大跨度斜拉桥非线性地震反应时程分析及减、隔震研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震作为一种破坏力巨大而又难以预料的自然灾害,其强震的发生往往会带来巨大的生命财产损失。而大跨度桥梁,作为交通枢纽工程和生命线工程的重要组成部分,一旦损坏,将给抗震救灾带来很大的不便。因此,对桥梁的抗震性能进行全面、系统的研究将是十分必要的。
     本文以斜拉桥作为研究对象,对斜拉桥非线性静动力特性、一致激励和非一致激励下的地震反应以及减、隔震措施进行了系统的研究,主要工作包括以下几个方面:
     1、综述了国内外大跨度桥梁地震反应研究的发展历史和现状,介绍了桥梁结构地震反应分析时地震波的选择与输入方法。
     2、基于非线性有限元理论,推导了几何非线性问题的平衡方程。引入等效弹性模量E eq的概念来计及斜拉索垂度效应的影响;引入稳定性函数的概念和几何刚度矩阵来计及塔梁单元受轴力和弯矩作用组合效应的影响,并推导了索单元和塔梁单元计及各项非线性影响的刚度方程和斜拉桥作空间结构分析时的稳定性函数。通过对比分析,将带动坐标的混合法应用于斜拉桥非线性计算分析。
     3、在斜拉桥静力分析方面,考虑了斜拉桥的各项几何非线性(斜拉索的垂度效应、弯矩和轴向力的组合效应以及结构大变形效应)的影响,编制了相应的计算程序,并用于斜拉桥的成桥状态空间计算分析。具体以两个斜拉桥模型(主跨分别为335米和670米)为例,进行了详细的非线性计算分析,与线性分析结果进行了比较,并讨论了斜拉桥的各项几何非线性因素对计算结果的影响,为动力分析奠定了基础。
     4、建立了大跨度斜拉桥非线性一致激励与多点激励下的地震运动方程,并对非线性运动方程的数值求解方法进行了初步分析。讨论了大跨度斜拉桥动力分析中质量矩阵、刚度矩阵和阻尼矩阵的处理方法以及斜拉桥动力分析模型的建立方法。在此基础上,分别用空间梁单元模拟主梁和索塔,利用索单元模拟斜拉索,建立了三维空间有限元模型,对上述两个斜拉桥模型分别进行了动力特性对比分析和一致激励与多点激励下的非线性地震反应时程分析。
     5、以主跨460米武汉军山长江大桥为例,运用自编程序,进行了成桥状态索力计算,并详细分析了其动力特性以及该桥在确定性地震动下的一致激励和行波激励时的非线性地震反应,为该类大跨度斜拉桥的抗震分析和设计提供了参考依据。
     6、以武汉军山长江大桥为工程背景,研究了在地震作用下,分别使用铅芯橡胶支座(LRB)和粘弹性阻尼器(VED)以及两种装置共同使用时桥梁的反应,为该桥维修加固时考虑减、隔震设计提供理论参考。
     7、最后对本文的研究工作进行了总结,给出所得的主要结论,并指出了还需进一步研究和解决的问题。
Earthquake is a kind of natural disaster which is difficult to predict and the damage degree is very great, occurrence of the strong motion often leads to the tremendous life and property loss. As an important part of the traffic key project and the lifeline engineering, will bring great inconvenience to the resist seismic and rescue of the people when subjected to damage. Therefore, it is very necessary to conduct the comprehensive and systemic investigation on the bridge aseismic.
     In this dissertation, the nonlinear static and dynamic characteristic and seismic responses under uniform and non-uniform excitations of cable-stayed bridge structure are systematic studied. And the following work and achievements are included.
     1. Summarize the research development and status quo of the long-span bridge structures and choice and input of the earthquake ground motion.
     2. Deduce the equilibrium equation on the base of nonlinear FEM theory. The Eeq is used to calculate the cable sag effect; axial force-bending moment interaction in the bridge deck and towers is considered by stability founction and geometric stiff matrix. And the stability function is deduced in this analysis. About the solution method of the nonlinear equaiton,the iterative procedure with dynamic coordinate is proposed in this thesis.
     3. All sources of geometric nonlinearity are considered in the nonlinear static analysis and a finite element computation program is developed and debugged. Two cable-stayed bridge models with its main span of 335m and 670m respectively are analyzed. And the results of the linear and nonlinear static analysis are compared in detail, And the influence of each nonlinear resource of it are studied, which are the base of dynamic analysis.
     4. The nonlinear motion equations of long-span bridges subjected to the uniform and multiple-support excitations are deduced. And the mathematic solution method of them are primary analyze. The treatment of mass matrix, the stiff matrix, the damp matrix and the dynamic model of cable-stayed bridges in the analysis concluded in this research. A comprehensive study on the above mentioned two cable-stayed bridge models on the base of the theory are conducted.
     5. The dynamic characteristic and the seismic response of Wuhan Junshan Yangtze Bridge whose main span is 460m under uniform and non-uniform excitations are studied in this dissertation. The cable forces of it are computed using the self developed program. The results of it can have some reference meaning in the asesmic design and construction of this kind of bridges structure.
     6.The seismic response of the Wuhan Junshan Yangtze Bridge when using the LRB or VED of LRB+VED base is researched. The results of it can have some reference meaning in the seismic isolating of this kind of bridges structure.
     7. Finally, the work in this paper is summarized and some conclusions about the study are drawn, besides, the further research problems are indicated.
引文
[1]铁道部桥梁科研院编.斜拉桥[M].北京:科学技术文献出版社,1992
    [2]小西一郎.钢桥[M](4)、(5)、(10)、(11).北京:中国铁道出版社,1989
    [3]严国敏.现代斜拉桥[M].北京:人民交通出版社,1996
    [4] H. Tada, Recent Trend of Cable-Stayed Bridge Construction Technology, Public Works Research Institution, Bridge Division, Tsukuba, Japan (March 1986); also Proceeding of the 19th UJNR Meeting, Panel on Wind and Seismic Effects, N. B. S., Washington, DC (May 1986)
    [5] The Task Committee on Cable-Suspend Structures of the Committee on Special Structures of the Committee on Metals of the Structures Division, Tentative Recommendations for the Cable-Stayed Bridge Structures and Commentary on the Tentative Recommendations for the Cable-Stayed Bridge Structures, J. Structure. Div., ASCE 103, ST5, 929-959 (1977)
    [6]林元培.斜拉桥[M].北京:人民交通出版社,1995
    [7]范立础.桥梁工程[M](第二版).北京:人民交通出版社,1987
    [8]尼尔斯J,吉姆辛.缆索承重桥梁-构思与设计[M].姚玲森,林长川译.北京:人民交通出版社,1992
    [9]彭新.郧阳汉江公路大桥设计概况[J].桥梁建设,1992,4:1-8
    [10]范立础.桥梁抗震[M].上海:同济大学出版社,1997
    [11]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M] .北京:人民交通出版社,2001
    [12]中华人民共和国国家标准,铁路工程抗震设计规范(GBJ 111-87).北京:中国计划出版社,1989
    [13]交通部公路规划设计院主编.公路工程抗震设计规范(JTJ 004-89).北京:人民交通出版社,1990
    [14]范立础,王君杰.桥梁抗震设计规范的现状与发展趋势[J].地震工程与工程振动,2001, 21(2): 70-77
    [15]范立础.现代化城市桥梁抗震设计若干问题[J].同济大学学报,1997, 25(2): 147-153
    [16] American Association of State Highway and Transportation Officials. Standard specifications for highway bridges, division I-A seismic design, 16th edition, 1996
    [17] Eurocode 8. Structures in seismic regions design, part 2: Bridges (draft). April, 1993
    [18]日本道路协会.道路桥示方书[M] .同解说:V耐震设计篇,1996
    [19]李国豪.桥梁结构稳定与振动[M] .北京:中国铁道出版社,2003
    [20] A. Der Kiureghian. A response spectrum method for random vibration analysis of MDF systems[J]. Earthquake Eng. Struct. Dyn., 1981,9: 419-435
    [21]项海帆.斜张桥在行波作用下的地震反应分析[J].同济大学学报,1983, 2:1-9
    [22]章在墉,王彬,李文艺.地震动长周期特性研究的现状及方法[M].北京:地震出版社,1992
    [23] E. L. Wilson, A. Der Kiureghian, E.P. Bayo. A resplacement for the SRSS method in seismic analysis[J], Earthquake Eng. Struct. Dyn., 1981,9: 187-194
    [24] S. A. Anagnostopoulos. Response spectrum techniques for three-component earthquake design[J], Earthquake Eng. Struct. Dyn., 1981,9: 459-476
    [25] L. Jiahao. A fast CQC algorithm of PSD matrices for random seismic responses[J]. Computers & Structures, 1992, 44(3): 683-687
    [26] A.Der Kiureghian, Y: Nakamura. CQC modal combination rule for high-frequency modes[J]. Earthquake Eng. Struct. Dyn.,1993, 22: 943-956
    [27]林家浩.随机地震响应的快速算法[J].地震工程与工程振动,1985, 5(1): 89-94.
    [28]王淑波,袁万城,范立础.悬索桥抗震分析振型组合方法的研究与应用[J].同济大学学报,1996年增刊.
    [29] R. Sinha,T. Igusa. CQC and SRSS methods for non-classically damped structures [J].Earthquake Earthquake Eng.Struct.Dyn., 1999, 24:615-619
    [30] M.K.Kaul.Stochastic characterization of earthquake through their response spectrum[J].Earthquake Eng.Struct.Dyn.,1978,6:497-509
    [31] M. Berrah, E. Kausel. Response spectrum analysis of structures subjected to spatially varying motions[J]. Earthquake Eng. Struct. Dyn., 1992, 21:461- 470
    [32] A.Der Kiureghian, A.Neuenhofer.Response spectrum method for multi-support seismic excitations [J]. Earthquake Eng. Struct. Dyn., 1992, 21:713-740.
    [33] J.Wu, R.D.Hanson.Study of inelastic spectra with high damping[J].J.SE.,1989, 115:1412-1431
    [34] J. Penzien, M. Watabe. Characteristics of 3-dimensional earthquake groundmotions[J].Earthquake Eng.Struct.Dyn.,1975,3:365-373
    [35] M.Berrah, E.Kausel.A model combination rule for spatially varying seismic motions[J].Earthquake Eng. Struct. Dyn., 1993,22:791-800
    [36] S.A.Anagonostopoulos.Response spectrum techniques for three components earthquake design[J].Earthquake Eng. Struct. Dyn., 1981,9:459-476
    [37] C.H.Loh, B.D.Ku.An efficient analysis of structural response for multiple-support seismic excitations[J].Engng.Struct.,1995,1(17):15-26
    [38]申爱国,李乔,朱敏.芜湖长江大桥斜拉桥地震反应分析[J] .世界地震工程,2000, 16(3):90-94
    [39]范立础,王君杰,陈玮.非一致地震激励下大跨度斜拉桥的响应特征[J].计算力学学报,2001,18(3):358-363
    [40]刘春城,张哲,石磊.自锚式悬索桥的纵向地震反应研究[J].武汉理工大学学报, 2002,26(5): 607-610
    [41] A. S. Nazmy, A. M. Abdel-Ghaffar. Non-linear earthquake-response of Long-span cable-stayed bridges: theory[J]. Earthquake Eng. Struct. Dyn. , 1990, 19: 45-62
    [42] A. S. Nazmy, A. M. Abdel一Ghaffar. Non-linear earthquake-response of long-span cable-stayed bridges: applications[J]. Earthquake Eng. Struct. Dyn. , 1990, 19: 63-72
    [43] Yuan Wancheng, Hu Shide, Fan Lichu. Nonlinear seismic response analysis of Shanghai Yangpu bridge[A]. Proceedings of the Symposium on Structural Engineering in Natural Hazards Mitigation, Irvine, USA, 1993:157-162
    [44] T. J. Ingham, S. Rodriguez, M. Nader. Nonlinear analysis of the Vincentt Thomas Bridge for seismic retroit[J].Computers & Structures, 1997, 64(5/6): 1221-1238
    [45] S. Treyger, T. A. Ballard, A. Krimotat. Non-linear seismic analysis of Carquinez bridges[A]. Structures Congress-Proceedings, Portland, USA,1997, 2: 1584-1588
    [46] A. Astaneh-Asl, R. G. Black. Seismic and structural engineering of a curved cable-stayed bridge[J]. Journal of Bridge Engineering, 2001,6(6): 439-450
    [47] C. T. Georgakis, D. K. MacKenzie. Comparison of seismic design methods for irregular RC bridges[A]. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2002, 152(2): 167-173.
    [48]范立础,袁万城,胡世德.上海南浦大桥纵向地震反应分析[J].土木工程学报,1992,25(3): 2-8
    [49]刘欣,李军,刘伟.地震波传输时大跨度斜拉桥的动响应分析[J].振动、测试与诊断.1996, 16(3): 33-38
    [50]陈幼平,周宏业.斜拉桥地震反应的行波效应[J].土木工程学报,1996,29(6): 61-68
    [51]胡世德,范立础.江阴长江公路大桥纵向地震反应分析[J].同济大学学报,1994, 22(4): 433-438
    [52]彭大文,黄朝光,王忠.单塔悬索桥的地震响应研究[J].中国公路学报,1997, 10(4):55-63.
    [53]彭大文,王忠.中承式钢管砼拱桥的地震响应分析[J].工程力学增刊,1997: 220-223
    [54]郑史雄,周述华,丁桂保.大跨度钢管混凝土拱桥的地震反应性能[J].西南交通大学学报,1999, 34(3): 320- 324
    [55]郑家树,金邦元.大跨度钢管混凝土拱桥空间地震反应分析[J].西南交通大学学报,2003, 38(1): 53-56
    [56]丰硕.大跨度桥梁的地震反应及空间变化特性分析[D].杭州:浙江大学,2005
    [57]项海帆.斜张桥在行波作用下的地震反应分析[J].同济大学学报,1983(2)
    [58]袁万城.大跨桥梁空间非线性地震反应分析[D].上海:同济大学,1990
    [59]陈幼平,周宏业.斜拉桥地震破坏的计算研究[J].地震工程与工程振动,1995,15(3)
    [60] Abdel-Ghaffar A M, Cable-stayed Bridges under Seismic Action. In: to M,ed.Cable-stayed Bridges: Recent Developments and Their Future.Amsterdam:Elsevier Science Publishers,1991,171-191
    [61] A.S.Nazmy,A.M.Abdel-Ghaffar.Effects of ground motion spatial variblltiy on the response of cable-stayed bridges[J]. Earthquake Eng. Struct. Dyn.,1992,21:1-20
    [62]刘洪兵,朱唏.地震地层运动空间变化对大跨度斜拉桥的影响[J].北方交通大学学报,2000,24(1):23-27
    [63]张翠红,吕令毅.大跨度斜拉桥在多点随机地震激励作用下的响应分析[J].东南大学学报(自然科学版),2004,34(2):249-252
    [64]杨孟刚.磁流变阻尼器在大跨度桥梁上的减震理论研究[D].长沙:中南大学,2004
    [65]史志利.大跨度桥梁多点激励地震反应分析与MR阻尼器控制[D].天津:天津大学,2003
    [66]龙晓鸿.斜拉桥及连续梁桥空间地震反应分析[D].武汉:华中科技大学,2004
    [67] K. Soyluka, A.A. Dumanoglu, Spatial variability effects of ground motions on cable-stayed bridges[J], Soil Dynamics and Earthquake Engineering ,2004,24:241–250
    [68] Q. Wu, K. Takahashi,Response characteristics of local vibrations in stay cables on an existing cable-stayed bridge[J],Journal of Sound and Vibration 2003,261:403–420
    [69] A.A. Dumanogluid, K. Soyluk, A stochastic analysis of long span structures subjected to spatially varying ground motions including the site-response effect[J],Engineering Structures 2003,25:1301–1310
    [70] Y.L. Xu, W.H. Guo. Dynamic analysis of coupled road vehicle and cable-stayed bridge systems under turbulent wind[J], Engineering Structures 2003,25:473–486
    [71] Said M. Allam, T.K. Datta. Seismic behaviour of cable-stayed bridges under multi-component random ground motion[J], Engineering Structures ,1999,21:62–74
    [72] Animesh Das, Anjan Dutta, Sudip Talukdar. E_cient dynamic analysis ofcable-stayed bridges under vehicular movement using space and time adaptivity[J], Finite Elements in Analysis and Design 2004,40:407–424
    [73] J.H. Lin, Y.H. Zhang , Q.S. Li , F.W. Williams. Seismic spatial effects for long-span bridges, using the pseudo excitation method[J], Engineering Structures 2004,26:1207–1216
    [74] K. Soyluk, A.A. Dumanoglu. Comparison of asynchronous and stochastic dynamic responses of a cable-stayed bridge[J], Engineering Structures ,2000,22 :435–445
    [75]溥育安.新西兰桥梁的隔震技术[J].世界地震工程,1988,4
    [76]范立础,王志强.我国桥梁隔震技术的应用[J].振动工程学报,1999, 12(2)
    [77] R.I.skilmer,w.H.R0b son,GH.Meveny,谢礼立、周雍年、赵兴权,译.《工程隔震概论》[M].北京:地震出版社,1996
    [78]张锴.铅芯橡胶支座在大跨度斜拉桥中的应用及参数优化[D].长沙:中南大学,2007
    [79]王志强.隔震桥梁分析方法与设计理论研究[D].上海:同济大学,2000
    [80]庄军生,张士臣,黎国清.铅芯橡胶支座及其传递桥梁纵向水平力特性的研究.铁道部科学研究院铁道建筑研究所报告,(95)铁字第0320号,1995
    [81]冼巧玲,廖蜀樵,周福霖.铅芯橡胶隔震垫在铁路桥梁制动力分配中的应用[J].世界地震工程,1998,14(2):66-69
    [82]胡兆同,刘健新.桥梁铅销橡胶支座性能的试验研究[J].西安公路交通大学学报, 1998,18(2):1-4
    [83]徐忠根,周福霖,王荣辉.我国首座采用铅芯橡胶隔震支座的公路桥梁—石津渠中桥[J].中南公路工程,2002,27(2):50-52
    [84]吴彬.铅芯橡胶支座力学性能及其在桥梁工程中减、隔震应用的研究[D].北京:铁道科学研究院.2003
    [85]全伟、李宏男.多点激励下LRB隔震桥梁地震反应分析[J].世界地震工程,2007,23(4):187-193
    [86]魏文晖,杨志勇.粘弹性阻尼器对桥面铺装层的减振应用[J].武汉工业大学学报,2002,21(6):47-49
    [87]李兴田,朱东生.连续梁桥中设置粘弹性阻尼器的减震效果分析[J].西北地震学报,2006,28(1):26-30
    [88]陈水生,孙炳楠,胡隽.粘弹性阻尼器对斜拉桥拉索的振动控制研究[J].土木工程学报,2002,35(6):59-65
    [89]陈永祁,耿瑞琦,马良喆.桥梁用液体黏滞阻尼器的减振设计和类型选择[J].土木工程学报,2007,40(7):55-61
    [90]聂利英,宋晖,范立础.液体黏滞阻尼器在大跨度桥梁中对伸缩缝保护作用的探讨[J].地震工程与工程振动,2007,27(2):131-136
    [91]王勖成,邵敏编.有限单元法基本原理和数值方法[M].北京:清华大学出版社, 1995
    [92]丁皓江.有限元在弹性和塑性力学中的应用[M].北京:机械工业出版社,1989
    [93] Yang wenwu. Finite element modeling and aerodynamic response of cable-stayed bridges[D]. Doctor of Philosophy. The Hong Kong University of Science and Technology, Mar, 1996
    [94] Dokainish M.A.and Subbaraji K.A survey of direct time-integration methods in computational structural dynamics[J]. Computers and Structures,1989,32(6):1371-1401
    [95] J. F Fleming. Nonlinear static analysis of cable-stayed bridge[J] . Computers and Structures,1979, 10:621-635
    [96] P. H. Wang, Initial shape of cable-stayed bridges[J], Computers and Structures, 1993 ,46
    [97] H. Ozdemir. A finite element approach for cable problems[J].Int.J.Solids Structure. 1979, 15:427-437
    [98]钱令希等.关于斜拉桥结构型式的探讨—斜拉拱桥[J],计算结构力学及其应用,1988,3
    [99]张其林,高振锋.张拉结构及索的力学模型研究[J].同济大学学报,1992, 19(1)
    [100]彭卫等.一种用于结构分析的悬链线单元[J].应用数学和力学,1995,5
    [101]汤祖炎,钱若军等.索网结构几何非线性分析的增量理论[J].同济大学学报,1996,8
    [102]唐建民,沈祖炎等.悬索结构非线性分析的滑移索单元法[J].计算力学学报, 1995,5
    [103]唐建明,赵引,吴黎华.基于欧拉描述的两结点索单元非线性有限元法[J].上海力学,1999,20(1)
    [104]董明,夏邵华,钱若军.张力结构的非线性有限元分析[J].计算力学学报,1997, 14(3)
    [105] A. H. Peyrot and A. M. Goulois. Analysis of cable structures [J]. Computers and Structures, 1979, 10:805-813
    [106] H. B. Jayaramant, W. C. Kundson. A curved element for analysis of cable structures[J]. Computers and Structures, 1981, 10:325-333
    [107] Jonghwa Kim, Sung Pil Chang. Dynamic stiffness matrix of an inclined cable[J]. Engineering Structures, 2001, 23:1614–1621
    [108] Pao-Hsii Wang, Hung-Ta Lin, Tzu-Yang Tang. Study on nonlinear analysis of a highly redundant cable-stayed bridge[J]. Computers and Structures, 2002, 80:165–182
    [109] Raid Karoumi. Some modeling aspects in the nonlinear finite element analysis of cable supported bridges[J]. Computers and Structures, 1999, 71:397-412
    [110] D.W.Chen, F.T.K.Au,L.G.Tham,P.K.K.Lee. Determination of initial cable forces in prestressed concrete cable-stayed bridges for given design deck profiles using the force equilibrium method[J]. Computers and Structures, 2000, 74:1-9
    [111] G. Narayanan, C. S. Krishamoorthy, N. Rajagopalan.Investigation on nonlinear static dynamic response of cable-stayed bridges[J],Int.conf.on cable-stayed bridges,Bangkok,1987
    [112]华孝良,徐光辉主编.桥梁结构非线性分析[M].北京:人民交通出版社,1997
    [113] D.M.Brotton.A General computer programme for solution of suspension bridges problems[J].Stuct.Engrg.,1996,44(5)
    [114] Alys. Nazmy. Three dimension nonlinear static analysis of cable-Stayed bridges cable structures[J], Computers and Structures, 1990, l34:257-271
    [115]张海龙编.桥梁结构分析与程序设计[M].武汉:华中理工大学出版社,1995
    [116] K.J.巴斯.工程分析中的有限元法[M] .北京:机械工业出版社,1991
    [117]朱慈勉,汪榴.计算结构力学[M].上海:上海科学技术出版社,1992
    [118]徐次达,华伯浩.固体力学有限元理论、方法及程序[M].北京:水利电力出版社,1983
    [119]刘正兴,冯太华.结构分析程序设计基础[M].上海:上海交通大学出版社,1988
    [120] Zienkiewicz O.C.The finite element method[M].McGRAW-Hill,1977
    [121] Ahmed M. Abdel-Ghaffar.3-D Nonlinear Seismic Behavior of Cable-Stayed Bridges[J].J.Struct. Eng, ASCE, 1991,117(11)
    [122] Ahmed M. Abdel-Ghaffar and Aly S. Nazmy. Effect of Three-Dimensional and Nonlinearity on the Dynamic and Seismic Behavior of Cable-Stayed Bridges, Proc. of the 4th structures Congress 1987, on the Bridges and Transmission Line Structures, ASCE Orlando, Florida, August 17-20 ,1987
    [123] R.W.克拉夫,J.彭津,王光远译.高等结构动力学[M].北京:科学出版社,1981
    [124] Gladwell I.and Thomas R.M.Stability properties of the Newmark,Houbolt and Wilson-θmethods[J].Int.J.Numer.anal.Meth.Geomech,1980, 4:143-158
    [125]王乐文.大跨度斜拉桥的动力分析模型[D].广州:华南理工大学,1999
    [126] Goudreau G.L.and Taylor R.L. Evaluation of numerical integration methods in elastodynamics[J]. Comput.Meth.appl.Mech.Engng1972,2:69-97
    [127] Hughes T.J.R.Stablity convergence and growth of decay of energy of the average acceleration method in nonlinear structure dynamics[J].Computers and Structures,1976, 6:313-324
    [128]李国豪主编.工程结构抗震动力学[M].上海:上海科学技术出版社,1980
    [129]苏成,韩大建,王乐文.大跨度斜拉桥三维有限元动力模型的建立[J].华南理工大学学报(自然科学版).1999,27(11): 51~56
    [130] John C. Wilson, Wayne Gravelle.Modeling of A Cable-stayed Bridge for DynamicAnalysis[J].Earthquake Engineering and Structural Dynamics, 1991,20(8): 707~721
    [131]陈幼平.斜拉桥地震反应特性的研究[D].武汉:铁道部科学研究院,1994
    [132] F. T. K. Au, Y. S. Cheng, Y. K. Cheung, D. Y. Zheng.On the determination of natural frequencies and mode shapes of cable-stayed bridges[J]. Applied Mathematical Modelling 2001,25:1099-1115
    [133] Animesh Das, Anjan Dutta, Sudip Talukdar. Efficient dynamic analysis of cable-stayed bridges under vehicular movement using space and time adaptivity[J]. Finite Elements in Analysis and Design, 2004,40:407–424
    [134] H.M.Ali and A.M.Abdel-Ghaffar.Modeling the nonlinear seismic behacvior of cable-stayed bridges with passive control bearings[J]. Computers and Structures,1995,54(3):461-492
    [135] J.H.O.Negrao and L.M.C.Simoes.Optimization of cable-stayed bridgeswith three dimensional moddeling[J]. Computers and Structures, 1997,64(1-4):741-758,
    [136]王乐文,韩大建,谭学民.大跨度斜拉桥的动力计算模型[J].广州建筑,2003,5:9-13
    [137]郭文华,郭向荣,曾庆元.大跨度斜拉桥空间振动计算分析[J] .振动与冲击,1998, 17 (1):30-34
    [138]陈淮,郭向荣,曾庆元.大跨度斜拉桥动力特性分析[J] .计算力学学报,1997,14 (1):57-63
    [139] Q. Wu, K. Takahashi, S. Nakamura. The effect of cable loosening on seismic response of a prestressed concrete cable-stayed bridge[J]. Journal of Sound and Vibration,2003, 268:71–84
    [140]胡聿贤.地震工程学[M].北京:地震出版社,1988
    [141]沈聚敏,周锡元,高小旺,刘晶波.抗震工程学[M].北京:中国建筑工业出版社,2000
    [142]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J],同济大学学报,2001,29(10):1213-1219
    [143] M.J.N.普瑞斯特雷,F.塞勃勒,G.M.卡尔维.桥梁抗震设计与加固[M].北京:人民交通出版社,1997
    [144]骆文海.强震加速度波形积分时的基线修正[J].传感器技术,1991,2:23-6
    [145]欧进武.利用加速度计测量振动位移曲线[J].动态分析与测试技术,1990,4:33-36
    [146]谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2006
    [147]中交公路规划设计院.京珠国道主干线武汉军山长江公路大桥施工图.1999年5月北京
    [148]范立础,李建中,王君杰.高架桥梁抗震设计[M].北京:人民交通出版社,2001
    [149]中华人民共和国行业推荐性标准.公路桥梁抗震设计细则(JTG/T B02 -01 2008).北京:人民交通出版社,2008
    [150]李宏男.结构多维抗震理论与设计方法[M].北京:科学出版社,1998
    [151]朱东生.桥梁抗震设计中几个问题的研究[D].成都:西南交通大学,1999
    [152]中华人民共和国交通部.公路桥梁抗震设计规范(征求意见稿).北京:人民交通出版社,2005
    [153]朱礼敏.大跨空间结构采用粘滞阻尼器的减震分析和优化设计[D].北京:中国建筑科学研究院,2007
    [154]范立础,王志强.桥梁减隔震设计[M].人民交通出版社,2001
    [155]罗列,陈水生.铅芯橡胶支座隔震桥双向地震响应影响因素研究[J].四川理工学院学报(自然科学版),2008,21(6):113-116
    [156]刘享,钟铁毅,杨风利,韩学敏.铅芯橡胶支座隔震铁路简支梁桥参数影响研究[J].铁道建筑,2007,5:1-3
    [157]江宜城,叶志雄,聂肃非,李黎.方形铅芯橡胶支座力学性能试验研究及隔震桥梁地震响应分析[J].公路交通科技,2007,24(10):94-98
    [158]陈耀军.粘弹性结构的蠕变、静动态问题的数值反演以及粘弹性阻尼器在抗震工程中的应用[D].长沙:湖南大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700