可控拉深筋高强度钢板盒形件拉深成形工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板料成形是一种十分重要的金属塑性加工方法,被广泛应用于汽车、航空、航天等领域。汽车工业在国民经济中占有重要地位,它是衡量一个国家工业水平的重要标志。近年来世界汽车工业面临三大问题:能源、公害和安全,这些要求使得在车身上采用高强度钢板代替普通钢板成为必然趋势。高强度钢板可以减轻汽车重量并增加安全性,但由于其自身材料特性,存在的最大问题是成形性能差和回弹较大。当今国内外大多数学者主要采用变压边力技术、热成形和液压成形技术来控制高强度钢板成形质量。本文提出一种新的成形工艺方法——可控拉深筋技术,以提高高强度钢板成形性能。目前国内尚没有相关的研究,国外仅美国密西根科技大学对可控拉深筋技术有初步研究。
     本文首先分析半圆形直球头固定拉深筋与间断式拉深筋对盒形件拉深成形的影响规律,从而提出通过可控拉深筋技术来提高高强度钢板成形性能。利用数值模拟软件Dynaform建立可控拉深筋JAC590Y高强度钢板盒形件的拉深成形有限元模型,设计了6种不同截面和端部形状的可控拉深筋及3种不同拉深筋运动路径方式。采用正交设计确定试验方案,以高强度钢板成形极限图作为评价标准并结合最优化理论,分析不同可控拉深筋及其运动路径对盒形件成形性能的影响。得到以下结论:
     获得了不同可控拉深筋路径下的极限拉深深度,确定了路径2即上升——停止——下降为最优运动路径及其最优组合,其中6种不同可控拉深筋最优路径下各试验组得到的最大极限拉深筋深度与固定5mm拉深筋相比分别提高了25%、10.34%、31.51%、12.85%、20.80%、10.01%,并通过极差分析得到最优路径下主要影响因子为H1和H2。在最优路径下,6种可控拉深筋作用下的凸模拉深力和可控拉深筋阻力从拉深成形开始增加速率大到随后增加速率小,最后开始下降。研究表明不同可控拉深筋路径对盒形件侧壁和凹模圆角部位的应变路径影响不大,而对凸模圆角处的影响较为显著。最后通过GA-BP神经网络与拉丁超立方抽样法相结合构建了可控拉深筋主要影响因子H1和H2与极限拉深深度之间的响应面。
     为了验证有限元结果的正确性,从而设计实验装置来进行检验和分析。基于可控拉深筋运动原理设计了可控拉深筋高强度钢板盒形件拉深实验装置,该实验装置分为模具结构、杠杆机构、液压及电气控制系统四部分。
     最终将可控拉深筋成形规律运用到高强度钢板汽车覆盖件的拉深成形模拟中,以汽车引擎盖边板为研究对象,同样选择JAC590Y高强度钢板。通过模拟结果分析得到零件最小厚度值的变化幅度最为明显。然后选取两不同试验组下整个零件厚度分布进行了分析,验证了可控拉深筋对零件最小壁厚值变化影响显著。通过对零件最小厚度平均值进行极差分析得到因子H2的影响最为显著,同时得到可控拉深筋拉深成形的最佳运动路径水平组合。建立GA-BP神经网络来研究因子H2对零件成形的影响规律,建立其影响规律曲线及相应的回归方程。
Sheet metal forming is a very important plastic working technology which has been widely used in such industrial domains as motorcar, aviation and spaceflight, etc.. Automotive industry plays an important role in China, and it’s an important marker to measure the industrial level of a country. In recent years, there are three major issues of energy, pollution and safety in the all world's automotive industry. So it's an inevitable trend to use High-Strength Steel(HSS) instead of common plate. HSS can reduce vehicle weight and increase security, but because of its own material properties, there is the biggest problem of poor formability and more springback. At present, most domestic and foreign scholars mainly control the forming quality of HSS by means of variable holder force technology、thermal and hydraulic forming technology. So this paper puts forward a new forming technological method——the controllable drawbead(CD) technology in order to improve the formability of HSS. Now there is not yet relevant research in China, and only Michigan Technological University has been preliminary studying the CD technology.
     Firstly, the CD technology was put forward by the laws of box drawing forming with semicircle straight fix and discontinuous drawbead in order to improve the formability of HSS. The finite element model of CD-JAC590Y HSS box deep drawing was established by numerical simulation Dynaform. Six different cross section and end shape CDs and three different CD movement paths were designed. The test scheme was determined by orthogonal test design. By means of the evaluation criteria of HSS forming limit diagram and optimization theory, different CDs and their moving paths influenced by box forming formability were discussed. The following conclusions are obtained:
     The limit drawing depths、the optimal moving path(ascent——halt——descent) and the optimal combinations in different CD moving paths are obtained. Besides, the maximum limit drawing depths of six different CDs in different test groups respectively increase 25%、10.34%、31.51%、12.85%、20.80%、10.01% compared to those of 5mm fix drawbead. Main influence factor H1 and H2 of the optimization moving path by range analysis are found. Meanwhile, the increasing rate of punch drawing force and CD resistance with deep drawing is from lager to small, finally begins to decline. The results show that the different CD moving paths have little effect on the strain paths of box sidewall and die corner, which have significant effect on punch corner. Eventually, the response surfaces composed of the CD main influence factor H1、H2 and limit drawing depth are established by the combination of GA-BP neural network and Latin Hypercube.
     Secondly, in order to verify the correctness of simulation result, it is necessary to design the experimental device to check and analyze the simulation result. The CD-HSS box drawing experimental device included four parts of die structure、lever mechanism、hydraulic and electric control system were designed based on the CD movement principle.
     Finally, the CD forming laws were applied to the deep drawing simulation of HSS automobile panel based on CD technology. The automobile engine tunnel-side panel was selected as an example. At the same time, the model of CD-JAC590Y HSS deep drawing was established. The results show that part smallest thickness significantly influenced by CD is determined. Then two different test groups are selected to research the whole part thickness distribution law. It is verified of part smallest thickness significantly influenced by CD. The main influence factor H2 and CD optimization moving path combination by range analysis of part average smallest thickness are found. Meanwhile, the model of GA-BP neural network is established to research part forming influence law of the factor H2. In the end the influence law curve and regression equation are obtained.
引文
[1]羊秋林等.汽车用轻量化材料[M].北京:机械工业出版社, 1991, 9.
    [2]吴伯清.世界钢铁企业集团的ULSAB计划[J].金属世界, 1998, (5):10-11.
    [3]马鸣图.先进的高强度钢及其在汽车工业中的应用[J].钢铁, 2004, 7.
    [4] Sheriff N, Ismail M. Numerical design optimisation of drawbead position and experimental validation of cup drawing process[J]. Journal of Materials Processing Technology, 2008, 206(1-3):83-91.
    [5] Oehler. The use of hydraulically controlled pressure elements to change the drawbead pressure during sheet metal forming[J]. Werkstatt und Betrieb, 1960, (5):271-272.
    [6] Cao J, Boyce M C. Drawbead penetration as a control element of material flow[J]. Sheet Metal and Stamping Symposium, International Congress and Exposition, Detroit, Michigan, 1993:145-153.
    [7] Michler J R, Rao V D, Kashani A R, et al. New concept for a hydraulically controlled sheet metal strip drawing test apparatus[J]. Trans.NAMRI/SME, 1993, (21):25-31.
    [8] Xu S. On the formability of sheet metals: Part A: Prediction of forming limits based on Hill's 1993 yield criterion. Part B: Effect of drawbeads on sheet formability[D]. Michigan:Michigan Technological University, 1998.
    [9] BOHN M L. Optimization of the sheet metal stamping process: Closed-loop active drawbead control combined with in-die process sensing[D]. Michigan :Michigan Technological University, 1999.
    [10] EMBLOM W J. Closed-loop control of the sheet metal stamping process with active drawbeads, a flexible blankholder and variable active blank holder forces[D]. Michigan: Michigan Technological University, 2006.
    [11]崔令江.汽车覆盖件冲压成形技术[M].北京:机械工业出版社, 2003, 6.
    [12] H L Cao, C Teodosiu. Numerical simulation of drawbeads for axisymmetric deep-drawing process[J]. Numerical method in industrial forming processed, 1992:439-448.
    [13] N Triantafyllidis, B Maker, S K Samanta. An analysis of drawbeads in sheet metal forming: partⅠ——problem formulation[J]. Journal of Engineering Materials and Technology, 1986, 108:321-327.
    [14] B Maker, S K Samanta, G Grab, N Triantafyllidis. An analysis of drawbeads in sheet metal forming: partⅡ——problem formulation[J]. Journal of Engineering Materials and Technology, 1987, 109:164-170.
    [15] B D Carleer, P T Vreede, etc. Modeling drawbeads with elements and verification[J]. Journal of Materials Processing Technology, 1994, 45:63-68.
    [16] B D Carleer, P T Vreede, etc. Modeling drawbeads with elements and verification[J]. Journal of Materials Processing Technology, 1994, 45:63-68.
    [17] J Cao, M C Boyce. Draw bead penetration as a control element of material flow[J]. SAE Trans of Materials & Manufacturing, 1993, No.930517:694-702.
    [18]邢忠文.薄板冲压成形中拉深筋载荷特性的研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 1995.
    [19] Y Ye, Y H Peng, X Y Ruan. Calculation of drawbead restraining forces associated with kinematics hardening rule[J]. Simulation of materials processing:therry, methods and applications, 1998:905-910.
    [20]金淼,郭宝峰,李群.拉深筋结构参数对变形及阻力的影响[J].塑性工程学报, 2008, 15(2):105-108.
    [21] B D Carleer, M EM Louwes, J Huetink. Modeling drawbeads in 3D finite element simulations of the deep drawing process[J]. Simulation of material processing:theory, methods and application, 1995:681-685.
    [22] T Meinders, H J M Geijselaers, H Huetink. Implementation of plastic thickness strain in an equalent drawbead model based on a penalty constraint method[J]. Simulation of materials processing:therry, methods and applications, 1998:911-916.
    [23] H Sunaga, M Kawka, A Makinouchi. Drawbeads-simulation models and experimental verification in sheet metal forming processes. Simulation of materials processing:theroy, methods and applications, 1998:917-923.
    [24] C Weidemann. The blankholder action of drawbeads[J]. Proceedings of 10th biennial IDDRG congress, 1978:79-85.
    [25] Shuhui Li, Youxia Bao, Zhongqin Lin. An improved equivalent drawbead model and its application[J]. Journal of Material Processing Technology, 2002, 121(2-3):308-312.
    [26]包友霞.车身覆盖件冲压成形中拉深筋的优化设计方法研究[D].上海:上海交通大学博士学位论文, 2000.
    [27]林忠钦等.车身覆盖件冲压成形仿真[M].北京:机械工业出版社, 2004, 10.
    [28]胡世光,陈鹤峥.板料冲压成形原理[M].北京:国防工业出版社, 1989, 11.
    [29]吴建军,周维贤.板料拉深成形性基础[M].西安:西北工业大学出版社, 2004, 9.
    [30]王孝培.冲压手册(第2版)[M].北京:机械工业出版社, 2004, 4.
    [31]李硕本.冲压工艺理论与新技术[M].北京:机械工业出版社, 2002, 11.
    [32]王顺成,陈彦博,温景林. A2017合金半固态压缩的变形机制和成形性能[J].材料研究学报, 2004, 18(3):285-289.
    [33]郭晓琳,王春举,周健等. Zr基块体非晶合金的微塑性成形性能[J].中国有色金属学报, 2006, 16(7):1190-1195.
    [34]张鹏,李付国,李惠曲. SiC颗粒增强铝基复合材料的热变形本构方程及其优化[J].航空材料学报, 2009, 29(1):51-56.
    [35]易国锋,柳玉起,李明林等.基于有限元逆算法的板料拉深成形模拟拉深筋的灵敏度优化[J].中国机械工程, 2007, 18(1):87-90.
    [36]王元勋,王书恒,沈为等.矩形盒拉深时变压边力的数值模拟[J].中国机械工程, 2007, 18(10):1126-1129.
    [37] SHERIFF N, ISMAIL M. Numerical design optimization of drawbead position and experimental validation of cup drawing process[J]. Journal of Materials Processing Technology, 2008, 206(1-3):83-91.
    [38]施于庆,李凌丰.矩形盒拉延件的压边力计算研究[J].塑性工程学报, 2006, 13(1):29-31.
    [39] NARAYANASAMY R, PARTHASARATHI N L, SATHIYA N C, et al. A study on fracture behaviour of three different high strength low alloy steel sheets during formation with different strain ratios[J]. Materials and Design, 2008, 29(9):1868-1885.
    [40] TAKAHASHI M, UENISHI A, YOSHIDA H, et al. Advanced high strength steels for automobile body structures[J]. Materials Science Forum, 2007, 539-543(5):4386-4390, 2007.
    [41]中川威雄,阿部邦雄,林丰等.板料冲压加工[M].天津:天津科学技术出版社, 1982, 9.
    [42]洪伟,吴承祯等.试验设计与分析:原理·操作·案例[M].北京:中国林业出版社, 2004.7.
    [43] Keeler S P, Brazier W G. Relation between laboratory Material Characterization and Rress-shop Formability[J]. Mieroalloying 75:517-530.
    [44]马鸣图, Shi.M.F.先进高强度钢及其在汽车工业中的应用[J].钢铁, 2004, 39(7):68-72.
    [45]马鸣图,吴宝榕.双相钢物理和力学冶金[M].北京:冶金工业出版社, 1988:315-381.
    [46]姜银方,丁新立,朱元右等.基于应变路径的激光拼焊板方盒件变压边力成形优化[J].中国机械工程, 2008, 19(17):2118-2121.
    [47]杨继昌,彭华,陈炜等.复杂应变路径下的板料拉深成形数值模拟[J].中国机械工程,江苏大学学报(自然科学版), 2005, 26(4):289-293.
    [48]皮亦鸣,付毓生,黄顺吉.采用进化计算的BP神经网络学习算法研究[J].信号处理, 2002, 18(3):261-264.
    [49]吴琦,胡德金,张永宏等. GA-BP网络建模在套料钻性能预测中的应用[J].兵工学报, 2006, 27(3):494-497.
    [50]韩飞,莫健华,龚攀.基于遗传神经网络的数字化渐进成形回弹预测[J].华中科技大学学报, 2008, 36(1):121-124.
    [51]王承志,赵云龙,黄勇.多输入/多输出GA-BP网络压铸工艺参数设计系统[J].铸造, 2009, 58(1):49-52.
    [52]张春利.基于GA-BP神经网络的结构损伤检测方法研究[D].江苏:江苏大学, 2006.
    [53]田景文,高美娟.人工神经网络算法研究及应用[M].北京:北京理工大学出版社, 2006.
    [54]周开利,康耀红等.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社, 2005.
    [55] McKay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2):239-245.
    [56]张润楚,王兆军.关于计算机试验的理论和数据分析[J].应用概率统计, 1994, 10(4):420-435.
    [57] Kleijnen Jack P C. An overview of the design an analysis of simulation experiments for sensitivity analysis[J]. European Journal of Operational Research, 2005, 164(2):287-300.
    [58]游海龙,贾新章,张小波. Kriging插值与拉丁超立方试验相结合构造电路元模型[J].系统仿真学报, 2005, 17(11):2752-2755.
    [59]胡昌华,扈晓翔,骆功纯.基于试验设计与弹道仿真的制导工具误差快速评价方法[J].中国惯性技术学报, 2007, 15(5):542-545.
    [60]张书俊,任钧国,田四朋.固体火箭发动机粘弹性药柱结构可靠性分析[J].固体火箭技术, 2006, 29(3):183-189.
    [61]谭欣珍.拉深工艺的试验研究及有限元模拟[D].江西:南昌大学, 2008.
    [62]邓陟.金属薄板成形技术[M].北京:兵器工业出版社, 1993.
    [63]杨玉英.大型薄板成形技术[M].北京:国防工业出版社, 1996.
    [64]现代模具技术编委会.汽车覆盖件模具设计与制造[M].北京:国防工业出版社, 1998.
    [65]雷正宝.汽车覆盖件冲压成形CAE技术[M].长沙:国防科技大学出版社, 2003.
    [66]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社,1999.
    [67]韩志东.金属板材成形的数值模拟[D].北京:清华大学博士学位论文.1998
    [68]李尚健.金属塑性成形过程模拟[M].北京:机械工业出版社, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700