY- and -XGGCCY- using multivariate methods [J]. Anal Bioanal Chem, 2007,387:311-320.
    [65]Asagi M, Toyama A,Takeuchi H. Binding affinity and mode of distamycin A with A/T stretches in double-stranded DNA:importance of the terminal A/T residues [J]. Biophys Chem,2010,149:34-39.
    [66]Liu Y, Kumar A, Boykin DW, et al. Sequence and length dependent thermodynamic differences in heterocyclic diamidine interactions at AT base pairs in the DNA minor groove [J]. Biophys Chem,2007,131:1-14.
    [67]Bhadra K, Maiti M,Kumar GS. Molecular recognition of DNA by small molecules:AT base pair specific intercalative binding of cytotoxic plant alkaloid palmatine [J]. Biochim Biophys Acta,2007,1770:1071-1080.
    [68]Harley CB,Reynolds RP. Analysis of E. coli promoter sequences [J]. Nucleic Acids Res,1987,15:2343-2361.
    [69]Smale ST,Kadonaga JT. The RNA polymeraseⅡ core promoter [J]. Annu Rev Biochem,2003,72:449-479.
    [70]Goncalves C, Ardourel MY, Decoville M, et al. An optimized extended DNA kappa B site that enhances plasmid DNA nuclear import and gene expression [J]. J Gene Med,2009,11:401-411.
    [71]Grosveld GC, Rosenthal A,Flavell RA. Sequence requirements for the transcription of the rabbit β-globin gene in vivo:the-80 region [J]. Nucleic Acids Res,1982,10:4951-4971.
    [72]Hwangbo HJ, Yun BH, Cha JS, et al. Enantioselective binding of S-and R-ofloxacin to various synthetic polynucleotides [J]. Eur J Pharm Sci,2003,18: 197-203.
    [73]Satz AL,Bruice TC. Synthesis of fluorescent microgonotropens (FMGTs) and their interactions with dsDNA [J]. Bioorg Med Chem,2000,8:1871-1880.
    [74]Xiang-Lei Yang AH-JW. Structuaral studies of atom-specific anticancer drugs acting on DNA [J]. Pharmacology and Therapeutics 1999,83:181-215.
    [75]Arslantas A, Devrim AK,Necefoglu H. The Interaction of Sheep Genomic DNA with a Cobalt(II) Complex Containing p-Nitrobenzoate and N,N'-Diethylnicotinamide Ligands [J]. Int J Mol Sci,2007,8:1225-1233.
    [76]Cohen G,Eisenber H. Viscosity and sedimentation study of sonicated DNA-proflavine complexes [J]. Biopolymers,1969,8:45.
    [77]Muller W,Crothers DM. Studies of the binding of actinomycin and related compounds to DNA [J]. J Mol Biol,1968,35:251-290.
    [78]Pilch DS, Waring MJ, Sun JS, et al. Characterization of a triple helix-specific ligand. BePI (3-methoxy-7H-8-methyl-11-[(3'-amino)propylamino]-benzo[e]pyrido[4,3-b]indole) intercalates into both double-helical and triple-helical DNA [J]. J Mol Biol,1993,232:926-946.
    [79]WHO. World Health Statistics [Online].
    [80]中华人民共和国卫生部.2010中国卫生统计年鉴.
    [81]GAO, Science, Business, Regulatory, and Intellectual Property Issues Cited as Hampering Drug Development Efforts,2006.
    [82]GAO, FDA Faces Challenges Meeting Its Growing Medical Product Responsibilities and Should Develop Complete Estimates of Its Resource Needs " 2009.
    [83]贺平鸽,丁丹,陈栋.医药行业深度研究报告-高速增长的中国抗肿瘤药行业,2009.
    [84]Field DJ,Lee JC. Analysis of tubulin proteins and peptides in neuronal and non-neuronal tissues using immobilized pH gradients [J]. Electrophoresis,1988,9: 555-562.
    [85]Black MM,Keyser P. Acetylation of alpha-tubulin in cultured neurons and the induction of alpha-tubulin acetylation in PC 12 cells by treatment with nerve growth factor [J]. J Neurosci,1987,7:1833-1842.
    [86]Geldof AA, Minneboo A,Heimans JJ. Vinca-alkaloid neurotoxicity measured using an in vitro model [J]. J Neurooncol,1998,37:109-113.
    [87]La Rocca RV,Mehdorn HM. Localized BCNU chemotherapy and the multimodal management of malignant glioma [J]. Curr Med Res Opin,2009,25:149-160.
    [88]Mrugala MM,Chamberlain MC. Mechanisms of disease:temozolomide and glioblastoma-look to the future [J]. Nat Clin Pract Oncol,2008,5:476-486.
    [89]Brandes AA, Tosoni A, Franceschi E, et al. Glioblastoma in adults [J]. Crit Rev Oncol Hematol,2008,67:139-152.
    [90]Aoki T, Hashimoto N,Matsutani M. Management of glioblastoma [J]. Expert Opin Pharmacother,2007,8:3133-3146.
    [91]Mason WP,Cairncross JG. Drug Insight:temozolomide as a treatment for malignant glioma--impact of a recent trial [J]. Nat Clin Pract Neurol,2005,1: 88-95.
    [92]Lerman LS. Structural considerations in the interaction of DNA and acridines [J]. JMolBiol,1961,3:18-30.
    [93]Snyder RD. Assessment of atypical DNA intercalating agents in biological and in silico systems [J]. Mutat Res,2007,623:72-82.
    [94]Jonathan BC. Energetics of drug-DNA interactions [J]. Biopolymers 1997,44: 201-215.
    [95]Bischoff G,Hoffmann S. DNA-binding of drugs used in medicinal therapies [J]. Curr Med Chem,2002,9:321-348.
    [96]Haj H-B, Salerno M, Priebe W, et al. New findings in the study on the intercalation of bisdaunorubicin and itsmonomeric analogues with naked and nucleus DNA [J]. Chem Biol Interact,2003,145:349-358.
    [97]Wu YS, Koch KR, Abratt VR, et al. Intercalation into the DNA double helix and in vivo biological activity of water-soluble planar [Pt(diimine)(N,N-dihydroxyethyl-NO-benzoylthioureato)]+ClS complexes:a study of their thermal stability, their CD spectra and their gel mobility [J]. Arch Biochem Biophys Chem,2005,440:28-37.
    [98]Suh D,Chaires JB. Criteria for the mode of binding of DNA binding agents [J]. Bioorg Med Chem,1995,3:723-728.
    [99]Yin H, Xu Y,X Q. Novel antitumor agent family of lH-benzo[c,d]indol-2-one with flexible basic side chains:synthesis and biological evaluation [J]. Bioorg Med Chem,2007,15:1356-1362.
    [100]Martinez R,Chacon-Garcia L. The search of DNA-intercalators as antitumoral drugs:what it worked and what did not work [J]. Curr Med Chem,2005,12: 127-151.
    [101]Ren J, Jenkins TC,Chaires JB. Energetics of DNA intercalation reactions [J]. Biochemistry,2000,39:8439-8447.
    [102]Calvin B. Harley RPR. Analysis of E. coli promoter sequences [J]. Nucleic Acids Research,1987,15:2343-2361.
    [103]Stephen T. Smale JTK. The RNA polymerase Ⅱcore promoter [J]. Annual Review of Biochemistry,2003,72:449-479.
    [104]Zimmer C,Wahnert U. Nonintercalating DNA-binding ligands:specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material [J]. Prog Biophys Mol Biol,1986,47: 31-112.
    [105]Hurley LH. DNA and its associated processes as targets for cancer therapy [J]. Nat Rev Cancer,2002,2:188-200.
    [106]Broggini M,D'Incalci M. Modulation of transcription factor—DNA interactions by anticancer drugs [J]. Anti-Cancer Drug Des,1994,9:373.
    [107]Strekowski L,Wilson B. Noncovalent interactions with DNA:An overview [J]. Mutation Research,2007,623:3-13.
    [108]Boresch S,Karplus M. The meaning of component analysis:decomposition of the free energy in terms of specific interactions [J]. J Mol Biol,1995,254:801-807.
    [109]Chiang S-Y, Azizkhan JC,Beerman TA. A Comparison of DNA-Binding Drugs as Inhibitors of E2F1-and Spl-DNA Complexes and Associated Gene Expression [J]. Biochemistry,1998,37:3109-3115.
    [110]Welchi JJ, Rauscher FJ,Beerman TA. Targeting DNA-binding Drugs to Sequence-specific Transcription FactorDNA Complexes [J]. J Biol Chem, 1994,269:31051-31058.
    [111]Gniazdowski M,Czyz M. Transcription factors as targets of anticancer drugs [J]. Acta Biochimica Polonica,1999,46:255-262.
    [112]Baron RM, Lopez-Guzman S, Riascos DF, et al. Distamycin A Inhibits HMGA1-Binding to the P-Selectin Promoter and Attenuates Lung and Liver Inflammation during Murine Endotoxemia [J]. PLoS One,2010,5:el0656.
    [113]Reid DG, Salisbury SA, Bellard S, et al. Proton nuclear Overhauser effect study of the structure of a deoxyoligonucleotide duplex in aqueous solution [J]. Biochemitry,1983,22:2019-2025.
    [114]Jamin N, James TL,Zon G. Two-dimensional nuclear Overhauser enhancement investigation of the solution structure and dynamics of the DNA octamer [d(GGTATACC)]2 [J]. Eur J Biochem,1985,152:157-166.
    [115]Zhou N, Manogaran S, Zon G, et al. Deoxyribose ring conformation of [d(GGTATACC)]2:an analysis of vicinal proton-proton coupling constants from two-dimensional proton nuclear magnetic resonance [J]. Biochemistry,1988,27: 6013-6020.
    [116]毛希安.脱氧核糖核酸的核磁共振研究简介[J].波谱学杂志,2003,20:75-90.
    [117]阎江丽,张友杰,袁汉珍,等.低聚核苷酸d(GGTATACC)2的’H和13C NMR研究[J].波谱学杂志,1998,15:117-122.
    [118]Nishimura T, Okobira T, Kelly AM, et al. DNA binding of tilorone:1H NMR and calorimetric studies of the intercalation [J]. Biochemistry,2007,46:8156-8163.
    [119]Schmeing TM,Ramakrishnan V. What recent ribosome structures have revealed about the mechanism of translation [J]. Nature,2009,461:1234-1242.
    [120]Wimberly BT, Brodersen DE, Clemons WM, et al. Structure of the 30S ribosomal subunit [J]. Nature,2000,407:327-339.
    [121]Steitz TA. A structural understanding of the dynamic ribosome machine [J]. Nature Reviews Molecular Cell Biology,2008,9:242.
    [122]Ban N, Nissen P, Hansen J, et al. Placement of protein and RNA structures into a 5A-resolution map of the 50S ribosomal subunit free [J]. Nature,1999,400:841.
    [123]Pioletti M, Schliinzen F, Harms J, et al. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3 [J]. The EMBO Journal, 2001,20:1829-1839.
    [124]Schlunzen F, Zarivach R, Harms J, et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria [J]. Nature,2001,413: 814.
    [125]Demeshkina N, Jenner L, Yusupova G, et al. Interactions of the ribosome with mRNA and tRNA [J]. Curr Opin Struct Biol,2010,20:325-332.
    [126]Dunkle JA,Cate JH. Ribosome structure and dynamics during translocation and termination [J]. Annu Rev Biophys,2010,39:227-244.
    [127]Ramakrishnan V. The ribosome:some hard facts about its structure and hot air about its evolution [J]. Cold Spring Harb Symp Quant Biol,2009,74:25-33.
    [128]Grant P, Sanchez L,Jimenez A. Cryptopleurine resistance:genetic locus for a 40S ribosomal component in Saccharomyces cerevisiae [J]. J Bacteriol,1974,120: 1308-1314.
    [129]Gupta RS,Siminovitch L. Mutants of CHO cells resistant to the protein synthesis inhibitors, cryptopleurine and tylocrebrine:genetic and biochemical evidence for common site of action of emetine, cryptopleurine, tylocrebine, and tubulosine [J]. Biochemistry,1977,16:3209-3214.
    [1]Garbett NC, Ragazzon PA,Chaires JB. Circular dichroism to determine binding mode and affinity of ligand-DNA interactions [J]. Nat Protoc,2007,2:3166-3172.
    [2]Norden B,Kurucsev T. Analysing DNA complexes by circular and linear dichroism [J]. J Mol Recognit,1994,7:141-155.
    [3]Strekowski L,Wilson B. Noncovalent interactions with DNA:an overview [J]. Mutat Res,2007, 623:3-13.
    [4]Martinez R,Chacon-Garcia L. The search of DNA-intercalators as antitumoral drugs:what it worked and what did not work [J]. Curr Med Chem,2005,12:127-151.
    [5]Palchaudhuri R,Hergenrother PJ. DNA as a target for anticancer compounds:methods to determine the mode of binding and the mechanism of action [J]. Curr Opin Biotechnol,2007,18: 497-503.
    [6]Berova N, Nakanishi K,Woody RW. Circular dichroism:principles and applications [M].2 ed. New York:Wiley-VCH,2000:703-718.
    [7]Bishop GR,Chaires JB. Characterization of DNA structures by circular dichroism [J]. Curr Protoc Nucleic Acid Chem,2002,11:7.11.
    [8]Ivanov VI, Minchenkova LE, Schyolkina AK, et al. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism [J]. Biopolymers,1973,12:89-110.
    [9]Chung SY,Holzwarth G. Circular dichroism of flow-oriented nucleic acids. II. Comparison between observed and calculated spectra [J]. Biopolymers,1975,14:1531-1545.
    [10]Kazutomo Imahori KW. The circular dichroism of polynucleotides in relation to their conformations [J]. Journal of Polymer Science Part C:Polymer Symposia,1970,30:633-656.
    [11]Gray DM,Ratliff RL. Circular dichroism spectra of poly[d(AC):d(GT)], poly[r(AC):r(GU)], and hybrids poly[d(AC):r(GU)] and poly[r(AC):d(GT)] in the presence of ethanol [J]. Biopolymers, 1975,14:487-498.
    [12]Negi S, Dhanasekaran M, Hirata T, et al. Biomolecular mirror-image recognition:reciprocal chiral-specific DNA binding of synthetic enantiomers of zinc finger domain from GAGA factor [J]. Chirality,2006,18:254-258.
    [13]Gratzer WB, Hill LR,Owen RJ. Circular dichroism of DNA [J]. Eur J Biochem,1970,15: 209-214.
    [14]Moore DS,Wagner TE. Double-helical DNA and RNA circular dichroism. Calculations on base-sugar-phosphateehlix interactions [J]. Biopolymers,1974,13:977-986.
    [15]Chaires JB. Energetics of drug-DNA interactions [J]. Biopolymers,1997,44:201-215.
    [16]Monnot M, Mauffret O, Simon V, et al. DNA-drug recognition and effects on topoisomerase II-mediated cytotoxicity. A three-mode binding model for ellipticine derivatives [J]. J Biol Chem, 1991,266:1820-1829.
    [17]Monnot M, Mauffret O, Lescot E, et al. Probing intercalation and conformational effects of the anticancer drug 2-methyl-9-hydroxyellipticinium acetate in DNA fragments with circular dichroism [J]. Eur J Biochem,1992,204:1035-1039.
    [18]Willis B,Arya DP. Recognition of B-DNA by neomycin-Hoechst 33258 conjugates [J]. Biochemistry,2006,45:10217-10232.
    [19]Fleury F, Sukhanova A, Ianoul A, et al. Molecular determinants of site-specific inhibition of human DNA topoisomerase I by fagaronine and ethoxidine. Relation to DNA binding [J]. J Biol Chem,2000,275:3501-3509.
    [20]Nguyen B, Hamelberg D, Bailly C, et al. Characterization of a novel DNA minor-groove complex [J].BiophysJ,2004,86:1028-1041.
    [21]Corbalan-Garcia S, Sanchez-Carrillo S, Garcia-Garcia J, et al. Characterization of the membrane binding mode of the C2 domain of PKC epsilon [J]. Biochemistry,2003,42:11661-11668.
    [22]Durand M, Seche E,Maurizot JC. Effect of strand orientation on the interaction of berenil with DNA triple helices [J]. Eur Biophys J,2002,30:625-630.
    [23]Foye WO, Lemke TL,Williams DA. Principles of Medicinal Chemistry [M].4 ed. Baltimore: Williams&Wilkins,1995:834.
    [24]Colson P, Bailly C,Houssier C. Electric linear dichroism as a new tool to study sequence preference in drug binding to DNA [J]. Biophys Chem,1996,58:125-140.
    [25]Liu Y, Kumar A, Boykin DW, et al. Sequence and length dependent thermodynamic differences in heterocyclic diamidine interactions at AT base pairs in the DNA minor groove [J]. Biophys Chem,2007,131:1-14.
    [26]Baase WA,Johnson WC, Jr. Circular dichroism and DNA secondary structure [J]. Nucleic Acids Res,1979,6:797-814.
    [27]Hossain M, Giri P,Kumar GS. DNA intercalation by quinacrine and methylene blue:a comparative binding and thermodynamic characterization study [J]. DNA Cell Biol,2008,27: 81-90.
    [28]Maiti M,Kumar GS. Molecular aspects on the interaction of protoberberine, benzophenanthridine, and aristolochia group of alkaloids with nucleic acid structures and biological perspectives [J]. Med Res Rev,2007,27:649-695.
    [29]Sarkar D, Das P, Basak S, et al. Binding interaction of cationic phenazinium dyes with calf thymus DNA:a comparative study [J]. J Phys Chem B,2008,112:9243-9249.
    [30]Bhadra K, Maiti M,Kumar GS. Molecular recognition of DNA by small molecules:AT base pair specific intercalative binding of cytotoxic plant alkaloid palmatine [J]. Biochim Biophys Acta, 2007,1770:1071-1080.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700