非牛顿含蜡原油溶胶与凝胶相互转化过程特性与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含蜡原油是一种复杂的混合体系,其流变特性对石油的开采、集输和长距离管道输送等有重大影响。本论文以物理化学和结构力学等基本理论为基础,综合利用流变测量、DSC以及显微镜观察法对非牛顿含蜡原油溶胶与凝胶相互转化过程特性及机理进行了详细的研究和探索。主要研究内容及结果如下:
     通过对含蜡原油冷却胶凝过程特性的研究发现,原油种类不同,导致原油冷却过程中结构参数的变化规律也不尽相同。降温速率越小,剪切速率越小,原油开始胶凝的温度越高,同时相同温度下形成的胶凝结构越强。依据流变学原理实验并计算验证了原油中蜡晶溶剂化层的存在,根据实验现象结合结晶学原理及溶剂化层理论对含蜡原油的冷却胶凝机理做了进一步的探讨。
     通过对含蜡原油等温胶凝过程特性的研究发现,静态降温条件下,随着测量温度的降低以及恒温时间的延长,原油的储能模量增大,损耗角减小。对于动态降温或经静态降温并恒温剪切的原油而言,其储能模量的变化趋势与静态降温的原油相似,但损耗角随着测量温度的降低先减小后增大。此外,在较低的温度条件下,随着静止时间的延长,原油损耗角也会表现出先减小后增加的趋势。静态降温速率越小,原油恒温过程中形成的结构越强;而动态降温速率越小,原油在恒温静止初始的结构越强,最终的平衡结构却越弱。当测量温度不同时,降温过程中的剪切速率对原油等温胶凝特性的影响也不同。较高温度下,剪切速率越大,原油恒温过程中形成的结构越强;凝点温度时,原油的等温胶凝结构强度随着剪切速率的增加先减小后增加;当温度较低时,剪切速率越大,原油恒温过程中形成的结构越弱。而恒温剪切对原油的结构总是起破坏作用的。最后对含蜡原油的等温胶凝机理进行了探索。
     通过对胶凝含蜡原油在不同载荷加载方式下屈服特性的研究发现,胶凝含蜡原油在恒应力下的屈服实际上是一个蠕变过程。引入损伤变量及硬化函数,建立的胶凝含蜡原油非线性蠕变方程,能够精确的描述多种含蜡原油的3个蠕变阶段,简洁实用,可在工程中推广应用。连续增加剪切应力方式下,随着应力加载速率的增加,胶凝原油的屈服值增大,屈服时间减小。在阶梯式增加剪切应力方式下,单阶作用时间增加,胶凝原油的屈服值减小,屈服时间增加;阶段应力增加幅度增大,胶凝原油的屈服值逐渐增大并最终趋为定值,而屈服时间则逐渐减小。在连续增加剪切速率方式下,当剪切速率增加速率较小时,应力随剪切速率的增加出现波动现象;随着加载速率的增大,应力波动现象逐渐减小直至消失,同时胶凝原油的屈服值也逐渐增大。
     以基于等结构参数法建立的Houska模型为基础,结合原油触变性实验数据,综合推导得出一个描述原油触变裂降曲线的新模型,该模型物理意义明确,适应性较强,使用方便。利用等结构参数法建立了第一个具有理论意义的含蜡原油静态结构恢复模型,并证明该模型可以较好的描述多种含蜡原油的静态结构恢复特性。以青海原油为例详细研究并得出了多种历史条件对上述两个模型拟合参数的影响规律。
     利用流变测量技术首次对胶凝含蜡原油的熔化特性进行了详细的研究,结果表明,原油的熔化与胶凝并不是简单的逆过程。胶凝原油升温速率越大,相同测量温度下,原油的结构强度越强。终冷温度越低,原油升温过程中相同温度下的结构强度越弱,同时在较高的非牛顿流体温度条件下恒温静止形成的结构也越弱。而终冷温度下的恒温时间对原油的熔化及在较高温度下恒温结构发展特性的影响并不明显。依据实验现象结合结晶学原理提出了相应的胶凝含蜡原油熔化机理。
Waxy crude oil is a complex mixture whose rheological properties have great influence on the exploitation, storage and pipeline transportation. Basing on the theories of physical chemistry and structure mechanics, the properties and mechanism of sol-gel transformation for non-newtonian waxy crude oil were investigated in detail, using a combination of rheological methods, DSC and optical microscopy. The main contents and conclusions are the following.
     The gelling properties for crude oil due to decreasing temperature were investigated.It is shown that the variation of structure parameters are distinct for different kinds of oils.The gel point of the waxy crude oil becomes higher and the strength of the gel structure increases with the decrease of cooling rate and shear stress. The existence of wax solvation layer was proved by rheological experiment and calculation.The corresponding gelling mechanism was improved by combim gexperimental phenome na and crystallography theory.
     The isothermal gelling properties of waxy crude oil were studied systematically. The results show that the modulus of oils after static cooling becomes higher by decreasing temperature or increasing holding time, meanwhile the loss angle decreases. For the oils after dynamic cooling or shearing under isothermal condition, the variation of modulus are similar to those of static cooled samples, but the loss angle decreases first and then increases by decreasing temperature. In addition, the loss angle also decreases first and then increases by increasing holding time at relatively lower temperatures. The isothermal structure becomes stronger with a decreasing static cooling rate.while with decreasing dynamic cooling rate, the stength of initial structure under isothermal condition increases but the strength of final structure decreases.The dependence of isothermal structure development of waxy crude oil on shear rate are also strongly influenced by temperature. At relatively high temperatures, the higher shear rates can result in stronger structure.While approaches pour point, the structure decreases first and then increases with increasing shear rate. At relatively lower temperatures, the strength of structure decreases with the increase of shear rate.
     The yielding properties of waxy crude oil under different measuring methods were studied.The results show that the yielding of gelled waxy crude oil under constant stress is really a creep process. The nonlinear creep model was established by introducing damage and hardening variables, which can describe the three stages of creep process for several different oils.For the shear stress loading in a linear way, a higher stress loading rate causes a higher yield stress and a shorter yielding time.For the stress loading in a stepwise way, the yield stress decreases and the yielding time increases with increasing time duration,whilewith increasing the changing rate of stress, the yield stress increases first and finally keeps constant, meanwhile the yielding time decreases. For the shear rate loading in a linear way, the shear stress-shear rate curve will appear fluctuation phenomena with a lower loading rate. As the loading rate increases, the fluctuation phenomena will decrease gradually and until disappear, while the yiled stress also increases.
     A new model was obtained basing on the Houska model, and it was proved to describe the thixotropic properties of waxy crude oil simply and accurately. A first theoretical model for recovery properties of waxy crude oil was established by using a structure parameter method, which was proved to fit well with the experimental data of several different waxy crude oils. Taking Qinghai oil for example, the influence of histories on the Correlation coefficient of the two models was also found.
     The melting properties of gelled waxy crude oil were first investigated by rheological method.The results show that the melting and gelling of waxy crude oil are not simply inverse processes.With the increase of heating rate, the gel strength increases during heating process. With the decrease of final cooling temperature, both the strength of structure during heating process and isothermal process at higher non-newtonian temperature decreases. And there is nearly no influence on the melting properties during heating process and isothermal structure development on higher temperature for isothermal holding time at final cooling temperature. The melting mechanism of gelled waxy crude oil was put forward.
引文
[1]李传宪.原油流变学[M].中国石油大学出版社,2007
    [2]Webber R.M.Low temperature rheology of lubricating mineral oils:Effect of cooling rate and wax crystallization on flow properties of base oils [J].J.Rheol,1999,43(4)
    [3]何玉如.沈阳原油石蜡晶体结构研究[J].石油学报(石油加工),1990,6(1)
    [4]Holder G., Winkler J. Wax crystallization from distillate fuels [J]. Journal of the Institute of Petroleum,1965,151 (228)
    [5]Moussa K., Madeleine D., Jean L.V.Morphology of paraffin crystals in waxy Crude oils cooled in quiescent conditions and under flow[J].Fuel,2003,82:127-135
    [6]Letoffe J.M., Claudy P., Kok M.. V, et al. Crystallization of waxes precipitated on cooling by DSC and thermomicroscopy [J]. Fuel,1995,174
    [7]Rφnningsen H. P., Hansen A.B., etal. Wax precipitation from Sea crude oils:PT3: Precipitation and Dissolution of Wax Studied by Differential Scanning Calorimetry [J]. Energy and Fuels,1991,5(6):914-923.
    [8]Chang Cheng, Boger D.V., Nguyen Q.D., etal. Influence of thermal history on the waxy structure of statically cooled waxy crude oil [J]. SPE Journal,2000,5(2):148-157
    [9]侯磊,张劲军,段亚青等.剪切作用对含蜡原油黏弹性的影响规律[J].西安石油大学学报(自然科学版),2006,21(6):40-43
    [10]Mills P.D., Goodwin J.W., Grover B.W., etal. Shear Field Modification of Strongly Flocculated Suspensions-aggregate Morphology [J]. Colloid&Polym.Sci,1991,269: 949-963
    [11]Buscall R., Mills P.D., Garcia J.M., etal.Scaling Behaviour of The Rheology of Aggregate Networks Formed from Colloidal Particles [J].J.Chem.Faraday Trans,1998, 84(12):4260-4269
    [12]Barnes H.A.Thixotropy—a review [J], J. of Non-Newtonian fluid mech,1997,30:1-33.
    [13]Schreuder F.W.A.M., Van Diemen A.J.G, Stein H.N. Viscoelastic Properties of Concentrated Suspensions [J]. Journal of Colloidal and Interface Science.1986,111,(1)
    [14]Venkatesan R., Nagarajan N.R., Paso K., etal. The Strength of Paraffin Gels Formed under Static and Flow Conditions [J]. Chemical Engineering Science,2005,60,3587- 3598
    [15]许康,张劲军.含蜡原油管道停输再启动的安全性问题[J].油气储运,2004,23(11):12-15
    [16]Wardhaugh L.T., Boger D.V.The Measurement and Description of The Yielding Behavior of Waxy Crude Oil [J].J.Rheol,1991,35(6)
    [17]Rφnnigsen H.P. Rheological Behavior of Gelled Waxy North Sea Crude Oils [J]. J.Pet.Sci.Eng,1992,7:177-213
    [18]Chang Cheng, Boger D. V, The Yielding of Waxy Crude Oils [J]. Ind. Eng. Chem. Res. 1998,37,1551-1559
    [19]Cazaux G, Barre L., Brucy F.Waxy Crude Cold Start:Assessment through Gel Structural Properties [J]. SPE 49213,1998
    [20]Karan K.J., Ratulowsk.Measurement of Waxy Crude Properties Using Novel Laboratory Techniques [J].SPE 62945,2000
    [21]黄剑锋.溶胶-凝胶原理与技术[M].化学工业出版社,2005,9
    [22]王继勇,郭建明,秘洁芳等.温度对树脂锚杆锚固剂凝胶时间的影响[J].煤炭学报,2008,33(6):619-622
    [23]陈宗淇,王光信,徐桂英.胶体与界面化学[M].高等教育出版社.2005
    [24]顾雪蓉,朱育平.凝胶化学[M].北京,化学工业出版社,2005,1
    [25]Ruben F. G,Visintin R.L., Emanuele V, etal. Rheological Behavior and Structural Interpretation of WaxyC rude Oil Gels [J]. Langmuir,2005,21,6240-6249
    [26]高分子学会编.新版高分子辞典[M].日本东京:朝会书店,1998
    [27]林尚安,陆耘,梁兆熙.高分子化学[M].北京:科学出版社,2000
    [28]傅献彩,沈文霞,姚天扬.物理化学.第四版[M].北京:高等教育出版社,1995
    [29]EvdokimovI.N., Eliseev N.Y, Eliseev D.Y, Rheological Evidence of Structural Phase Transitions in asphaltene-containing petroleum fluids [J].J Pet.Sci.Eng.2001,30,199-211
    [30]李传宪.胶凝含蜡原油的结构特性及其化学改性机理的研究[D].山东大学博士学位论文,2003
    [31]中国石油天然气行业标准(SY/T 0546-94),原油凝点测定法
    [32]Ferworn K.A.Control of Wax Deposition:An Experiment Investigation of Crystal Morphology and an Evaluation of Various Chemical Solvents, SPE37240,1997
    [33]Singh P., Fogler H.S.Prediction of the Wax Content of the Incipient Wax-oil Gel in A Pipeline:An Application of The Controlled-Stress Rheometer, J.Rheometer [J].J.Rheol, 1999,43(6):1437-1459
    [34]Labropoulos K.C., Niesz D.E., Danfotrh S.C., etal.Dynamicrheology of Agar Gels: Theory and Experiments.Part I.Development of A Rheological Model, Carbonhydrate Polymers,2002.
    [35]Bingham,Green.A Plastic Material and not a Viscous Liquid:The Measurement of Its Mobility and Yield Value[J], Proc. Am. Soc. Test Mater,1919,20 (2):640-675
    [36]Kraynik, A. M. ER. Fluid Standards:Comments on ER Fluid Rheology [J]. Proc.2nd Int. Conf. ER Fluids,1990
    [37]Nguyen Q.D., Boger D.V.Measuring the Flow Properties of Yield Stress Fluids [J].Annu. Rev.fluid Mech,1992.24
    [38]Chang C., Nguyen Q. D., Ronniingsen H.P Isothermal Start up of Pipeline Transporting Waxy Crude Oil [J].J.Non-Newtonian Fluid Mech,1999,87:127-154
    [39]李传宪,李琦瑰.新疆胶凝原油管道屈服特性研究[J].油气储运,1999,18(12):5-7
    [40]李传宪,史秀敏.原油屈服应力的测量特性[J].油气储运,2001,20(4):44-46
    [41]李传宪,张春光,孙德军等.原油溶胶—凝胶等温转变过程中的流变性研究[J].化学学报,2003,61(3):363-366
    [42]朱英如,孙骥姝.大庆原油凝点温度附近屈服特性研究[J].西安石油大学学报,2006,21(4):58-64
    [43]彭建伟,韩善鹏,张劲军等.胶凝大庆原油不同加载时间下的屈服特性[J].中国石油大学学报(自然科学版),2008,32(4):109-113
    [44]彭建伟,张劲军,侯磊等.胶凝含蜡原油屈服时间研究[J].西南石油大学学报(自然科学版),2008,30(6):145-148
    [45]王志方,张国忠,刘刚.采用分数阶导数描述胶凝原油的流变模型[J].中国石油大学学报(自然科学版).2008,32(2):114-118
    [46]王志方,张国忠,刘刚.胶凝原油的粘弹性流变模型[J].高校化学工程学报,2008,22(2):351-355
    [47]王志方,张国忠,刘刚.一个胶凝原油的蠕变模型[J].化学工程,2009,37(4):27-30
    [48]Norman J.Wagner, THIXOTROPY, Advances in Colloid and Interface Science (2008), doi:10.1016/j.cis.2008.09.005
    [49]刚芹果.触变性流体的一些本构方程[J].力学与实践,2000,6(22):19-20
    [50]Godfrey J.C., Edwards D.E.F.C. A Power-Law Model of Thixotropy Proc.3rd European Rheol.Conf,1990:183-185
    [51]Cawkwell M.G., Charles M.E. Characteristics of Canadian Arctic Thixotropic Gelled Crude oil Utilizing An-Eight-Parameter Model [J]. J.of pipelines,1989
    [52]陈宏健,张帆等.一个新的含蜡原油触变性模型[J].流变学进展,2002,404-408
    [53]Giacomin A. J., Oakley J. G.Structural Network Models for Molten Plastics Evaluated in Large Amplitude Oscillatory Shear [J].J.Rheol,1992,36:1529-1546
    [54]Quemada D., Droz R.Blood Viscoelasticity and Thixotropy from Stress Formation and Relaxation Measurements:A Unified Model [J]. Biorheology,1983,20:635-651
    [55]方波,宋道云,江体乾.粘弹-触变性液体本构方程研究进展及其应用[J].流变学进展,武汉:华中理工大学出版社,1999,42-45
    [56]罗塘湖.含蜡原油流变性及其管道输送[M].北京:石油工业出版社,1991.
    [57]宋艾玲,梁光川,王文耀.描述含蜡原油触变性的新型三参数模型[J].油气储运,2007,26(7):40-45
    [58]张足斌,张国忠.含蜡原油管道流动的触变性研究[J].石油大学学报(自然科学版),2001,25(4):72-74
    [59]Phung D.T., Vanbich H.A., Canhson T. A New Approach to Study on Properties of Waxy Crude Oils from Dragon and White Tiger Fields off Shore Vietnam [J]. SPE 54374,1999
    [60]董平省,张国忠.描述含蜡原油触变特性的一种新模式[J].油气储运,2005,24(2):29-32
    [61]蔡均猛,易维明,何芳.基于离散平稳小波变换的原油触变特性研究[J].水动力学研究与进展,2005,20(6):683-688
    [62]刘子江.下地慢主要矿物的熔化、弹性和热力学特性研究[D].四川大学博士论文,2007
    [63]冉宪文.冲击压缩下金属高压熔化规律相关问题的理论及实验研究[D].国防科学技 术大学研究生院博士论文,2006
    [64]王晓颖.非均质材料控制加热过程的组织演变与熔化行为[D].西北工业大学博士学位论文,2003
    [65]Lindemann F.A.Uber Die Berechnumg Molekularer [J].PhysikaliSChes Zeitsch,1910, 11:609-612
    [66]Born M., Huang K.Dynamical Theory of Crystal Lattice.Clarendon:Oxford,1954
    [67]J.L.Tallon, Crystal Instability and Melting. Nature,1982,299,5879:188-188
    [68]K.Lu, Y Li. Homogeneous Nucleation Catastrophe as a Kinetic Stability limit foe Superheated Crystal. Physical Review Letters,1998,80,20:4474-4477
    [69]D.Ma, Y Li. Heterogeneous Nucleation Catastrophe on Dislocations in Superheated Crystals.Journal of Physics:Condensed Matter,2000,12,43:9123-9127
    [70]Kusney R.E., Mann J.A., Dahm A.J. Two-Stage Melting in Two Dimensions in a System with Dipole Interactions. Physical Review B,1995,51(9):5746-5759
    [71]Winter H.H., Chambon F. Analysis of Linear Viscoelasticity of A Cross-Linking Polyer at The Gel Point [J]. J.Rheol,1986,30:367-382.
    [72]Shimura K.Y, Tershima M., Hozan, D., et al. Physical Properties of Shark Gelation Compared with Pig Gelation [J].J.Agric Food Chemistry,2000,48:2023-2027
    [73]张莉,许加超,薛长湖.琼胶流变学性质和胶凝性质的研究[J].中国海洋药物杂志,2009,28(2):11-17
    [74]刘小玲,许时婴.鸡骨明胶的胶凝特性[J].食品与生物技术学报,2006,25(3):122-126
    [75]陈海华,许时婴,王璋.亚麻籽胶的胶凝性质[J].食品与生物技术学报,2006,25(5):8-14
    [76]涂国云,王正武,唐菠.假酸浆子胶质的胶凝特性[J].食品工业科技,2009,30(2):87-93
    [77]张丰香,王璋,许时婴.鱼鳞明胶的提胶工艺[J].食品与发酵工业,2008,34[9]:96-100
    [78]Gebhard Schramm著,李晓晖译.实用流变测量学[M].北京:石油工业出版社,1998
    [79]燕永利,张宁生,屈撑囤等.胶质液体泡沫的流变性[J].高等学校化学学报,2007, 28(9):1720-1725
    [80]李峰.新型降凝剂的合成及其改性效果的研究[D].中国石油大学硕士论文,2005
    [81]于伯龄,姜胶东.实用热分析[M].纺织工业出版社,1990,3,90-97
    [82]Tanaka R., Toyama S.Excess Molar Volumes and Excess Molar Heat Capacities for Binary Mixture of (ethanol+benzen, or toluene, or xylene, or chlorobenzene) at a Temperature of 298.15K [J]. J Chem. Eng Data.1997,42(5):871-874
    [83]Messerly J. F., Finke H. L., Good W.D., Condensed-Phase Heat Capacities and Derived Thermodynamic Properties for 1,4-Dimethybenzene,1,2-Diphn-Ylene and 2,3-Dimethy-Naphthalene [J].J.Chem. Theronodynames.1998,20(4):485-501
    [84]刘振海等.聚合物量热测定[M].化学工业出版社,2002,1,362-364
    [85]叶铁林等.化工结晶过程原理及应用[M].北京工业大学出版社,2006.
    [86]Weeler G, Gouhie H., Frank L. J., etal.Restart Protection forP ipelines Transporting Paraffinic Crude Oil [J].SPE,1989
    [87]郁振华.胶凝原油屈服特性研究[D].中国石油大学硕士论文,2009.
    [88]尹光志,张东明,何巡军.含瓦斯煤蠕变实验及理论模型研究[J].岩土工程学报,2009,31(4):528-532
    [89]徐卫亚,杨圣奇,杨松林.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(4):531-537
    [90]潘颖,蔡瑞娇,丁雁生等.塑料粘结炸药装药的蠕变损伤一维模型[J].兵工学报,2000,21(2):123-127
    [91]刘玉春,赵扬锋.岩石试件非线性黏弹塑性蠕变模型研究[J].煤矿开采,2008,13(1):10-14
    [92]叶永,杨新华,陈传尧.沥青砂蠕变特性及力学模型研究[J].公路,2009,2(2):121-124
    [93]巫德斌,徐卫亚,朱珍德等.泥板岩流变试验与粘弹性本构模型研究[J].岩石力学与工程学报,2004,23(8):1242—1246
    [94]陈沅江,潘长良,曹平等.软岩流变的一种新力学模型[J].岩土力学,2003,24(2):209-214
    [95]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工 程学报,2002,21(5):632-634
    [96]郑健龙,吕松涛,田小革.基于蠕变试验的沥青粘弹性损伤特性[J].工程力学,2008,25(2):193-196
    [97]张耀平,曹平,赵延林.软岩粘弹塑性流变特性及非线性蠕变模型[J].中国矿业大学学报.2009,38(1):34-40
    [98]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [99]Chaboche J. L.Continuum damage mechanics part Ⅰ and part Ⅱ[J].ASME, Journal of Applied Mechanics,1988,55:59-72.
    [100]董毓利,谢和平,李世平.混凝土受压损伤力学本构模型的研究[J].工程力学,1996,13(1):44-53
    [101]金尧,孙训方,孙亚方等.考虑加载历史影响的蠕变律[J].机械强度,2001,23(2):206-208
    [102]霍裕平.物理学学科发展战略.见:科学走向新世纪[M].北京:科学出版社,2001,17
    [103]Turnbull D.Research and Applications.In:Seitz F, and Turnbull D ed.Solid State Physics, v2. Academic, New York,1956,226
    [104]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2000
    [105]唐睿康.表面能与晶体生长/溶解动力学研究的新动向[J].化学进展,2005,17(2):368-376
    [106]王萍,李国昌.结晶学教程[M].国防工业出版社.2006
    [107]刘祥文,陈家玮,鲍征宇.几种矿物溶解热动力学与晶体缺陷的关系[J].电子显微学报,2002,21(5):751-752

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700