伪谱法在粘弹介质地震波场正演模拟中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘弹性一词来源于模型理论,即这种性质可以用弹性元件和粘性元件串联或者并联组合而成的某种模型加以表示,如Maxwell模型、Kelvin-Voigt模型S.L.S模型Burgers模型等等。在不同场合、不同文献中我们还常常接触到一系列相关而不尽相同的名词,如蠕变、松弛、粘性、阻尼、内摩擦、粘滞性或弹性后效等等,这统称为介质的粘弹性性质或者流体性质。
     在研究地球的各种长期变化(如地幔对流与板块运动、各种构造运动、地震孕育过程等),以及精确研究瞬时过程时,我们都必须考虑地球介质的流变性质。地球自然振荡的最后消失就是地球介质是粘弹介质的最好证据。地震勘探中,地震波衰减受多种因素影响,虽然事实上现在没有一种机理可以描述所有环境条件下产生的损耗,但是很明显介质的粘滞性就是其中的一个主要原因。
     其本构方程分为微分形式的本构方程和积分形式的本构方程,其中微分形式的本构方程和积分形式的本构方程是相互对应的,而且由微分形式的本构方程可以求出积分形式的本构方程。这两种表达形式各有优缺点。微分型是根据理想模型导出的,模型能直观地模拟和定性地解释介质的流变性质,模型中各流变常数的物理概念清楚。但是要较好地描述介质的流变性质,需要复杂的组合模型,导致求解复杂的本构方程。也正是由于这个原因,以往的粘弹性介质中地震波正演模拟只局限于二元的Maxwell模型、Kelvin-Voigt模型和S.L.S模型。另外,其蠕变和松弛仅以指数规律变化。积分型是以Boltzmann迭加原理为基础导出的,粘弹性体的本构方程统一为一个比较简单的积分方程。只要通过实验确定了介质的J(t)、E(t)就可求得本构方程,而且它们的表达式不仅是指数
    
     摘要
    函数,而且可以是任意的。其缺点是不像微分形式的本构方程那样直观
    地与介质模型相对应。
     本次研究力图从模型理论出发,由岩体力学中引入积分形式的本构
    方程,然后在此基础上确立粘弹介质中地震波传播的波动方程;而且在
    推导波动方程时本次研究采用对应原理,使其过程明显简洁明了,而且
    具有一定的通用性。对于不同的粘弹性模型,只要求出松弛模量即可求
    出相应的波动方程,使我们感到对更复杂的模型介质中地震波传播的研
    究是有希望的。
     正是由于上述工作,本次研究模拟了几种线性粘弹介质中地震波的
    传播。通过一维粘弹波和弹性波的对比,可明显看出粘弹介质中波传播
    存在很大的衰减。横波和纵波的模拟结果类似。虽然Burger体的参数直
    接来自标准线性体的参数,可以看出在其中传播的地震波与标准线性体
    中的波存在很大的差异。横波的波速非常小,而且由一维的对比结果看,
    其衰减比标准线性体更加严重。这些都与理论分析的结果一致。
The word 'viscoelasticity' comes from model theory. In another word, we can represent that by some models, which are serially or in parallel made of the basic elements - spring and dashpot, such as, Maxwell model, Kelvin-Voigt model, standard linear solid model. In different occasion and in different books or magazines, we often find some words, such as, creep, relaxation, viscosity, damping, intrinsic friction, which all belong to the characters of viscoelasticity or fluid.
    When we study the long-range movement (such as, convection of mantle, movement of plate, movement of formation, gestation of earth quake and so on) and accurately research instantaneous processes, we have to consider the viscoelasticity of the earth. On the other hand, the disappearance of surge of earth is the best evidence that proves that the medium in earth is viscoelastic medium. In the seism exploration, because of many factors, there is attenuation of wave. Although there is not one theory that can describe all factors, it is obvious that the viscoelasticity of medium is one of the important factors.
    The constitutive relation of viscoelastic medium has two forms-differential operator form of stress strain constitutive relation and integral operator form of stress strain constitutive relation, and they are corresponding, and the later can be educed from the former. They have their own merit: differential form is directly educed from ideal model, so it can directly model and qualitatively explain viscoelasticity of medium and the parameters of the model have clear conception. However, it is essential for better describing viscoelasticity to use complicated model, which leads to perplexing
    
    
    
    
    constitutive equation, and because of the difficulty researchers can only use some simple models, such as, Maxwell model, Kelvin-Voigt model, standard linear solid model to model wave propagation in viscoelastic medium. The integral form roots in principle of superposition and has a more simple uniform. Then we can get the constitutive equation if we have relaxation modulus E(t) and flexible modulus J(t).
    In this research, on the base of the theory of model, we get the equation by integral form constitutive relation, and in this process we use corresponding principle. Then the process becomes compact and universal. So we have the hope that models wave propagation using more complicated models.
    In this research, we model wave propagation in several kinds of model. According to 1-D modeling, the wave in viscoelastic medium has distinct attenuation by comparing with the wave in elastic medium. P-wave and S-wave all have these characteristic. Though the parameters of Burgers model near quantitatively these of S.L.S. Compared with modeling in S.L.S medium, the wave in burgers medium has more attenuation and the velocity of S-wave is very smaller. These phenomena all are consistent with what we theoretically analyze.
引文
[1] 袁龙蔚.流变力学.北京:科学出版社,1986
    [2] 郭自强.固体中的波.北京:地震出版社,1982
    [3] 周光泉,刘孝敏.粘弹性理论.合肥:中国科学技术大学出版,1988
    [4] 周德培,朱本珍,毛坚强.流变力学原理及其在岩土工程中的应用.成都:西南交通大学出版社,1995
    [5] 蔡美峰主编.岩石力学与工程.北京:科学出版社,2002
    [6] 范祯祥,郑仙种.地震波数值模拟与偏移成像.河南科学技术出版社,1994
    [7] 杨挺青.粘弹性力学.武汉:华中理工大学出版社,1988
    [8] [美]R.M.克里斯坦森著,郝松林,老亮译.粘弹性力学引论.北京:科学出版社,1990
    [9] 吴如山,[美]安艺敬一主编.地震波的散射与衰减.北京:地震出版社,1993
    [10] 郑仙种,崔力科.波动理论在地震勘探中的应用.北京:石油工业出版社,1987
    [11] 何樵登.地震波理论.北京:地质出版社,1988
    [12] 杜世通主编.地震波动力学.北京:石油大学出版社,1996
    [13] [美]N.H.瑞克著,许云译.粘弹性介质中的地震波.北京:地质出版社,1981
    [14] 张伯军,王宝昌,刘财.弹性动力学简明教程.长春:东北师范大学出版社,1995
    [15] 杨宝俊等编著.勘探地震学导论.长春:吉林科学出版社,1996
    [16] 何樵登,张中杰.横向各向同性介质中地震波及其数值模拟.长春:吉林大学出版社,1996
    [17] 赵建国.流变介质的地震波波场性质研究初探[硕士学位论文],长春:吉林大学,2002
    [18] 傅容珊,黄建华.地球动力学.北京:高等教育出版社,2001
    [19] 《数学手册》编写组.数学手册.北京:高等教育出版社,1979
    [20] 南京工学院数学教研组.积分变换(第三版)北京:高等教育出版社,1989
    [21] 程乾生.信号数字处理的数学原理.北京:石油工业出版社,1979
    [22] 刘财,谢靖,韩道范,杨宝俊,冯暄.用Stokes方程的差分方法制
    
    作合成记录,石油地球物理勘探,2002,37(3):230-236
    [23] 刘财,谢靖,韩道范.Stokes方程的差分格式及其稳定性问题,长春科技大学学报,2001,31(s):89-93
    [24] 刘财,谢靖,韩道范,杨宝俊.非均匀粘弹介质中波传播的几个基本问题,长春科技大学学报,2000,30(s):93-96
    [25] 张文生,刘财,谢靖.有能量吸收的一维波动方程的阻抗反演,CT理论与研决,1994,21(2):33-41
    [26] 高广宏,郭宝琦,范祯祥.标准线性体地震波有限元数值模拟石油地球物理勘探,1991,26(5):547—556
    [27] 范祯祥,邓玉琼.准各向异性粘弹介质地震波的数字仿真,地球物理学报,1988,31(2):184—210
    [28] 王妙月,郭亚曦,底青云.二维线性流变体波的有限元模拟,地球物理学报,1995,38(4):494—505
    [29] 傅旦丹,刘洋,陈遵德,王慎中.粘弹介质中声波的伪谱法模拟,江汉石油学院学报,1993,15(4):32—39
    [30] 柯本喜,郭矛,严昌言,范祯祥.非均匀粘弹介质中有限元地震数字模型,石油地球物理勘探,1990,25(3):245—259
    [31] 蔡袁强,徐长节,吴世明.粘弹性饱水岩层中地震波的传播,地震学报,1998,20(3):250—254
    [32] 朱元清,胡天跃,郭自强.地震波在粘弹介质中的传播及地形效应地震学报,1991,13(4):442—449
    [33] 崔建军,何继善.粘弹性波动方程正演和偏移 中南工业大学学报,2001,32(5):441—444
    [34] 朱守根,袁修贵,白尤军.粘弹性介质地震复合波变焦分离与波场外推技术,中南工业大学学报,1996,27(6):633—637
    [35] 徐瑜.在二维非均匀各向同性介质中粘弹性P-SV波合成地震图的计算,地球物理学报,1995,38(专辑Ⅱ):178—188
    [36] 刘洋,李承楚.双相各向异性介质中弹性波传播伪谱法数值模拟研究,地震学报,2000,22(2):132—138
    [37] 张光莹,曾新吾.伪谱法模拟各向异性/非均匀介质中弹性波的传播,国防科技大学学报,2002,24(3):18—22
    [38] 张剑锋,李幼铭.水平成层介质中粘弹性波的计算,计算结构力学及其应用,1994,11(3):314—324
    
    
    [39] 候安宁,何樵登.各向异性介质中弹性波传播特征的伪谱法模拟研究 石油物探,1993,34(2):36—45
    [40] 李小军.粘弹性场地地形对地震动影响分析的显式有限元—有限差分方法,地震学报,1995,17(3):352—369
    [41] 傅征祥,刘桂萍.平行走滑断层相互作用的粘弹模型和减震作用,地震,1999,19(2):128—134
    [42] 何平,程国栋,朱元林.冻土粘弹塑损伤耦合本构理论,中国科学(D辑),1999,29(s):34—39
    [43] 章振德,何鲜编著.岩石介质流变学,北京:科学出版社,1999
    [44] 张为民 非线性粘弹性本构关系及其应用,湘潭大学自然科学学报,2000,12(4):
    [45] 范加参.粘弹性介质中的地震波,地震研究,2001,24(4):358—362
    [46] 张国民,梁北援.岩石流变模型在孕震过程和前兆研究中的应用,地震学报,1987,9(4):384—391
    [47] 冯德益,潘琴龙,郑斯华等.长周期形变波及其所反应的短期和临震前兆,地震学报,1985,7(4):41—57
    [48] Carcione,J.M., Kosloff, D.&Kosloff.R., Wave propagation simulation in a linear viscoacoustic medium, Geophys. J. 1988,93,393-407
    [49] Carcione,J.M., Kosloff, D.&Kosloff.R, Viscoacoustic wave propagation simulation in the earth, Geophysics, 1988,53,769-777
    [50] Day,S.M &Minster, J.B., Numerical simulation of attenuated wavefields using a Pade approximant method, Geophys. J. R. astr. Soc., 1984, 78, 105-118
    [51] Wilhelm Flugge Viscoelasticity (second edition), New York Heidelberg.Berlin,Springer-Verlag 1975
    [52] Carcione,J.M., Kosloff,D.&Kosloff.R, Wave propagation simulation in a linear viscoelatic medium, Geophysical Journal, 1988, 95, 597-611
    [53] Liu,H.P. Anderson,D.L & Kanamori,H., Velocity dispersion due to anelasticity; implications for seismology and mantle composition, Geophys. J. R. astr. Sot., 1976, 47, 41-58
    [54] Tal-Ezer, H. Carcione,J.M & kosloff, D. An accurate and efficient scheme for wave propagation in linear viscoelastic media, Geophysics, 1990,
    
    55(10), 1366-1379
    [55] Huang,B.S. A program for two-dimensional seismic wave propagation by the pseudospectrum method, Computers & Geosciences, 1992, 18(2), 289-307
    [56] Gazdag,J. Modeling of the acoustic wave equation with transform methods, Geophysics, 1981, 46(6), 854-859
    [57] Kosloff, D.&Baysal,E. forward modeling by Fourier method, Geophysics, 1982, 47, 1402-1412
    [58] Carcione,J.M. A 3-D time-domain wave equation for viscoacoustic saturated porous media, European Journal of Mechanics, 1993, 53-71
    [59] Emmerich,H. & Korn,M. Incorporation of attenuation into time-domain computations of seismic wave fields, Geophysics, 1987, 52(9),1252-1264
    [60] Silva,M. Body waves in a layered anelastic solid, B.S.S.A, 1976, 66(5), 1539-1554
    [61] Liao,Q. & McMechan,G.A. 2-D pseudo-spectral viscoacoustic modeling in a distributed-memory multi-processor computer, B.S.S.A, 1993, 83 (5), 1345-1354
    [62] Carcione,J.M. Wave propagation in anisotropic linear viscelatic media: theory and simulated wavefields, Geophys. J. Int. 1990, 101,739-750
    [63] Carcione,J.M. Staggered mesh for the anisotropic and viscoelastic wave equation, Geophysics, 1999, 64(6), 1863-1866
    [64] Johan,O.A. & Robertsson, A numerical flee-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography, Geophysics, 1996, 61(6), 1921-1934
    [65] Carcione,J.M., & Quiroga-Goode,G., Some aspects of the physics and numerical modeling of Blot compressional waves, J.Cpmput.Acous., 1996,3,261-280
    [66] Carcione,J.M., Herman.G.C.& Kroode,.A.P.E, seismic modeling, Geophysics, 2002,67(4),1304-1325
    [67] Hestholm,S.O. & Ruud,B., 2D finite-difference viscoelatic wave modeling including surface topography, Geophysical Prespecting, 2000,48,341-373
    
    
    [68] Carcione,J.M., Viscoelastic effective theologies for modeling wave propagation in porous media, Geophysical Prespecting, 1998, 46, 249-270
    [69] Carcione,J.M. Seismic modeling in viscoelastic media, Geophysics, 1993, 58(1),110-120
    [70] Carcione,J.M Modeling anelastic singular surface waves in the earth, 1992,57(6),781-792
    [71] Robertsson,J.O.A., Blanch,J.O., Symes,W.W. Viscoelatic finite-differnce modeling, Geophysics, 1994,59(9),1444-1456
    [72] Hestholm,S. Three-dimension finite difference viscoelastic wave modeling including surface topography, Geophys.J.Int., 1999, 139, 852-878
    [73] Bourbie,T. & Gonzalez-Serrano,A. Synthetic seismograms in attenuating media, Geophysics, 1983, 48(12), 1575-1587
    [74] Borcherdt,R.D Energy and plane wave in linear viscoelastic media, Journal of Geophysical Research, 1973, 78(14), 2442-2453
    [75] Blanch,J.O., Robertsson,J.O.A, & Symes,W.W. Viscoelastic finite-difference modeling, Tech.Rep.93-04, Department of Computational and Applied Mathematics, Rice University
    [76] Blanch,J.O., Robertsson,J.O.A, & Symes,W.W. Viscoelastic finite-difference modelingⅡ, Tech.Rep.93-16, Department of Computational and Applied Mathematics, Rice University
    [77] Christensen,R.M. Theory of viscoelasticity (second edition), New York, Academic press, 1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700