若干非线性波动方程的解的性质和控制问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波动方程是偏微分方程和分布参数控制理论的一个重要的研究内容,对它的研究必将促进偏微分方程和控制理论的进一步发展.本文的研究内容主要有两个.一是应用偏微分方程理论和Sobolev空间理论研究具非线性阻尼和非线性源项的波动方程的解的性质.二是应用黎曼几何方法,结合Carleman估计等方法研究具变系数主部的波动方程的可控性和能量衰减问题.
     第一章是引言,主要介绍本文的研究背景,国内外研究现状及本文的主要结果.
     第二章主要研究一些弹性振动系统的解的性质.这些性质有解的全局存在性、解的爆破分析、解的非全局存在.第二章第一节研究如下的波动方程:其中,Ω是Rn(n=1,2,3)中的具有光滑边界(?)Ω的有界区域;m,r≥1;fi(·,·):R2→R2是给定的函数.ρ是满足以下条件的C1类函数:对s>0假设系统具有负初始能量,当函数f1,f2,初值u0,u1,v0,v1和系统中的参数r,m满足适当的条件时,得到了系统解的全局存在和全局不存在的结论.
     第二章第二节研究如下的粘弹性波动方程解的性质:其中,Ω是Rn(n=1,2,3)中的具有光滑边界(?)Ω的有界区域;假设系统具有正初始能量,当函数f1,f2,初值u0,u1,v0,v1和系统中的参数r,m,ρ满足适当的条件时,证明了系统的解不能全局存在.
     第二章的第三节研究以下非线性梁振动系统其中,a>0,b>0,p>1,m>1.初始条件为假设梁的右端是铰链连接的,即左端带有输入u(t)=(u1(t),u2(t))和输出y(t)=(y1(t),y2(t)),且满足和
     通过构造辅助函数,证明了当初值,输入,输出函数分别满足适当的条件时,系统的解在有限时刻爆破和整体存在.
     第三章研究论文的第二个主要内容:具变系数主部的波动方程的可控性和能量衰减问题.第三章中Ω是Rn(n≥2)的一个具有光滑边界Γ的有界区域.假设r由Γ0和Γ1两部分组成:Γ0∪Γ1=Γ,Γ0是Γ的非空的相对开集.记v为边界上的外法向量.在Euclidean度量下,记向量场X的散度为div(X).A(x)=(aij(x))是一个n×n的矩阵函数,其中aij=aji.
     第三章第一节做一些准备工作,介绍本章的主要研究方法:黎曼几何方法.
     第三章第二节研究如下的带边界记忆条件的波动方程当函数f,k和g满足适当的假设时,获得了系统能量指数衰减的结论.
     第三章第三节研究如下带非线性边界反馈的波动方程其中是一个已知函数,(?)是u沿着vA=Av的导数.f是定义在Γ1上的连续的非线性的非负函数.在一些假设条件下,我们分别获得了系统能量指数衰减和多项式衰减的结论.
     在第三章第四节,令二阶微分算子其中aij=aji是C1类函数且满足研究如下平行耦合的波动方程的可控性问题其中,和w2(x,t)是边界控制函数,α,β分别表示弹性耦合常数和阻尼耦合常数.应用黎曼几何方法和新的Carleman估计得到了系统的能观测性不等式,从而得到了系统的精确能控性.
Wave equations have been one of the important contents of partial differential equa-tion (PDE) and control theory. Studies to wave equations will accelerate the development of PDE and control theory. The main contents of this thesis consist of two parts. The first one is to study the properties of the solutions for the wave equations with nonlinear damp and nonlinear source. We do this by applying PDE theory and Sobolev space the-ory. The second one is to study the controllability and energy decay for wave equations with variable coefficients principal part. We do this by combining Riemannian geometry method and Carleman estimates.
     This thesis consists of three chapters.
     In Chapter 1, firstly, a survey on the research background and the research advance of the related work are given. Secondly, the main results obtained in this thesis are listed.
     Chapter 2 is devoted to the study on the properties of the solutions for some nonlinear vibration systems. The properties conclude global existence, blow-up, nonexistence of global solution.
     In Section 1 of Chapter 2, we consider the system of nonlinear wave equations whereΩis a bounded domain with smooth boundary (?)Ωin Rn,n= 1,2,3;m, r≥1; fi(·,·):R2→R2 are given functions to be specified later. Assume that the initial energy is negative. Under some suitable assumptions on the functions f1 and f2, the initial data and the parameters in the equations, the theorems of global existence and nonexistence are proved, respectively.
     Section 2 of Chapter 2 is devoted to the study on the viscoelastic wave equations whereΩis a bounded domain with smooth boundary (?)Ωin Rn,n= 1,2,3;m,r≥1; fi(·,·):R2→R2,i= 1,2, are given functions to be specified later. Assume that the initial energy is positive. Under some suitable assumptions on the functions f1,f2,ρ1,ρ2, g1,g2, parameters r,m and the initial data u0,u1,v0,v1, the global nonexistence theorem for solutions is proved.
     Section 3 of Chapter 2 deals with the following damped nonlinear beam equation where a>0,b>0, p>1 and m> 1. Suppose that the initial data are given by Suppose that the right end of the beam is hinged, i.e., and at the left the input u(t)= (u1(t),u2(t)) and the output y(t)=(y1(t),y2(t)) are exerted, satisfying and It is proved that, under some conditions, by constructing auxiliary function, the system has global solution and blow-up solution, respectively.
     Chapter 3 is devoted to the second main goal:the study to the controllability and energy decay for wave equations with variable coefficients principal part. In Chapter 3,Ωis a bounded domain in Rn with smooth boundaryΓ. It is assumed thatΓconsists of two parts:Γ0 andΓ1,Γ0∪Γ1=Γ, withΓ0 nonempty and relatively open inΓ. Let v denote the outward normal vector field along the boundary.
     In Section 1 of Chapter 3, we do some preliminaries:introduce Riemannian geometry method.
     Section 2 of Chapter 3 is concerned with exponential decay of the energy of the following problem: Exponential decay of the energy is proved provided that the function f, k and g satisfy some assumptions. In Section 3 of Chapter 3, we investigate energy decay problem of the following wave equation where (?)(x)∈W1,∞(Ω) is a known function, is the derivative of u alongνA= Aν. f is a continuous nonlinear nonnegative function defined onΓ1, and satisfies some assumptions. Under some different assumptions, polynomial decay and exponential decay are obtained, respectively. In Section 4 of Chapter 3, set be a second-order differential operator, with aij= aji of class C1, satisfying for some constant a0>0. We study exact controllability for the following coupled wave equation with variable coefficients principal part where Q=Ω×(0,T],Σ=Γ×(0,T] andΣi=Γi×(0,T],i= 0,1. w1(x, t) and w2(x, t) are control actions on the boundary, andα,βdenote the spring and damper coupling constants, respectively. Applying Riemannian geometry method and new Carleman esti-mates, the observability inequality and exact controllability for the system are obtained.
引文
[1]H. Fujita. On the blowing up of the Cauchy problem for ut=Δu+u1+α[J]. J. Fac. Sci. Univ. Tokyo Sect. IA Math.,1966,13,105-113.
    [2]H. A. Levine. The role of critical exponents in blowup theorems [J]. SIAM Rev.,1990,32(2), 262-288.
    [3]K. Deng, H. A. Levine. The role of critical exponents in blowup theorems:the sequel[J]. J. Math. Anal. Appl.,2000,243,85-126.
    [4]V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarskii. A parabolic system of quasilinear equations[J]. I. Diff. Equns.,1983,19,1558-1571.
    [5]V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarskii. A parabolic system of quasilinear equations[J]. I. Diff. Equns.,1985,21,1049-1062.
    [6]M. Escobedo, H. A. Levine. Critical blow up and global existence numbers for weakly coupled system of reaction-differusion equations[J]. Arch. Rat. Mech. Anal.,1995,129,47-100.
    [7]Y. W. Qi, H. A. Levine. The critical exponents of degenerate parabolic systems[J]. Z, Angew. Math. Phys.,1993,44,249-265.
    [8]Y. W. Qi. The asymptotics of blow-up solutions to a degenerate parabolic equati[J]. ZAMP, 1991,42,488-496.
    [9]M. X. Wang. Note on a quasilinear parabolic system[J]. Nonlinear Anal., TMA,1997,29, 813-821.
    [10]V. K. Kalantarov, Ladyzhenskaya. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types[J]. J. Soviet Math.,1978,10,53-70.
    [11]P. L. Christiansen, P. S. Lomdahl, V. Muto. On a Toda lattice model with a transversal degree of freedom[J]. Nonlinearity.1990,4,477-501.
    [12]李大潜,陈韵梅.非线性发展方程[M].科学出版社,1989.
    [13]王明新.非线性抛物型方程[M].科学出版社,1993.
    [14]V. A. Galaktionov, H. A. Levine. A genereral approach to critical Fujita's exponents and systems [J]. Nonlinear Analysis, TMA,1998,34,1005-1027.
    [15]R. G.Pinsky. tence and nonexistence of global solutions for ut=Δu+α(x)up in Rd[J]. J. Differential Equations,1997,133,152-177.
    [16]K. Mochizuki, R. Suzuki. Critical exonent and critical blow up for quasilinear parabolic equations[J]. Israel J. math.,1997.98,141-156.
    [17]R. Suzuki. Critical blow up for quasilinear parabolic equations in exterior domains[J]. Tokyo J. Math.,1996,19,397-409.
    [18]C. Bandle. Blowup in diffusion equations:a survey[J]. J. comp. Appl. Math.,1998,97,3-22.
    [19]L. Nirenberg. A strong maximum principle for parabolic equations[J]. Comm. Pure Appl. Math.,1953,6,167-177.
    [20]A. Friedman. Partial Differential Equations of Parabolic type[J]. Prentice-Hall, New Jersey, 1964.
    [21]M. Tsutsum. On solutions of semilinear differention equations in Hillbert space[J]. Math Japon.,1972,17,173-193.
    [22]O. A. Oleinik, E. V. Radkevich. Method of introducing of parameterevolution equations[J]. Russian Math. Surver,1978,33,7-84.
    [23]S. Alinhac. Blow-up for nonlinear hyperbolic equations[J]. Birkhauser, Boston, Berlin,1995.
    [24]H. A. Levine. The roal of critical exponents in blowup theorems[J]. SIAM Review,1974, 32(2),262-288.
    [25]H. A. Levine. A note on a nonexistence theorem for nonlinear wave equations [J]. SIAM J. Math. Anal.,1974,5(5),644-648.
    [26]H. A. Levine, L. E. Payne. Nonexistence of global weak solutions for classes of nonlinear wave and parabolic equations[J]. J. Math. Anal. Appl.1976,55,329-334.
    [27]M. Ohta. Blow-up of solutions of dissipative nonlinear wave equations [J]. Hokkaido Math. J.,1997,26,115-124.
    [28]K. Ono. Global existence, decay and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings[J]. J. Diff. Equa.,1997,137,273-301.
    [29]O. A. Ladyzhenskaya, V. K. Kalantarov. Blow up theorems for quasilinear parabolic and hyperbolic equations[J]. Zap. nauckn. SLOMI Steklov,1977,69,77-102.
    [30]Zhijian Yang. Global existence, asympotic behavior and blow up of solutions for a class of nonlinear wave equations with dissipative term[J]. J. Diff. Equa.,2003,187,520-540.
    [31]J. A. Esquivel-Avila. Qualitative analysis of a nonlinear wave equation[J]. Disc. Cont. Dyna. Sys.,10 (3) 787-804.
    [32]D. H. Sattinger. On global solution of nonlinear hyperbolic equations[J]. Arch. Rational Mech. Anal.1968,30,148-172.
    [33]L. Payne, D. Sattinger. Saddle points and instability of nonlinear hyperbolic equations[J]. Israel Math. J.1981,22,273-303.
    [34]H. A. Levine. Some additional remarks on the nonexistence of global solutions to nonlinear wave equations [J]. SIAM J. Math. Anal.1974,5(4),138-146.
    [35]H. A. Levine. Instability and nonexistence of global solutions of nonlinear wave equation of the form Putt=-Au+F(u)[J]. Trans. Amer. Math. Soc.1974,192,1-21.30(1968) 148-172.
    [36]J. Ball. Remark on blow-up and nonexistence theorems for nonlinear evolution equations[J]. Quart. J. math. Oxford 1977,28,437-486.
    [37]R. T. Glassey. Blow-up theorems for nonlinear wave equation[J]. Math. Z.1973,132,183-203.
    [38]V. Georgiev, G. Todorova. Existence of solution of the wave equation with nonlinear damping and source term[J]. J. Differential Equation,1994,109,295-308.
    [39]Salim A. Messaoudi. Blow-up in a nonlinearly damped wave equation[J]. Math. Nachy.2001, 231,1-7.
    [40]E. Vitillaro. Global nonexistence theorem for a class of evolution equations with dissipa-tion[J]. Arch. Ration. Mech. Anal.,1999 149,155-182.
    [41]A. Haraux, E. Zuazua. Decay estimates for some semilinear damping hyperbolic problems[J]. Arch. Ration. Mech. Anal.,1988,150,191-206.
    [42]Salim A. Messaoudi. Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic eqution[J]. J. Math. Anal. Appl.,2006,320,902-915.
    [43]E. Vitillaro. Global nonexistence for the wave equations with nonlinear boundary damping and source terms [J]. J. Differential Equations,2002,186,259-298.
    [44]R. Ikehata, T. Suzuki. Stable and unstable sets for evolution equations of parabolic and hyperbolic type[J]. Hiroshima Math. J.,1996,26,475-491.
    [45]R. Ikehata. Some remark on the wave equations with nonlinear damping and source terms[J]. Nonlinear Analysis,1996,27,1165-175.
    [46]H. A. Levine, S. P. Park. J. Serrin. Global existence and nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation[J]. J. Math. Anal. Appl.,1998, 228,181-205.
    [47]H. Levine, G. Todorova. Blow up of solutions of the Cahchy problem for a wave equation with nonlinear damping and source terms and positive initial energy[J]. Proceeding of the American Mathematical Society,2000,129,793-805.
    [48]G.Todorova. Cauchy problems for a nonlinear wave equations with nonlinear damping and source terms[J]. Nonlinear Anal.,2000,41,891-905.
    [49]G.Todorova. Stable and unstable sets for the Cauchy Problem for a nonlinear wave equation with nonlinear damping and source terms[J]. J. Math. Anal. Appl.,1999,239,213-226.
    [50]K. Agre, M. A. Rammaha. System of nonlinear wave equations with damping and source terms[J]. Differential Integral Equations,2006,19,1235-1270.
    [51]Xiaosen Han, Mingxin Wang. Global existence and blow-up of solution for a system of nonlinear viscoelastic wave equations with damping and source[J]. Nonlinear Analysis,2009, 71(11),5427-5450.
    [52]A. Guesmia. Existence global et stabilization interne non lineaire d'un system de Ptrovsky[J]. Bull. Belr. Math. Soc.,1998,5,583-594.
    [53]Xiaosen Han, Mingxin Wang. Energy decay rate for a coupled hyperbolic system with non-linear damping[J]. Nonlinear Analysis,2009,3264-3272.
    [54]Wenjun Liu. Uniform decay of solutions for a quasilinear system of viscoelastic equations[J]. Nonlinear Analysis,2009,71(5-6),2257-2267.
    [55]Xiaosen Han, Mingxin Wang. Global existence and asymptotic behavior for a coupled hy-perbolic system with localized damping[J]. Nonlinear Analysis,2010,72(2),965-986.
    [56]Jianghao Hao, Yajing Zhang, Shengjia Li, Global existence and blow-up phenomena for a nonlinear wave equation[J]. Nonlinear Analysis,2009,71(10),4823-4832.
    [57]Guowang Chen, Yanping Wang. A note on "On the existence of solutions of quasilinear wave equations with viscosity" [J]. Nonlinear Analysis,2008,68,609-620.
    [58]Salim A. Messaoudi. Global nonexistence of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms [J]. J. Math. Anal. Appl.,2010,365(1),277-287.
    [59]B. Said-Houari. Global nonexistence of positive initial-energy solution of a system of nonlin-ear wave equation with damping and source terms[J]. Differential integral Equations,2010, 23 (1-2),79-92.
    [60]Wenying Chen, Yong Zhou. Global nonexistence for a semilinear Petrovsky equation[J]. Nonlinear Analysis,2009,70,3203-3208.
    [61]Pengfei Yao, Weiss George. Global smooth solutions and exponential stability for a nonlinear beam[J]. SIAM J Control Optim,2007,45,1931-1964.
    [62]Hao Jianghao, Li Shengjia. Global solution and blowup solution for a nonlinear string with boundary input and output[J]. Nonlinear Analysis,2007,66,131-137
    [63]Y. V. Egorov. Some problems in the theory of optimal control[J]. (russian) Z. Vycisl Mat. Fiz.,1963,3,887-904.
    [64]H. O. Fattorini. Boundary control of temperature dissibutions in a parallepipedon[J]. SIAM J. Control Optim.,1975,13,1-13.
    [65]D. L. Russell. A unified boundary controllability theory for hyperbolic and parabolic partial differential equations[J]. Stud.Appl. Math.,1973,52,189-211.
    [66]D. L. Russell. Controllability and stabilizability theory for linear partial differential equa-tions:recent progress and open problems[J]. SIAM Review,1978,20,639-739.
    [67]J. L. Lions. Exact controllability, stabilization and perturbations for distributed systems[J]. SIAM Rev.,1988,30,1-68.
    [68]V. Komornik. Exact controllability and stabilization:The multiplier method[J]. Paris, John Wiley, Chichester, UK,1994.
    [69]I. Lasiecka, R. Triggiani. Exact controllability of the wave equation with Neumann boundary control[J]. Appl. Math. Optim.,1989,19,243-290.
    [70]R. Triggiani. Exact boundary controllability on L2(Ω)×H-1(Ω) of the wave equation with Dirichlet boundary control acting on a portion of the boundary [J]. Appl. Math. Optim., 1988,18,241-247.
    [71]C. Bardos, G. Lebeau, J. Rauch. Shap sufficient conditions for the observation, control and' stabilization of waves from the boundary[J]. SIAM J. Control Optim.,1992,30,1024-1065.
    [72]L. Miller. Escape function conditions for the observation, control and stabilization of the wave equation[J]. SIAM J. Control Optim.,2003,41,1554-1566.
    [73]T. Duyckaerts, X. Zhang, E. Zuazua. On the optimality of the observability inequalities for parabolic and hyperbolic system with potentials[J]. Annales de I'Institut Henri Poincare (C) Analyse Non Lineaire,2008,25,1-41.
    [74]Antonio Lopez, Xu Zhang, Enrique Zuazua. Null controllability of the heart equation as singular limit of the exact controllability of dissipative wave equations[J]. J. Math Pure Appl.,2000,79 (8),741-808.
    [75]Xu Zhang. Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities[J]. SIAM J. Control Optim.,2000,39 (3),812-834.
    [76]Xiaoyu Fu, Jiongming Yong, Xu Zhang. Exact controllability for multidimensional semilinear hyperbolic equations[J]. SIAM J. Control Optim.,2007,46 (5),1578-1614.
    [77]D. Tataru. Boundary controllability for conservative PDEs[J]. Appl. Math. Optim.,1995, 31,257-295.
    [78]P. F. Yao. On the observability inequalities for exact controllability of wave equations with variable coefficient [J]. SIAM J. Control Optim.,1999,37 (5),1568-1599.
    [79]P. F. Yao. Obsevability inequality for shallow shells[J]. SIAM J. Control Optim.,2000,38, 1729-1756.
    [80]P. F. Yao. The observability inequality for Naghdi's model[J]. MMAR.,2000,133-138.
    [81]P. F. Yao. The observability inequalities for Euler-Bernoulli plate with variable coefficients[J]. Contemporary Mathematics,2000,268,383-406.
    [82]Shaoji Feng, Dexing Feng. Boundary stabilization of wave equations with variable coeffi-cients[J]. Science in China(series A),2001,44(3),345-350.
    [83]S. J. Feng and D. X. Feng. Nonlinear boundary stabilization of wave equations with variable coefficients[J]. Chin. Ann. of Math.,2003,24B,239-248.
    [84]Y. Guo, P. F. Yao. Stabilization of Euler-Bernoulli plate equation with variable coefficients by nonlinear boundary feedback[J]. J. Math. Anal. Appl.,2006,317,50-70.
    [85]S. G. Chai, Y. Guo, P. F. Yao. Boundary feedback stabilization of shallow shell[J]. SIAM J.Control Optim.,2004,42 (1) 239-259.
    [86]S. Chai. Boundary feedback stabilization of Naghdi's model[J]. Acta Mathematics Sinca, 2005,21(1),169-184.
    [87]S. Chai. Stabilization of thermoelastic plates with variable coefficients and dynamical bound-ary control[J]. Indian J. Pure. Appl. Math.,2005,36(5),227-249.
    [88]M. M. Cavalcanti, A. Khemmoudj, M. Medjden. Uniform stabilization of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions [J]. J. Math. Anal. Appl.,2007,328 (2),900-930.
    [89]S. G. Chai, K. S. Liu. Observability inequality for the transmission of shallow shells[J]. System and Control Letters,2006,55,726-735.
    [90]R. Triggiani, P. F. Yao. Carleman estimates with no lower-order terms for general Riemann wave equations. Global uniqueness and observability in one shot[J]. Special issue dedicated to memory of Jacques-Louis Lions. Appl. Math. Optim.2002,46 (2-3) 331-375.
    [91]A. Wyler. Stability of wave equation with dissipative boundary conditions in a bounded domain[J]. Differential Integral Equations,1994,7,345-366.
    [92]S. J. Feng, D. X. Feng. A note on geometric for boundary control of wave equations with variable coefficients[J]. J. Math. Anal. Appl.,2002,271,59-65.
    [93]张旭.半线性分布参数系统的精确能控性[M].高等教育出版社,2004.
    [94]Ta-Tsien Li, Bo-Peng Rao. Exact boundary controllability for quasilinear hyperbolicsys-tems[J]. SIAM J. Control Optim.,2003,41(6),1748-1755.
    [95]Ta-Tsien Li, Lixin Yu. Exact boundary controllability for 1-D quasilinear wave equations[J]. SIAM J. Control Optim.,2006,45 (3),1074-1083.
    [96]M. Aassila. A note on the boundary stabilization of a compactly coupled system of wave equations [J]. Appl. Math. Lett.,1999,12,37-42.
    [97]M. Aassila. Strong asymptotic stability of a compactly coupled system of wave equations [J]. Appl. Math. Lett.,2001,14,285-290.
    [98]V. Komornik, B. Rao. Boundary stabilization of compactly coupled wave equations [J]. Asymptotic Anal.,1997,14,339-359.
    [99]R. Rajaram, M. Najafi. Exact controllability of wave equations in Rn coupled in parallel[J]. J. Math. Anal. Appl.,2009,356,7-12.
    [100]J. Lagnese. Note on boundary stabilization of wave equations [J]. SIAM J. Control Optim., 1988,26,1250-1256.
    [101]D. L. Russell. Controllability and stability theory for linear partial differential equations: Recent progess and open questions[J]. SIAM Rev.,1978,20,639-739.
    [102]R. Triggiani. Wave equation on a bounded domain with boundary dissipation:An operator approach[J]. J. Math. Anal. Appl.,1989,137,438-461.
    [103]Y. You. Energy decay and exact controllability for the Petrovsky equation in a bounded domain[J]. Adv. in Appl. Math.,1990,11,372-388.
    [104]I. Lasiecka, D.Tataru. Uniform boundary stabilization of semilinear wave equation with nonlinear boundary condition[J]. Diff. Int. Equs.,1993,6,507-533.
    [105]E. Zuazua. Uniform stabilization of the wave equation by nonlinear boundary feedback[J]. SIAM J. Control Optim.,1990,28,466-477.
    [106]M. Aassila, M. M. Cavalcanti, V. N. Domingos Cavalcanti. Existence and uniform decay rate of the wave equation with nonlinear boundary damping and boundary memory source term[J]. Calc. Var. Partial Differential Equations,2002,15,155-180.
    [107]M. Aassila, M. M. Cavalcanti, J. A. Soriano. Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain[J]. SIAM J. Control Otim.,2000,38 (5),1581-1602.
    [108]D. Andrade, J. E. Mufioz Rivera. Exponential decay of nonlinear wave equation with vis-coelastic boundary[J]. Math. Meth. Appl. Sci.,2000,23,41-61.
    [109]M. M. Cavalcanti, V. N. Domingos Cavalcanti, M. L. Santos. Existence and uniform decay rates of solutions to a degenerate system with memory condition at the boundary [J]. Applied Mathematics and Computation,2004,150,439-465.
    [110]M. L. Santos. Decay rates for solutions of a system of wave equation with memory[J]. Eur. J. Differen. Equat.,2002,38,1-17.
    [111]S. G.Chai, K. S. Liu. Boundary stabilization of the transmission of wave equations with variable coefficients[J]. Chinese Ann. Math. Ser. A,2005,26(5),605-612.
    [112]S. G. Chai, Y. X. Guo. Boundary stabilization of wave equation with variable coefficients and memory [J]. Diff. Int. Eqs.,2004,17,669-680.
    [113]B. Z. Guo, Z. C. Shao. On exponential stability of a semilinear wave equation with variable coefficients under the nonlinear boundary feedback[J]. Nonlinear Analysis TMA.,2009,71, 5961-5978.
    [114]I. Lasiecka, R. Triggiani, P. F. Yao. Exact controllability for second-order hyperbolic equa-tions with variable coefficients-principal part and first-order term[J]. Nonlinear Anal. TMA., 1997,30,111-122.
    [115]I. Lasiecka, R. Triggiani, P. F. Yao. Inverse/observability estimates for second-order hyper-bolic equations with variable coefficients [J]. J. Math. Appl.,1999,235,13-57.
    [116]Jong Yeoul Park, Tae Gab Ha. Energy decay for nondissipative distributed systems with boundary damping and source term[J]. Nonlinear Analysis TMA.,2009,70,2416-2434.
    [117]A. Guesmia. A new approach of stabilization of nondissipative distributed systems[J]. SIAM J. Control Optim.,2003,42(1),24-52.
    [118]I. Hamchi. Uniform decay rates for second-order hyperbolic equations with variable coeffi-cients[J]. Asymptotic Analysis,2008,57,71-82.
    [119]W. Liu, G. Williams. Exact controllability for problems of transmission of the plate equation with low-order terms[J]. Quart. Appl. Math.,2000,58,37-68.
    [120]W. Liu. Stability and controllability for the transmission wave equation[J]. IEEE Trans. Automat. Control,2001,46,1900-1907.
    [121]M. Aassila. Exact boundary controllability of the plate equation[J]. Differential Integrations, 2002,13,1413-1428.
    [122]S. J. Feng, D. X. Feng. Boundary stabilization of wave equation with variable coefficients[J]. Science in China (Ser. A),2001,44(3),345-350.
    [123]S. J. Feng, D. X. Feng. Nonlinear internal damping of wave equations with variable coeffi-cients[J]. Acta Math. Sin. (English Ser.),2004,20,1057-1072.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700