非标准混合元方法分析及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合有限元方法在微分方程数值解法中扮演着重要的角色.本文主要围绕分裂正定混合有限元方法和H1-Galerkin混合有限元方法这两个方面开展研究工作.
     羊丹平于2001年针对多孔介质中可压缩驱动问题的非线性抛物型压力方程提出新的分裂正定混合有限元方法.该方法具有如下优点:形成混合有限元系统的系数矩阵是对称正定的;流函数方程不依赖于压力方程,进而易于求得流函数的近似解.在这里,我们利用分裂正定混合元方法研究了一些发展方程,取得的主要结果如下:
     .研究一类二阶伪双曲方程的分裂正定混合有限元方法,依照不同的物理量,提出两种分裂混合格式.在所提出的程序中,辅助变量σ=a(x)▽u或σ=α(χ)(▽ut+▽u)的逼近解能够不依赖于未知纯量函数u的逼近解而独立求解,不需要求解方程组的耦合系统.证明了半离散混合有限元解的存在唯一性,并得到了空间半离散和全离散格式的误差估计.
     ·通过引入两个变换q=ut和σ=a(x)▽u+b(χ)▽ut,并求解关于▽u的常微分方程,进而提出了粘弹性波动方程的一个新的分裂正定混合有限元方法.与传统的混合有限元相比有如下优势:所提出的格式能够将变量σ独立于u和q而求解;含有σ的方程的系数矩阵是对称正定的,易于程序实现.证明了半离散和全离散格式误差估计,并证明了半离散混合元解的存在唯一性.最后,数值结果表明所提出的格式是可行的.我们不难发现该格式具有普遍性,可以用来求解如Sobolev方程和伪双曲方程等重要的发展方程.
     1998年Pani针对抛物型偏微分方程提出了H1-Galerkin混合有限元方法,该方法较传统的混合有限元方法有如下优势:避免了LBB相容性条件的限制;混合有限元空间Vh和Wh的选取比较自由,空间中的多项式次数可以不同;再者,对流量的L2模估计可以得到较好的阶数.本文中,我们将应用H1-Galerkin混合元方法求解一些重要的发展方程,同时基于H1-Galerkin混合元方法提出一些新的数值格式,获得以下一些结果:
     .利用H1-Galerkin混合有限元方法研究三类非线性发展方程(RLW-Burgers方程,Burgers-Huxley方程,SRLW方程).针对RLW-Burgers方程给出了完善的半离散和全离散格式的误差分析,证明了混合有限元解的存在唯一性.最后,些数值结果表明H1-Galerkin混合有限元方法对于这三类非线性发展方程都是行之有效的.
     引入时空辅助变量q=▽ut,提出半线性强阻尼波动方程的新型H1-Galerkin混合有限元数值格式.该方法能够将原方程在时空两个方向同时降阶,得到一阶积分-微分混合系统.证明了一维情况下半离散格式和全离散格式的最优收敛阶误差估计,并将该数值格式推广应用到了多维情形.
     .到目前为止,H1-Galerkin混合有限元方法研究的问题仅局限于二阶发展方程问题.然而对于高阶发展方程,特别是重要的四阶发展方程问题的研究却没有出现.本文首次提出四阶发展方程的H1-Galerkin混合有限元方法,为了给出理论分析的需要,我们考虑四阶抛物型发展方程.通过引进三个适当的中间辅助变量,形成四个一阶方程组成的方程组系统,提出四阶抛物型方程的H1-Galerkin混合有限元方法.得到了一维情形下的半离散和全离散格式的最优收敛阶误差估计和多维情形的半离散格式误差估计,并采用迭代方法证明了全离散格式的稳定性.最后,通过数值例子验证了提出算法的可行性.在一维情况下我们能够同时得到未知纯量函数、一阶导数、二阶导数和三阶导数的最优逼近解,这一点是以往混合元方法所不能得到的,并且该算法可以应用于四阶双曲方程等高阶发展方程问题.
     .引入两个新的辅助变量,提出伪双曲方程的基于H1-Galerkin混合有限元方法的新的数值格式.所提出的格式能够形成三个微分子格式,不需要求解方程组的耦合系统.给出了一维情况下半离散和Crank-Nicolson-Galerkin全离散格式最优收敛阶误差估计.并且该格式对LBB相容性条件不作要求.最后,通过数值算例验证了所提出算法的有效性.
     .利用扩展混合有限元方法和H1-Galerkin混合有限元方法相结合的技巧,研究一维RLW-Burgers方程的H1-Galerkin扩展混合有限元方法.该方法同时保持了扩展混合元方法和H1-Galerkin混合元方法的优点.证明了半离散混合有限元解的存在唯一性和格式的稳定性,并得到了未知纯量函数、梯度和流量的半离散和全离散格式最优收敛阶误差估计,最后,一些数值结果表明了算法的可行性.
     本文结构安排如下:第一章简述了混合有限元方法发展状况和本文的主要结果;第二章我们研究了伪双曲方程的两类分裂正定混合元方法;第三章提出粘弹性波动方程的新型分裂正定混合有限元方法;第四章给出三类非线性发展方程(RLW-Burgers方程,Burgers-Huxley方程,SRLW方程)的一些H1-Galerkin混合元程序的数值结果;第五章通过引入一个新的辅助变量,研究四阶半线性强阻尼波方程的新型H1-Galerkin混合有限元方法;第六章我们首次提出四阶发展方程的H1-Galerkin混合有限元方法,并给出了一些数值结果.第七章提出伪双曲方程的新的分裂式H1-Galerkin混合有限元方法;最后,第八章我们利用H1-Galerkin扩展混合元方法研究了RLW-Burgers方程问题.
Mixed finite element method plays an important role in the numerical methods for differential equations. In this thesis, we mainly study the splitting positive mixed finite element method and H1-Galerkin mixed finite element method.
     Danping Yang (in 2001) proposed a new mixed finite element method called the splitting positive definite mixed finite element procedure to treat the pressure equation of parabolic type in a nonlinear parabolic system describing a model for compressible flow displacement in a porous medium. The proposed procedure has the following advantages: the coefficient matrix of the mixed element system is symmetric positive definite; the flux equation is separated from the pressure equation so that we can obtain an approximate solution of the flux function easily. Here, we study the splitting definite positive mixed element method for some evolution equations, and get the following results:
     ●Splitting positive definite mixed finite element methods are discussed for a class of second-order pseudo-hyperbolic equations, depending on the different physical quantities of interest, two kinds of splitting mixed schemes are proposed. The approximate solution ofσ= a(x)Vυorσ= a(x)(▽υt+▽υ), which does not depend on the approximate solution ofυ, can be solved, and the proposed procedures do not need to solve a coupled system of equations. The existence and uniqueness of mixed element solutions for semidiscrete schemes are proved, and error estimates are derived for both semidiscrete and fully discrete schemes.
     ●Introducing two transformations q=υt andσ= a(x)▽υ+b(x)▽υt, and solving ordinary differential equation for▽υ, a new splitting positive definite mixed finite element method is proposed for second-order viscoelasticity wave equation. Compared to standard mixed methods, the proposed method has several attractive features:σ, which dose not depend onυand q, can be solved; the coefficient matrix of the equation forσis symmetric positive definite, and the procedure is implemented easily. Error estimates are derived for both semidiscrete and fully discrete schemes, and the existence and uniqueness of mixed element solutions for semidiscrete schemes are proved. Finally, some numerical results are provided to illustrate the effectiveness of our method. It is easy to see that the proposed scheme can be applied to many important evolution equations such as Sobolev equation and pseudo-hyperbolic equation and so on.
     In 1998, Pani proposed an H1-Galerkin mixed finite element method for parabolic partial differential equation, the proposed one has the following advantages:they are not subject to the LBB consistency condition; the mixed finite element spaces Vh and Wh may be of differing polynomial degrees; moreover, a better order of convergence for the flux in L2-norm is obtained. In this thesis, we apply the H1-Galerkin mixed finite element method to solve some important evolution equations, and propose some new numerical schemes based on H1-Galerkin mixed finite element method, and obtain the following results:
     ●The H1-Galerkin mixed finite element method is studied for three kinds of nonlinear equations (RLW-Burgers equation; Burgers-Huxley equation; SRLW-equation). Error estimates are derived for both semidiscrete and fully discrete schemes for RLW-Burgers equation, and the existence and uniqueness of mixed finite element solutions are proved. Finally, some numerical results are given to illustrate the effectiveness of H1-Galerkin mixed method for three kinds of nonlinear equations.
     ●By introducing a space-time auxiliary variables q= Vut, a new H1-Galerkin mixed finite element method is constructed for the semilinear strongly damped wave equation. We can get the lower equation for space-time direction and the integro-differential mixed systems. Optimal error estimates are derived for both semidiscrete and fully discrete schemes for problems in one space dimension. An extension to problems in two and three space variable are discussed.
     ●So far, the H1-Galerkin mixed finite element method was applied to many second-order evolution equations. However, the H1-Galerkin mixed method for the higher-order evolution equations, especially, for fourth-order evolution equations has not been studied in the literature. In this thesis, we first proposed the H1-Galerkin mixed method for fourth-order evolution equation. For the need of the analysis of theories, we consider the fourth-order parabolic evolution equation. By introducing three auxiliary variables, the first-order system of four equations is formulated, and the H1-Galerkin mixed finite element method for fourth-order parabolic equation is proposed. Optimal error estimates are derived for both semidiscrete and fully discrete schemes for problems in one space dimension, and error estimates are derived for semidiscrete scheme for several space di-mensions, and the stability for fully discrete scheme is proved by the iteration method. Finally, some numerical results are provided to illustrate the effectiveness of our method. Optimal approximate solutions for the scalar unknown, first derivative, second derivative and third derivative are obtained, which can't be derived by the other mixed methods, and the method can be applied to higher-order evolution equations such as the fourth-order hyperbolic partial differential equations.
     ●By introducing two new auxiliary variables, a new numerical scheme based on the H1-Galerkin mixed finite element method for a class of second-order pseudo-hyperbolic equations is constructed. The proposed procedure can be split into three independent differential sub-schemes and does not need to solve a coupled system of equations. Opti-mal error estimates are derived for both semidiscrete and Crank-Nicolson-Galerkin fully discrete schemes for problems in one space dimension. And the proposed method does not require the LBB consistency condition. Finally, some numerical results are provided to illustrate the effectiveness of our method.
     ●An H1-Galerkin expanded mixed finite element method which combines expanded mixed method and H1-Galerkin mixed method is studied for 1-D regularized long wave-Burgers (RLW-Burgers) equation. The formulation not only keeps the advantages of expanded mixed formulation but also keeps the advantages of H1-Galerkin mixed formu-lation. The existence, uniqueness and stability of semidiscrete mixed element solutions are proved, and the optimal error estimates of the scalar unknown, its gradient and its flux for semidiscrete and fully discrete schemes are derived. Finally, some numerical results are given to illustrate the effectiveness of the proposed method.
     The layout of this thesis is as follows:In chapter I, we introduce the development for mixed finite element methods and the main results of this thesis; Chapter II study two kinds of splitting positive definite mixed element methods for the pseudo-hyperbolic type equation; We propose a new splitting positive definite mixed element method for second-order viscoelasticity wave equation in chapter III; Chapter IV give some numerical results of H1-Galerkin mixed element procedure for three classes of nonlinear evolution equations (RLW-Burgers equation, Burgers-Huxley equation, SRLW equation); By introducing a new auxiliary variable, we present a new H1-Galerkin mixed element method for fourth-order strongly damped wave equation in chapter V; In chapter VI, we first propose the H1-Galerkin mixed element method for the fourth-order evolution equation, and present some numerical results; Chapter VII propose a new splitting H1-Galerkin mixed element method for the pseudo-hyperbolic equation; Finally, we study the H1-Galerkin expanded mixed finite element method for RLW-Burgers equation in chapter VIII.
引文
[1]冯康.基于变分原理的差分格式.应用数学与计算数学,1965,2(4):238-262.
    [2]余德浩,汤华中.微分方程数值解法.北京:科学出版社,2003.
    [3]罗振东.混合有限元方法基础及其应用.北京:科学出版社,2006.
    [4]张铁.偏微分-积分方程的有限元方法.北京:科学出版社,2009.
    [5]Babuska I. Error-bounds for finite element method. Nuoer. Math.,1971,16:322-333.
    [6]Brezzi F. On the existenee, uniqueness and appromation of saddle-point problems arising from lagrangian multipliers. RAIRO Model. Math. Aanl. Numer.,1974,8:129-151.
    [7]Falk R S, Osborn J E. Error estimates for mixed methods. RAIRO Numer. Anal.,1980,14(3): 249-277.
    [8]Pani A K, Yuan J Y. Mixed finite element methods for a strongly damped wave equation. Numer. Methods Partial Differential Equations,2001,17:105-119.
    [9]Ewing R E, Lin Y P, Wang J P, Zhang S H. L∞-error estimates and superconvergence in maximum norm of mixed finite element methods for nonfickian flows in porous media. Internat. J. Numer. Anal. Modeling.,2005:2(3):301-328.
    [10]Li J C. Multiblock mixed finite element methods for singularly perturbed problems. Appl. Numer. Math.,2000,35:157-175.
    [11]Chen Y P, Huang Y Q. The superconvergence of mixed finite element methods for nonlinear hyper-bolic equations. Comm. Nonlinear Sci. Numer. Simulation,1998,3(3):155-158.
    [12]Jiang Z W, Chen H Z. Error estimates for mixed finite element methods for sobolev equation. Northeast Math. J.,2001,17(3):301-314.
    [13]Si Z Y, He Y N. A coupled Newton iterative mixed finite element method for stationary conduction-convection problems. Computing,2010,89(1-2):1-25.
    [14]Raviart P A, Thomas J M. A mixed finite element methods for second order elliptic problems. Lectuer Notes in Math.606. Springer, Berlin.1977,292-315.
    [15]Johson C, Thomee V. Error estimates for some mixed finite element methods for parabolic type problems. RAIRO Model. Math. Aanl. Numer.,1981,15:41-78.
    [16]Arbogast T, Wheeler M F, Zhang N Y. A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal.,1996,33(4):1669-1687.
    [17]Jiang Z W. L∞(L2) and L∞(L∞) error estimates for mixed methods for integro-differential equations of parabolic type. Math. Modelling Numer. Anal.,1999,33(3):531-546.
    [18]罗振东.二阶椭圆问题的混合有限元分析.应用数学学报,2003,16(4):473-476.
    [19]孙萍,罗振东,陈静.二阶椭圆问题的混合有限元法的泡函数稳定性及其后验误差估计.计算数学,2008,30(3):327-336.
    [20]Luo Z D, Liu R X. Mixed finite element analysis and numerical solitary solution for the RLW equation. SIAM. J. Numer. Anal.,1998,36(1):89-104.
    [21]罗振东,刘儒勋Burgers方程的混合元分析及其数值模拟.计算数学,1999,21(3):257-268.
    [22]史艳华,石东洋.粘弹性方程ACM有限元的超收敛分析和外推.应用数学,2009,22(3):534-541.
    [23]罗振东,朱江.定常的Navier-Stokes方程的非线性Galerkin混合元法及其后验估计.应用数学和力学,2002,23(10):1061-1072.
    [24]罗振东.非定常热传导-对流问题混合有限元法.计算数学,1998,20(1):69-88.
    [25]罗振东,王烈衡.非定常热传导-对流问题的非线性Galerkin混合元法(Ⅰ):时间连续情形.计算数学,1998,20(3):305-324.
    [26]罗振东,王烈衡.非定常的热传导-对流问题的非线性Galerkin混合元法(Ⅱ):向后一步的Euler全离散化格式.计算数学,1998,20(4):431-448.
    [27]罗振东,王烈衡.非定常的热传导-对流问题的特征混合元法.计算数学,2001,23(2):246-256.
    [28]李开泰,黄艾香,黄庆怀.有限元方法及其应用.北京:科学出版社,2006.
    [29]李德茂.有限元数学基础及误差估计.呼和浩特:内蒙古大学出版社,1991.
    [30]Gao L P, Liang D, Zhang B. Error estimates for mixed finite element approximations of the vis-coelasticity wave equation. Mathematical Methods in the Applied Sciences,2004,27:1997-2016.
    [31]Zhang J S, Yang D P. A splitting positive definite mixed element method for second-order hyperbolic equations. Numer. Methods Partial Differential Equations,2009,25:622-636.
    [32]Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc. IRE,1962,50:91-102.
    [33]Tzou D Y. Macro-to microscale heat transfer:the lagging behavior. Bristol:Taylor and Francis, 1997.
    [34]Zhou L, Tang D, Wu B, Qian H. Dynamic thermoelastic behavior of metal thin film under transient laser heating. Mater. Sci. Eng.,2006, A428:284-289.
    [35]Pao C V. A mixed initial boundary value problem arising in neurophysiology. J. Math. Anal. Appl., 1975,52:105-119.
    [36]Arima R, Hasegawa Y. On global solutions for mixed problems of a semi-linear differential equation. Proc. Jpn. Acad.,1963,39:721-725.
    [37]Ponce G. Global existence of small of solutions to a class of nonlinear evolution equations. Nonlinear Anal.,1985,9:399-418.
    [38]Wan W M, Liu Y C. Long time behaviors of solutions for initial boundary value problem of pseu-dohyperbolic equations. Acta Math. Appl. Sin.,1999,22(2):311-355.
    [39]Liu Y, Li H. H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations. Appl. Math. Comput.,2009,212:446-457.
    [40]Guo H, Rui H X. Least-squares Galerkin procedures for pseudo-hyperbolic equations. Appl. Math. Comput.,2007,189:425-439.
    [41]Yang D P. A splitting positive definite mixed element method for miscible displacement of com-pressible flow in porous media. Numer. Methods Partial Differential Equations,2001,17:229-249.
    [42]Brezzi F, Douglas J Jr, Marini L D. Two families of mixed finite elements for second order elliptic problems. Numer. Math.,1985,47:217-235.
    [43]Brezzi F, Douglas J Jr, Fortin M, Marini L D. Efficient rectangular mixed finite elements in two and three apace variables. RAIRO Model. Math. Aanl. Numer.,1987,21:581-604.
    [44]Brezzi F, Douglas J Jr, Duran R, Fortin M. Mixed finite elements for sencond order elliptic problems in three variables. Numer. Math.,1987,51:237-250.
    [45]Nedelec J C. Mixed finite elements in IR3. Numer. Math.,1980,35:315-341.
    [46]Nedelec J C. A new family of mixed finite elements in IR3. Numer. Math.,1986,50:57-81.
    [47]Chen Z X. Finite element methods and their applications. Berlin:Springer-Verlag,2005.
    [48]Ciarlet P G. The finite element methods for elliptic problems. New York:North-Holland,1978.
    [49]Adams R A. Sobolev spaces. New York:Academic,1975.
    [50]Shi D Y, Peng Y C, Chen S C. Superconvergence of a nonconforming finite element approximation to viscoelasticity type equations on anisotropic meshes. Numer. Math. J. Chinese Univ. (English Ser.),2006,15(4):375-384.
    [51]牛裕琪,石东洋.拟线性粘弹性方程混合有限元分析.数学的实践与认识,2010,40(22):216-223.
    [52]石东洋,关宏波.粘弹性方程的非协调变网格有限元方法.高校应用数学学报,2008,23(4):452-458.
    [53]张建松,羊丹平.多孔介质中可压缩驱动问题的全离散分裂正定混合元方法.山东大学学报(理学版),2006,41(1):1-10.
    [54]Pao C V. Numerical methods for fourth-order nonlinear elliptic boundary value problems. Numer. Methods Partial Differential Equations,2001,17:347-368.
    [55]Pao C V, Lu X. Block monotone iterations for numerical solutions of fourth-order nonlinear elliptic boundary value problems. SIAM J. Sci. Comput.,2003,25:164-185.
    [56]李宏,郭彦.四阶抛物方程的间断时空混合有限元方法.内蒙古大学学报(自然科学版),2006,37(1):19-22.
    [57]李宏,刘洋.一类四阶抛物型积分-微分方程的混合间断时空有限元方法.计算数学,2007,29(4):413-420.
    [58]何斯日古楞,李宏.带广义边界条件的四阶抛物型方程的混合间断时空有限元法.计算数学,2009,31(2):167-178.
    [59]Chen Z X. Analysis of expanded mixed methods for fourth-order elliptic problems. Numer. Methods Partial Differential Equations,1997,13:483-503.
    [60]Li J C. Mixed methods for fourth-order elliptic and parabolic problems using radial basis functions. Adv. Comput. Math.,2005,23:21-30.
    [61]Li J C. Full-order convergence of a mixed finite element method for fourth-order elliptic equations. J. Math. Anal. Appl.,1999,230:329-349.
    [62]Li J C. Optimal convergence analysis of mixed finite element methods for fourth-order elliptic and parabolic problems. Numer. Methods Partial Differential Equations,2006,22:884-896.
    [63]Li J C. Optimal error estimates of mixed finite element methods for a fourth-order nonlinear elliptic problem. J. Math. Anal. Appl.,2007,334:183-195.
    [64]张铁Cahn-Hilliard方程的有限元分析.计算数学,2006,28(3):281-292.
    [65]安荣,李开泰,李媛.四阶拟线性椭圆方程的有限元误差估计.工程数学学报,2010,27(3):527-533.
    [66]安荣,李开泰.四阶障碍问题的稳定化混合有限元方法.应用数学学报,2009,32(6):1068-1078.
    [67]石东洋,彭玉成.四阶特征值问题的各向异性有限元方法.工程数学学报,2008,25(6):1029-1034.
    [68]尚亚东.方程utt-Δu-Δut-Δutt=f的初边值问题.应用数学学报,2000,23(3):385-393.
    [69]Chen Y P, Liu H W, Liu S. Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods. Internat. J. Numer. Methods Engrg.,2007,69(2):408-422.
    [70]Pani A K. An H1-Galerkin mixed finite element methods for parabolic partial differential equations. SIAM J. Numer. Anal.,1998,35:712-727.
    [71]Pani A K, Fairweather G. H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations. IMA Journal of Numerical Analysis,2002,22:231-252.
    [72]Pani A K, Fairweather G. An H1-Galerkin mixed finite element method for an evolution equation with a positive-type memory term. SIAM J. Numer. Anal.,2002,40(4):1475-1490.
    [73]Pani A K, Sinha R K, Otta A K. An H1-Galerkin mixed method for second order hyperbolic equations. Internat. J. Numer. Anal. Modeling,2004,1(2):111-129.
    [74]郭玲,陈焕贞Sobolev方程的H1-Galerkin混合有限元方法.系统科学与数学,2006,26(3):301-314.
    [75]Guo L, Chen H Z. H1-Galerkin mixed finite element method for the regularized long wave equation. Computing,2006,77:205-221.
    [76]王瑞文.双曲型积分微分方程的H1-Galerkin混合有限元方法误差估计.计算数学,2006,28(1):19-30.
    [77]陈红斌,徐大.非线性抛物型偏积分微分方程的H1-Galerkin混合有限元方法.应用数学学报,2008,31(4):702-712.
    [78]Liu Y, Li H, Wang J F. Error estimates of H1-Galerkin mixed finite element method for Schrodinger equation. Appl. Math. J. Chinese Univ.,2009,24(1):83-89.
    [79]Manickam S A V, Moudgalya K K, Pani A K. Higher order fully discrete scheme combined with H1-Galerkin mixed finite element method for semilinear reaction-diffusion equations. J. Appl. Math. Computing,2004,15(1-2):1-28.
    [80]Pany A K, Nataraj N, Singh S. A new mixed finite element method for Burgers equation. J. Appl. Math. Computing,2007,23(1-2):43-55.
    [81]Wheeler M F. A priori L2-error estimates for Galerkin approximations to parabolic differential equation. SIAM J. Numer. Anal.,1973,10:723-749.
    [82]Lin Y P, Zhang T. Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions. J. Math. Anal. Appl.,1992,165:180-191.
    [83]王英伟,陈素琴,吴雄华.指数时程差分与有理谱配点法求解奇异摄动Burger s-H uxley司题.计算数学,2010,32(2):171-182.
    [84]Hashim I, Noorani M, Said Al-Hadidi M. Solving the generalized Burgers-Huxley equation using the Adomian decomposition method. Math. Comput. Modelling,2006,43:1404-1411.
    [85]Darvishi M T, Kheybari S, Khani F. Spectral collocation method and Darvishi's preconditionings to solve the generalized Burgers-Huxley equation. Comm. Nonlinear Sci. Numer. Simulation,2008, 13:2091-2103.
    [86]Burgers J M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech.,1948, 1:171-199.
    [87]Huxley A F. Muscle Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem., 1957,7:255-318.
    [88]Douglas J Jr., Dupout T F, Wheeler M F. H1-Galerkin methods for the Laplace and heat equations. Mathematical Aspect of Finite Elements in Partial Differential Equations, C.de Boor, ed. Academic Press. New York,1975,383-415.
    [89]Seyler C E, Fenstermacler D C. A symmetric regularized long wave equation. Phys. Fluids.,1984, 27(1):4-7.
    [90]Guo B L. The spectral method for symmetric regularized wave equations. J. Comp. Math.,1987, 5(4):297-306.
    [91]孔令华,曾文平,刘儒勋,孔令健SRLW方程的多辛Fourier谱格式及其守恒律.计算物理,2006,23(1):25-31.
    [92]柏琰,张鲁明.对称正则长波方程(SRLW)的一个守恒差分格式.应用数学学报,2007,30(2):248-255.
    [93]柏琰,张鲁明.对称正则长波方程的一个新的守恒差分格式.应用数学,2009,22(1):130-136.
    [94]尚亚东,李志森.解高维广义对称正则长波方程的Fourier谱方法.高等学校计算数学学报,1999,21(3):48-60.
    [95]王明亮RLW-Burgers方程的精确解.应用数学,1995,8(1):51-55.
    [96]Zhao X H, Li D S, Shi D M. A finite difference scheme for RLW-Burgers equation. J. Appl. Math. Informatics,2008,26:573-581.
    [97]Bona J L, Bryant P J. A mathematical model for long waves generated by wave makers in nonlinear dispersive systems. Proc. Cambridge Philos. Soc.,1973,73:391-405.
    [98]Bhardwaj D, Shankar R. A computational method for regularized long wave equation. Comput. Math. Appl.,2000,40:1397-1404.
    [99]Zhang L M. A finite difference scheme for generalized regularized long-wave equation. J. Appl. Math. Comput.,2005,168:962-972.
    [100]Dag I, Dogan A, Saka B. B-spline collocation methods for numerical solutions of the RLW equation. Int. J. Comput. Math.,2003,80:743-757.
    [101]Esen A, Kutluay S. Application of a lumped Galerkin method to the regularized long wave equation. Appl. Math. Comput.,2006,174:833-845.
    [102]Dag I, Saka B, Irk D. Galerkin method for the numerical solution of the RLW equation using quintic B-splines. J. Comput. Appl. Math.,2006,190:532-547.
    [103]Saka B, Dag I. A Collocation method for the numerical solution of the RLW equation using cubic B-spline basis. Arab. J. Sci. Eng.,2005,30:39-50.
    [104]Raslan K R. A computational method for the regularized long wave (RLW) equation. Appl. Math. Comput.,2005,167:1101-1118.
    [105]Wahlbin L. Error estimates of a Galerkin method for a class of model equations for long waves. Numer. Math.,1975,23:289-303.
    [106]Gu H M, Chen N. Least-squares mixed finite element methods for the rlw equations. Numer. Methods Partial Differential Equations,200824:749-758.
    [107]Soliman A A. Numerical simulation of the generalized regularized long wave equation by He's variational iteration method. Math. Comput. Simulation,2005,70:119-124.
    [108]Bona J L, Pritchard W G, Scott L R. Numerical scheme for a model of nonlinear dispersive waves. J. Comput. Phys.,1985,60:167-176.
    [109]Siraj-ul-Islam, Sirajul Haq, Arshed Ali. A meshfree method for the numerical solution of the RLW equation. J. Comput. Appl. Math.,2009,223:997-1012.
    [110]Kaya D. A numerical simulation of solitary-wave solutions of the generalized regularized long-wave equation. Appl. Math. Comput.,2004,149:833-841.
    [111]Park E J. Mixed finite element methods for nonlinear second-order elliptic problems. SIAM J. Numer. Anal.,1995,32:865-885.
    [112]Arbogast T, Wheeler M, Yotov I. Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM. J. Numer. Anal.,1997,34:828-852.
    [113]Song H L, Yuan Y R. The expanded upwind-mixed multi-step method for the miscible displacement problem in three dimensions. Appl. Math. Comput.,2008,195:100-109.
    [114]Song H L, Yuan Y R, Liu G J. The expanded upwind-mixed method on changing meshes for positive semi-definite problem of two-phase miscible flow. Internat. J. Comput. Math.,2008,85(7): 1113-1125.
    [115]Chen Z X. Expanded mixed finite element methods for linear second order elliptic problems I. RAIRO Model. Math. Anal. Numer.,1998,32(4):479-499.
    [116]Chen Z X. Expanded mixed finite element methods for quasilinear second order elliptic problems Ⅱ. RAIRO Model. Math. Anal. Numer.,1998,32(4):501-520.
    [117]Chen Y P, Huang Y Q, Yu D H. A two-grid method for expanded mixed finite element solution of semilinear reaction-diffusion equations. Internat. J. Numer. Meth. Eng.,2003,57:193-209.
    [118]Rui H X, Lu T C. An expanded mixed covolume method for elliptic problems. Numer. Methods Partial Differential Equations,2005,21:8-23.
    [119]Guo L, Chen H Z. An expanded characteristic-mixed finite element method for a convection-dominated transport problem. J. Comput. Math.,2005,23(5):479-490.
    [120]Kim D, Park E. A posteriori error estimator for expanded mixed hybrid methods. Numer. Methods Partial Differential Equations,2007,23(2):330-349.
    [121]Jiang Z W, Li A Q. Expanded mixed finite element methods for the problem of purely longitudinal motion of a homogeneous bar. J. Comput. Appl. Math. (2010), doi:10.1016/j.cam.2010.10.012.
    [122]丁胜,陈焕贞.二阶椭圆问题的最小二乘扩展混合有限元方法.工程数学学报,2010,27(4):669-678.
    [123]Chen H Z, Wang H. An optimal-order error estimate on an H1-Galerkin mixed method for a nonlinear parabolic equation in porous medium flow. Numer. Methods Partial Differential Equations, 2010,26:188-205.
    [124]Yang D P. Least-square mixed finite element methods for nonlinear parabolic problems. J. Comput. Math.,2002,20(2):153-164.
    [125]罗振东,朱江,王会军.定常的Navier-Stokes方程的非线性Galerkin/Petrov最小二乘混合元法.应用数学和力学,2002,23(7):697-706.
    [126]Guo H, Rui H X. Least-squares Galerkin procedures for parabolic integro-differential equations. Appl. Math. Comput.,2004,150:749-762.
    [127]Guo H, Rui H X. Crank-Nicolson least-squares Galerkin procedures for parabolic integro-differential equations. Appl. Math. Comput.,2006,180:622-634.
    [128]Duan H Y, Lin Q. Mixed finite elements of least-squares type for elasticity. Computer Methods in Applied Mechanics and Engineering,2005,194(9-11),1093-1112.
    [129]Shi D Y, Wang H H. Nonconforming.H1-Galerkin mixed FEM for Sobolev equations on anisotropic meshes. Acta Mathematicae Applicatae Sinica(English Series),2009,25(2):335-344.
    [130]Guo H, Rui H X, Lin C. A remark on least-squares Galerkin procedures for pseudohyperbolic equations. J. Comput. Appl. Math.,2009,229:108-119.
    [131]Rui H X, Kim S D, Kim S. Split least-squares finite element methods for linear and nonlinear parabolic problems. J. Comput. Appl. Math.,2009,223:938-952.
    [132]Shi D Y, Ren J C. A least squares Galerkin-Petrov nonconforming mixed finite element method for the stationary Conduction-Convection problem. Nonlinear Anal.,2010,72(3-4):1653-1667
    [133]Cai Z Q, Korsawe J, Starke G. An adaptive least squares mixed finite element method for the stress-displacement formulation of linear elasticity. Numer. Methods Partial Differential Equations, 2005,21:132-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700