表面活性剂压裂液机理、压裂设计及评估技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在系统分析和深入调研国内外研究现状基础上,综合应用表面化学、流变学、流体力学、线弹性断裂力学、传热学、微分方程、最优化理论、计算数学等方面的知识,在表面活性剂压裂液机理、压裂优化设计、压裂分析评估三个方面开展研究工作,取得了以下主要研究成果:
     ①用透射电镜和扫描电镜等多种实验手段,结合表面活性剂溶液的基础理论,通过对表面活性剂内外在宏观与微观关联性质的分析,研究并认清了表面活性剂压裂液的成胶机理和破胶机理。
     ②论证了表面活性剂压裂液以弹性携砂为主的机理,并提出了用悬浮切力指标来表征表面活性剂压裂液携砂性能的方法。
     ③研究了压裂设计模型和方法,包括裂缝三维延伸模型、支撑剂运移分布模型、温度场的数值模型、压裂参数优化设计方法等。其中,建立的裂缝三维延伸新模型考虑了地层的多层和非均质特征,能模拟任意多层地层厚度、地应力和岩石力学参数(如泊松比、弹性模量、断裂韧性)变化的影响,适用于各种应力分布模式以及裂缝穿层前后的延伸情况。
     ④完善了压裂优化设计的思想,即从实际地层条件出发,以最佳的压裂效果为目标,通过不断自动调整各段压裂液体积、施工排量、地面加砂浓度、支撑剂类型等施工参数,设计出既能得到最佳压裂效果又不发生砂堵的最优施工方案。
     ⑤根据压裂井的流动机制,综合考虑变流量退液过程、井筒储存、裂缝壁面污染和多种边界条件等因素,建立了压裂退液阶段的地层与裂缝系统渗流数学模型,提出了渗流数学模型的解法。其中,对变流量问题的解决方法既提高了计算结果的精确度,也使计算速度提高了1000倍以上,可满足实时计算和快速响应的解释要求。
     ⑥提出了压裂退液反演参数的自动拟合法,即综合应用逐步线性最小二乘法和约束变尺度法的数值计算方法。
     ⑦遵循以数据为中心、可视化操作为主体的原则,研制了压裂优化设计软件和压裂退液反演裂缝参数软件,具有功能强、操作方便、算法稳定可靠、运行速度快、界面友好,结果合理、商品化程度高等特点。应用软件进行了大量的文献对比、理论验证和实例分析,说明了软件的可靠性和适用性,表明软件能满足实际问题的需要。
     ⑧研究的表面活性剂压裂液在水敏性较强、地层压力系数低的石南21井区(陆梁)、石南4井区、莫北区块现场应用38井次,应用情况表明,表面活性剂压裂液性能稳定,操作方便,携砂能力强,增产效果良好,对地层的保护作用表现显著,特别适合于低压低渗油气井使用。2003年三区块累计增油60917吨,创利润58635810元,投入产出比
This paper based on systematic analyzing and indepth surveying the present situation of researching at home and abroad, integrated applied the knowledge of surface chemistry, rheology, fluid mechanics, linear elastic fracture mechanics, heat transfer, differential equation, optimization theory, computational mathematics, etc., carried on research work in the aspects of surfactant fracturing fluid mechanics, fracturing optimum design, fracturing analyzing and evaluating, achieved the following research findings:(l)Adopted a great variety of experimental media, such as transmission electron and scanning electron microscope etc, integrated with the basic theory of surfactant solution, by means of analyzing the relevance of surfactant between inhesion and extrinsic, macroscopic and microscopic, investigated the gel forming mechanism and the gel breaking mechanism.(2)Put forward the mechanism that surfactant fracturing fluid is mainly elastic sand carry, and the method of using suspending shear force indicating the prop-carrying capacity of surfactant.(3)Investigated fracture design model and approach, that include fracture three-dimensional extension model, proppant migration distribution model, numerical model of temperature field, method for optimal design of fracture parameter etc.. Among others, multilayer and heterogeneity of formation were considered in the newly fracture three-dimensional extension model, therefore it could simulate variety affect, such as multilayer formation thickness, ground stress, rock mechanics parameter (like Poisson ratio, elasticity modulus, fracture toughness), apply to a variety of stress distribution mode and extension before and after fracture breaking through layer.(4)Improved concept for fracture optimal design, that is to say according to formation condition, for purpose of optimum fracture effect, by means of continually and automatically adjust volume of fracturing fluid in each block, displacement, sand proportion in the surface, proppant type, etc., designing optimum operational scheme which could arrive optimum fracture effect and no sand plug.(5)According to flow mechanism of fractured well, considering the process of the return flow of variable flow rate, well bore storage, contamination on fracture surface, and multi-boundary condition, etc., instituted percolation mathematical model between formation and fracture system in phase of the return flow, and put in the solution of the percolation mathematical model. The solution for problem of flow rate is both enhancing the accuracy of calculation and increasing calculation speed by more than 1000 times . It can meet the needs of real-time computation and fast response.(6)Put forward the automatic match method of inversion parameters of the return flow, i.e. the numerical calculation method of comprehensive application stepwise linear least square method and constraint variable measure method.(7)Optimized fracturing design software and inversion parameters software of the return flow has researched. It followed the principle of taking data as the center and can see the operation as main body. They are provided with function strong, operation convenience, calculation way stability and credibility, run speed quick, interface amity, result reasonable, commercialize degree high. The applied software carried on a great deal of literature contrast, theories verification and example analysis. That explained the credibility and the applicability of the software and express the software can satisfy the demand of actual problem.(8)Researched surfactant fracturing fluid has applied 38 wells which locate 21# well area of Shinan,4# well area of Shinan and Mobei.These areas are water sensitive, formation pressure coefficient low. Applied instance indicate, surfactant fracturing fluid is provided with performance stability, operation convenience, carry sand ability strong, increase production effect well, especially adapt to apply at oil field of low pressure and low permeability. In 2003,3 well areas increaseed the oil accumulation 60917t, created the
    profits 58635810RMB, input output ratio reached 1: 4.49. It provided the technique guarantee for high efficiency recovery of oil field of low porosity and low permeability and water sensitivity.Returns of this paper in fracturing fluid was affluent in knowledge system of surface chemistry, rheology and hydrafrac engineering. It is good for technique popularizing and development new system of surfactant fracturing fluid. It is hopeful to develop new domain of environmental protection type fracturing fluid. Returns of this paper in fracturing design not only developed and perfected existing three dimensional fracture extend models, and can simulate extend of fracture height more finely, most of all it is importance meaning for fracture increase production reconstruct to oil and gas reservoir that have basal water or top water. Returns of this paper in fracture analyse evaluating technique formed new technique of analyse of fracturing fluid back process and inversion fracture parameter. Relational fracturing parameter can be realize fast and accurate by this technique.It attain the purpose of estimate fracture effect fast and accurate. After research result is transformed productivity.it can part replace buildup of pressure testing of fracture well, reduce testing expenses, make fracturing well produce in advance.
引文
[1] Economides,M J,Nolte,K G.油藏增产技术(第三版).张保平等译.北京:石油工业出版社,2002.
    [2] Economides,M J,Nolte,K G.油藏增产技术(第二版).张宏逵等译.山东:石油大学出版社,1991.
    [3] Gidley,J L,Nolte,K G等.水力压裂技术新进展.蒋阗等译.北京:石油工业出版社,1995.
    [4] 万仁溥等.采油工程手册(第二版,第九分册).北京:石油工业出版社,2000.
    [5] 马宝岐,吴安明等.油田化学原理与技术.北京:石油工业出版社,2000.
    [6] 韩洪升,魏兆胜等编.石油工程非牛顿流体力学.哈尔滨:哈尔滨工业大学出版社,1993.
    [7] 王鸿勋.水力压裂原理.北京:石油工业出版社,1987.
    [8] 吴信荣,彭裕生.压裂液、破胶剂技术及其应用.北京:石油工业出版社,2003.
    [9] 龙政军.压裂液性能对压裂效果的影响分析.钻采工艺,22(1),1999.
    [10] 卢拥军.九十年代国外压裂液技术发展的新动向.石油与天然气化工,27(2),1998.
    [11] Alfred R, Jennings Jr. Fracturing Fluids- Now and Then. JPT, 48(7), 1996.
    [12] Carter R H, Stephen A, et al. Hydraulic Fracturing Survey and a Comparison of 1995 and 1990 Industry Practices. SPE 36483, 1996.
    [13] 佟曼丽编.油田化学.东营:石油大学出版社,1996.
    [14] 憨西明,王殿货等.压裂液增稠剂.CN9111287,1991.
    [15] 卢拥军.国内外压裂液添加剂及产品介绍.钻井液与完井液,15(3),1998.
    [16] Hydraulic fracturing of subterranean formation in hydrocarbon production uses aqueous solution of water soluble crosslinkable polymer, crosslinking agent and fibers or comminuted plant materials as reinforcing material. US6016871-A.
    [17] 马喜平,陈尚冰.胍胶类交联压裂液及胶囊破胶剂的新进展.钻采工艺,20(5),1997.
    [18] 杨振周.影响羟丙基瓜尔胶HPG性能的因素.钻井液与完井液,19(3),2002.
    [19] 卢拥军,杜长虹等.有机硼交联羟丙基瓜尔胶压裂液的综合性能.钻井液与完井液,12(6),1995.
    [20] 卢拥军,陈彦东等.硼交联羟丙基瓜尔胶压裂液的综合性能.钻井液与完井液,14(4),1997.
    [21] 任占春,孙慧毅等.羟丙基瓜尔胶压裂液的研究及应用.石油钻采工艺,18(1),1996.
    [22] 卿鹏程.有机钛PC-500交联羟丙基瓜尔胶压裂液.油田化学,16(3),1999.
    [23] 陈馥,阎醒.有机硼交联HPG压裂液超低温破胶剂室内研究.西南石油学院学报,21(2),1999.
    [24] 赵以文.香豆胶性质的研究.油田化学,9(2),1992.
    [25] 赵以文.香豆硼冻胶压裂液.油田化学,11(1),1994.
    [26] 周万富,谢朝阳.田菁胶/有机钛压裂液室内实验研究.油田化学,13(3),1996.
    [27] 李秀花,陈进富等.近期国内外水基压裂液添加剂的发展概况.石油与天然气化工,24(1),1995.
    [28] 宁廷伟.胜利油田开发和应用的水基压裂液及其添加剂.油田化学,12(1),1995.
    [29] 冯亚青,王利君等.助剂化学及其工艺学.北京:化学工业出版社,1997.
    [30] 何勤功,古大治等著.油田开发用高分子材料.北京:石油工业出版社,1990.
    [31] Carl lukach, Thomas G. Majewicz, et al. Didydroxypropyl mixed ether derivatives of cellulose. US4523010, 1984.
    [32] 方娅,马卫.90年代压裂液添加剂的现状及展望.石油钻探技术,27(3),1999.
    [33] 许凯等.羧烷基羟烷基纤维素压裂液的制取方法.CN1058036A.
    [34] Keller D. Viscocification of heavy brines for use in oil field uses microfibrous cellulose and stabilized nonionic starch derivative. US427021, 1999.
    [35] 罗建辉,陈桂英等.一种耐温耐盐共聚物增稠剂.CN98102592,1998.
    [36] 罗建辉,卜若颖等.一种梳形抗盐聚合物增稠剂.CN01136798,2001.
    [37] 张斌,陈鸣才.丙烯酸酯类增稠剂的制备方法.CN02149677,2002.
    [38] Pittitt D J. Gum-Polyacrylamide Composition. US3658734, 1972.
    [39] DeMartino R N. Mixture of Hydroxypropylcellulose and Poly(Maleic Anhydride/Alkyl Vinyl Ether)as a Hydrocolloid Gelling Agent. US4169818, 1979.
    [40] Kramer J, Prud'homme R K, et al. Characteristics of Metal-Polymer Interactions in Fracturing Fluid Systems. SPE 16914, 1987.
    [41] Cawiezel K E, Elbel J L. A New System for Controlling the Crosslinking Rate of Borate Fracturing Fluid. SPE Production Engineering, 7(3), 1992.
    [42] Shu S. the Gelation Mechanism of Chromium(Ⅲ). J Ame Chem SOC, 33(1), 1988.
    [43] Lockhart T. P. Chemical and Structure Studies on Cr~(3+)/Polyacryamide Gels. SPE 20998, 1991.
    [44] Gall B L, Sattler A R, et al. Permeability Damage to Natural Fractures Caused by Fracturing Fluid Polymers. SPE 17542, 1988.
    [45] Conway M W, Penny G S, et al. Fracturing Fluid Leakoff and Damage Mechanisms in Coalbed Methane Reservoirs. SPE 25863, 1993.
    [46] Thompson Sr J E, DeVine C S. Fracturing Fluid Interactions With Formation Minerals and Their Subsequent Effect on Formation Permeability. SPE 29500, 1995.
    [47] Parlar M, Nelson E B, et al, An Experimental Study on Fluid-Loss Behavior of Fracturing Fluids and Formation Damage in High-Permeability Porous Media. SPE 30458, 1995.
    [48] Aggour T M, Economides M J. Impact of Fluid Selection on High-Permeability Fracturing. SPE Production and Facilities, 14(1), 1999.
    [49] Voneiff G W, Robinson B M, et al. The Effects of Unbroken Fracture Fluid on Gas-well Performance. SPE Production and Facilities, 11(4), 1996.
    [50] Wolfgang F J. The Effect of Frac-Fluid Density on Hydraulic Fracture Growth Direction and Width. SPE 39427, 1998.
    [51] 崔明月,杨振周.压裂液动态滤失及滤饼溶解剂FCS的研究.钻井液与完井液,15(4),1998.
    [52] 刘大玉,张军闯.压裂液伤害治理技术.钻采工艺,22(1),1999.
    [53] 曲志浩,陈关聚.压裂液对油层伤害的若干机理研究.西北地质科学,17(2),1996.
    [54] 卢拥军.压裂液对储层的损害及其保护技术.钻井液与完井液,12(5),1995.
    [55] 陈定珊.水基冻胶压裂液对致密气层伤害机理.石油大学学报,13(6),1989.
    [56] 艾刚,管保山.低伤害压裂液的研究与应用.低渗透油气田,4(3),1999.
    [57] 贺承祖,华明琪.压裂液对储层的损害及其抑制方法.钻井液与完井液,20(1),2003.
    [58] Nimerick K H, Crown C W, et al. Method of Using Borate Crosslinked Fracturing Fluid Having Increased Temperature Range. US5259455, 1993.
    [59] Samuel M, et al. Polymer-Free Fluid for Hydraulic Fracturing. SPE 38622, 1997.
    [60] Dahayanake, et al. Viscoelastic Surfactant Fluids and Related Methods of Use. US 6482866, 2002.
    [61] Qu, et al. Compositions Containing Aqueous Viscosifying Surfactants and Methods for Applying Such Compositions in Subterraneon Formations. US6435277, 2002.
    [62] Furlow W. New Downhole Fracturing Fluid Works Without Polymers. Offshore, 59(6), 1999.
    [63] Pitoni E, et al. Polymer-free Fracturing Fluid Revives Shut-in Well. World Oil, 9(3), 1999.
    [64] Rimmer B. Fracture Geometry Optimization: Designs Utilizing New Polymer-free Fracturing Fluid and Log-derived Stress Profile/Rock Properties. SPE 58761, 2000.
    [65] Mathew S. Viscoelastic Surfactant Fracturing Fluids: Applications in Low Permeability Reserviors. SPE 60322, 2000.
    [66] Whalen, et al. Viscoelastic Surfactant Fracturing Fluids and a Method for Fracturing Subterraneon Formations. US6035936, 2000.
    [67] Gadberry, et al. Surfactants for Hydraulic Fracturing Compositions. US5979555, 1999.
    [68] 赵小充.国外新型无伤害压裂液技术.国外油田工程,16(11),2000.
    [69] 党民芳,李臣生等.无聚合物水力压裂液.断块油气田,8(3),2001.
    [70] 刘新全,易明新等.粘弹性表面活性剂(VES)压裂液.油田化学,18(3),2001.
    [71] 赫泽.无聚合物压裂液.国外油田工程,17(1),2001.
    [72] 陈馥,王安培等.国外清洁压裂液的研究进展.西南石油学院学报,24(5),2002.
    [73] 刘俊,郭拥军等.粘弹性表面活性剂研究进展.钻井液与完井液,20(3),2003.
    [74] 张国红,李曙光等.一种新型压裂液的现场应用及分析.新疆石油科技,11(2),2001.
    [75] 陈馥,王安培等.无聚合物清洁压裂液的实验室研究.精细化工,19(8),2002.
    [76] 徐志国,方波等.清洁胶束压裂液延缓形成的性能.华东理工大学学报(自然科学版),29(4),2003.
    [77] 严玉忠,舒玉华等.粘弹性表面活性剂胶束体系及其流变特性.油田化学,20(3),2003.
    [78] 卢拥军,汪永利等.粘弹性胶束流体流变特性及其工程应用.2002年流变学进展(第一部分),北京:中国科学技术出版社,2002.
    [79] 管保山,王晓东等.清洁压裂液流变特性与工艺研究.2002年流变学进展(第五部分),北京:中国科学技术出版社,2002.
    [80] Perkins, T K, Kern, L R. Widths of Hydraulic Fractures. JPT, Sept, 1961.
    [81] Norgren, R P. Propagation of a Vertical Hydraulic Fracture. SPEJ, Aug, 1972.
    [82] Khristianovic, S A, Zheltov, Y P. Formation of Vertical Fractures by Means of Highly Viscous Liquids. Proceeding of the fourth World Petroleum Congress, Section Ⅱ, 1955.
    [83] Geertsma, J, Dekerk, F. A Rapid Method of Predicting Width and Extent of Hydraulically induced Fractures. JPT, Dec, 1969.
    [84] Daneshy, A A. Numerical Solution of Sand Transport in Hydraulic Fracturing. JPT, Jan, 1978.
    [85] Simonson, E R, Abou Sayed, Clifton, R J. Containment of Massive Hydraulic Fractures. SPEJ, Feb, 1978.
    [86] Van Eekelen. Hrdyaulic Fracture Geometry: Fracture Containment in Layed Formation. SPEJ, June, 1982.
    [87] Advani, S H, Ganggerao, H V S, Chang, H Y, Komar, C A, Khan, S. Hydraulic Fracture Modeling for the Eastern Gas Shales Project. Proceeding DOE Second Eastern Gas Shales Symposium, Morgantown, 1978.
    [88] Advani, S H, Chang, H Y, Komar, C A, Stonesifer, R. Rock Mechanics Aspects of Hydraulic Fracturing in the Devonian Shale. 21th Rock Mechancis Symposium, 1980.
    [89] Advani, S H, Lee, L K. Finite Eelment Model Simulations Associated Width Hydraulic Fracturing. SPEJ, April, 1982.
    [90] Cleary, M P. Comprehensive Design Formula for Hydraulic Fracturing. SPE 9259.
    [91] Settari, A, C leary, M P. Development and Testing of a Pseudo-Three-Dimensional Model of Hydraulic Fracture Geometry (P3DH). SPE 10505.
    [92] Settari, A, Cleary, M P. Three-Dimensional Simulation of Hydraulic Fracturing. JPT, July, 1984.
    [93] Cleary, M P, Keck, R G, Mear, M E. Microcomputer Models for the Design of Hydraulic Fractures. SPE/DOE 11628.
    [94] Palmer, I D, Davids, M W, Jeu, S J. Analysis of Unconventional Behavior Observed During Coalbed Fracturing Treatments. Proceedings 1989 Int CBM Symp, 1989.
    [95] Palmer, I D, Kinard, C M, Fryar, R T. Sandless Water Fracture Treatments in Warrior Basin Coalbeds. Proceedings 1993 Int CBM Symp, 1993.
    [96] Palmer, I D, Carrol, H B. Numerical Solution for Height and Elonged Hydraulic Fracturing. SPE 11627.
    [97] Palmer, I D, Craig, H R. Modeling of Asymetric Vertical Growth in Elongated Hydraulic Fracture and Appdication to First MWX Stimulation. SPE 12879.
    [98] 郭大立,纪禄军,赵金洲,刘慈群.煤层压裂裂缝三维延伸模拟及产量预测研究.应用数学和力学,22(4),2001.
    [99] 张平,赵金洲,郭大立,陈汶斌,田继东.水力压裂裂缝三维延伸数值模拟研究.石油钻采工艺,19(3),1997.
    [100] Zhao Jinzhou, Guo Dali, Hu Yongquan et al. Hydraulic Fracturing Technique for Low Permeability Coalbed Methane Gas Reservoirs. SPE 38095.
    [101] 郭大立,赵金洲,曾晓慧,任书泉.控制裂缝高度压裂工艺技术实验研究及现场应用.石油学报,23(3),2002.
    [102] 郭大立,赵金洲,吴刚,彭惠群.堵压综合采油技术研究与应用.石油钻采工艺,19(6),1999.
    [103] Clifton, R J, Abou-Sayed, A S. On the Computation of the Three-Dimensional Geometry of Hydraulic Fractures. SPE 7943.
    [104] Clifton, R J, Abou-Sayed, A S. A Variational Approach to the Prediction of the Three-Dimensional Geometry of Hydraulic Fractures. SPE 9879.
    [105] Cleary, M P, Lam, K Y. A Complete Three-Dimensional Similator for Analysis and Design of Hydraulic Fracturing. SPE 15266.
    [106] 赵金洲,任书泉.混砂液在裂缝中的运移分布.天然气工业,9(4),1989.
    [107] 戈威尔 GW,阿济兹 K 著,权忠興等译.复杂混合物在管道中的流动.北京:石油工业出版社,1983.
    [108] 赵金洲,任书泉.考虑温度影响时裂缝几何尺寸的数值计算模型和方法,石油学报,8(1),1987
    [109] 郭大立,纪禄军,赵金洲.支撑剂在三维裂缝中的运移分布模型.河南石油,15(2),2001.
    [110] Zhao Jinzhou, Hu Yongquan, Guo Dali et al. Moving and Distribution of Proppant-laden Slurry in the Fracture. 27th Annual Meeting of the Fine Particle Society, 1997.
    [111] 郭大立,赵金洲,吴刚,李青山.水力压裂优化设计方法研究.西南石油学院学报,21(4),1999.
    [112] Zemanek, J, et al. The Borehole Televiewer-A New Logging Concept for Fracture Loaction and Other Types of Borehole Inspection. SPE 2402.
    [113] Smith, M B, Rosenberg, R J, Bowen, J F. Fracture Width: Design vs. Measurement. SPE 10965.
    [114] Albright, J N, Pearson, C F. Acoustic Emissions as a Tool for Hydraulic Fracture Location: Experience at the Fenton Hill Hot Dry Rock Site. SPEJ, Aug, 1982.
    [115] Thome, B J, Morris, H E. Advances in Borehole Seismic Fracture Diagnostics. SPE/DOE 16405.
    [116] Hart, C M, et al. Fracture Diagnostics Results for the Multiwell Experiment's Paludal Zone Stimulation. SPE 12852.
    [117] Vinegar, H J, et al. Active and Passive Seismic Imaging of a Hydraulic Fracture in Diatomite. JPT, Jan, 1992.
    [118] Truby, L S, et al. Data Gathering for a Comprehensive Hydraulic Fracture Diagnostic Project: A Case Study. SPE 27506.
    [119] Warpinski, N R, et al. Microseismic Mapping of Hydraulic Fracture Using Multi Level Wireline Receivers. SPE 30507.
    [120] Anderson, J A, et al. Determination of Fracture Height by Spectral Gamma Log. SPE 15439.
    [121] Agnew, B G. Evaluation of Fracture Treatments with Temperature Surveys. JPT, July, 1966.
    [122] Smith, R C, Steffensen, R J. Interpretation of Temperature Profiles in Water-Injection Wells. JPT, June, 1975.
    [123] Dobkins, T A. Improved Methods to Determine Hydraulic Fracture Height. JPT, April, 1981.
    [124] Davis, P M. Surface Deformation Associated with Dipping Hydrofracture. J Geophy Res, July, 1983.
    [125] Holzhausen, G, et al. Hydraulic Fracture Growth During Steam Stimulation in a Single-Well Test. SPE 13619.
    [126] Branagan, P T, et al. Measuring the Hydraulic Fracture Induced Deformation of Reservoirs and Adjacent Rocks Employing a Deeply Buried Inclinometer Array: GRI/DOEE Multi-Site Project. SPE 36451.
    [127] Godbey, J K, Hodges, H D. Pressure Measurements During Formation Fracturing Operations. Trans AIME, 1958.
    [128] Nolte, K C, Smith, M B. Interpretation of Fracturing Pressures. SPE 8297; JPT, Sept, 1981.
    [129] Nolte, K G. Determination of Proppant and Fluid Schedules from Fracturing Pressure Decline. SPEFE, July, 1986.
    [130] Nolte, K G. Fracturing Pressure Analysis for Non-Ideal Behavior. SPE 20704; JPT, Feb, 1991.
    [131] Ayoub, J A, et al. Diagnosis and Evaluation of Fracturing Treatments. SPEPE, Feb, 1992.
    [132] Crockett, A R, Okusu, N M, Cleary, M P. A Complete Integrated Model for Design and Real-Time Analysis of Hydraulic Fracturing Operations. SPE 15069.
    [133] Crockett, A R, Willis, R M, Cleary, M P. Improvement of Hydraulic Fracture Prediction by Real-Time History Matching on Observed Pressures. SPEPE, Nov, 1989; SPE 15264;低渗透油气田开发译文集.北京:石油工业出版社,1992.
    [134] Cleary, M P, et al. Computerized Field System for Real-Time Monitoring and Analysis of Hydraulic Fracturing Operations. SPE 14087.
    [135] Buharali, A M, Wright, T B, Willis, R M. Real-Time Hydraulic Fracturing Simulation Using a Portable Microcomputer. SPE 16486.
    [136] Pearson, C M. Development and Application of an Operator's Stimulation Monitoring System. SPE 16903.
    [137] Cleary, M P, Barr, D T, Willis, R M. Enhancement of Real-Time Hydraulic Fracturing Models with Full 3-D Simulation. SPE 17713.
    [138] Johnson, D E, et al. On-Site Real-Time Analysis Allows Optimal Propped Fracture Stimulation of a Complex Gas Reservoir. SPE 25414.
    [139] Johnson, D E, et al. Real-Data On-Site Analysis of Hydraulic Fracturing Generates Optimum Procedures for Job Design and Execution. SPE 25920.
    [140] Robinson, B M, Holditch, S A, Peterson, R E. The Gas Research Institute's Second Staged Field Experiment: A Study of Hydraulic Fracturing. SPE 21495.
    [141] Meyer, B R. Three-Dimensional Hydraulic Fracturing Simulation on Personal Computers: Theory and Comparison Studies. SPE 19329.
    [142] Meyer, B R, Cooper, G D, Nelson, S G. Real-Time 3-D Hydraulic Fracturing Simulation: Theory and Field Case Studies. SPE 20658.
    [143] Gulrajani, S N, Mack, M g, Elbel, J L. Pressure History Inversion for Interpretation of Fracture Treatments. SPE 36439.
    [144] Gulrajani, S N, Nolte, K G, Romero, J. Evaluation of the M-Site B-Sand Experiments: The Evolution of a Pressure Analysis Methodology. SPE 38575.
    [145] Gulrajani, S N, Romero, J. Evaluation and Modification of Fracture Treatments Showing Near-Wellbore Effects. SPE 36901.
    [146] Piggott, A R, Brady, B H, Gu, H. Reservior Formation Characterization from Hydraulic Fracturing Records. Proc Eurock'92 Symposium, London, UK, 1992.
    [147] 郭大立,刘慈群,赵金洲.垂直裂缝气井生产动态预测及参数识别.应用数学和力学,23(6),2002.
    [148] 郭大立,赵金洲,刘先灵,刘富,吴刚.识别水力裂缝参数的自动拟合模型和方法.石油钻采工艺,25(1),2003.
    [149] Nolte, K G. Determination of Fracture Parameters from Fracturing Pressure Decline. SPE 8341, 54th SPE Annual Technical Conference and Exhibition, Las Vegas, Nevada, Sept, 1979.
    [150] Nolte, K G, Smith, M B. Interpretation of Fracturing Pressures. J Pet Tech, Sept, 1981
    [151] Nolte, K G. A General Analysis of Fracturing Pressure Decline with Application to Three Models. Soc Pet Eng Formation Evaluation, Dec, 1986.
    [152] Martins, J P, Harpor, T R. Min-frac Pressure Decline Analysis for Fracture from Long Perforated Interval and Uneffected by Confinly Strata. SPE 13869.
    [153] Lee, W S. Pressure Decline Analysis with the Christianovich and Zheltov and Penny-shaped Geometry Model of Fracturing. SPE/DOE 13872, May, 1985.
    [154] Lee, W S. New Method of Mini-Frac Analysis Offers Greater Accuracy and Enhanced Applicability. SPE 15941, Eastern Regional Meeting, Columbus, Ohio, Nov, 1986
    [155] Lee, W S. Study of Fluid Rheology on Minifrac Analysis. SPE 16916, 62nd SPE Annual Technical Conference and Exhibition, Dallas, Texas, Sept, 1987
    [156] 王鸿勋,张士诚.水力压裂设计数值计算方法.北京:石油工业出版社,1998.
    [157] 张士诚,王鸿勋.压降曲线三维分析方法及应用.石油学报,11(3),1990.
    [158] 郭大立,赵金洲,郭建春,曾晓慧.压后压降分析的拟三维模型和数学拟合方法.天然气工业,21(5),2001.
    [159] 孟维宏,王鸿勋.一种确定裂缝参数的新方法.石油大学学报(自然科学版),12(4),1988.
    [160] 蒋阗等.压裂压力分析及应用.SPE,1988.
    [161] Ding Zhu, Hill, A D. The Effect of Temperature on Minifrac Pressure Decline. SPE 22874.
    [162] Castillo, J L. Modified Fracture Pressure Decline Analysis Including Pressure Dependent Leakoff. SPE 16417.
    [163] Nolte, K G, et al. A Systematic Method for Applying Fracturing Pressure Decline: Part 1. SPE 25845.
    [164] Meyer, B R. Design Formula for 2-D and 3-D Vertical Hydraulic Fractures: Model Comparison and Parametric Studies. SPE 15240.
    [165] Meyer, B R, Hagel, M W. Simulated Mini-Frac Analysis. J of Canadian Pet Eng, Sept-Oct, 1989.
    [166] 郭大立,陈汶斌,赵金洲.压裂后压力递减分析新方法.石油钻采工艺,19(4),1997.
    [167] 张平,郭大立,陈汶斌,赵金洲.压裂后压力测试资料分析解释技术.天然气工业,17(5),1997.
    [168] 郭大立,吴刚,刘先灵,赵金洲.确定裂缝参数的压力递减分析方法.天然气工业,23(4),2003.
    [169] Muskat, M. Flow of Homogeneous Fluids through Porous Media. McGraw Hill Book Co., Inc., New York, 1937.
    [170] Dyes, A B, Kemp, C E, Caudle, B H. Effect of Fractures on Sweepout Pattern. Trans AIME, 213, 1958.
    [171] Prats, M. Effect of Vertical Fractures on Reservoir Behavior-Incompressible Fluid Case. SPEJ, June, 1961.
    [172] Prats, M, Hazebroek, P, Strickler, W R. Effect of Vertical Fractures on Reservoir Behavior-Compressible Fluid Case. SPEJ, June, 1962.
    [173] Russell, D G. Truitt, N E. Transient Pressure Behavior in Vertically-Fractured Reserviors. JPT, Oct, 1964.
    [174] Gringarten, A C, Ramey, H J J. The Use of Source and Green's Functions in Solving Unsteady Flow Problems in Reserviors. SPEJ, Oct, 1973.
    [175] Gringarten, A C, Ramey, H J J, Raghavan, R. Unsteady State Pressure Distributions Created by a Well with a Single Infinite-Conductivity Vertical Fracture. SPEJ, Aug, 1974.
    [176] Gringarten, A C, Ramey, H J J, Raghavan R. Applied Pressure Analysis for Fractured Wells. JPT, July, 1975.
    [177] Ozkan, E, Raghavan, R. New Solutions for Well-Test-analysis Problems: Part 1-Analytical Considerations. SPEFE, Sept, 1991.
    [178] Ozkarl, E, Raghavan, R. New Solutions for Well-Test-analysis Problems: Part 2-Computational Considerations, and Applications. SPEFE, Sept, 1991.
    [179] Cinco-Ley, H, Samaniego, F, Dominguez, N. Transient Pressure Behavior for a Well with a Finite-Conductivity Vertical Fracture. SPEJ, Aug, 1978.
    [180] Cinco-Ley, H, Samaniego, F. Transient Pressure Analysis for Fractured Wells. JPT, Sept, 1981.
    [181] Cinco-Ley, H. Evaluation of Hydraulic Fracturing by Transient Pressure Analysis Methods. SPE 10043.
    [182] Cinco-Ley, H, Meng, H Z. Pressure Transient Analysis of Wells with Finite Conductivity Vertical Fracture in Double Porosity Reservoirs. SPE 18172.
    [183] Agawal, R G. Carter, R D, Pollock, C B. Evaluation and Performance Prediction of Low-Permeability Gas Wells Stimulated by Massive Hydraulic Fracturing. JPT, March, 1979.
    [184] Sheng-Tai Lee, Brockenbrough, J R. A New Approximate Analytic Solution for Finite Conductivity Vertical Fractures. SPEFE, Feb, 1986.
    [185] Olarewaju, J S, Lee, W J. A New Analytic Model of Finite Conductivity Hydraulic Fracture in a Finite Reservoir. SPE 19093.
    [186] Ozkan, E, Sarica, C, Raghavan, R. Effect of Conductivity on Horizontal Well Pressure Behavior. SPE 24683.
    [187] Bennett, C O, Reynolds, A C, Raghavan, R, Elbel, J L. Performance of Finite Conductivity Vertically Fractured Wells in Single-Layer Reservoirs. SPEFE, Aug, 1986.
    [188] Ben-Naceur, K, Economides, M J. Production from Naturally Fissured Reservoirs Intercepted by a Vertical Fracture. SPE 17425.
    [189] 刘慈群.在双重孔隙介质中有限导流垂直裂缝井的非牛顿流体试井分析方法.石油学报,11(4),1990.
    [190] 刘曰武,刘慈群.考虑井筒储存和表皮效应的有限导流垂直裂缝井的试井分析方法.油气井测试,2(2),1993.
    [191] 刘慈群,杨介.垂直裂缝井非牛顿流体试井分析.石油钻采工艺,1993.
    [192] 刘曰武,刘慈群.双重孔隙介质中垂直裂缝井流量动态预测方法的研究.试采技术,21(4),2000.
    [193] 宋付权,刘慈群.低渗透油藏中垂直裂缝井的不定常渗流.试采技术,21(3),2000.
    [194] 李凡华,刘慈群.分形油藏中无限导流垂直裂缝井的非牛顿流体渗流规律.石油学报,18(4),1997.
    [195] 邓英尔,刘慈群.两相流体椭圆渗流数学模拟与开发计算方法.石油学报,20(5),1999.
    [196] 邓英尔,刘慈群.各向异性双重介质垂直裂缝井两相流体渗流.力学学报,32(6),2000.
    [197] Cinco-Ley, H, Samaniego, F. Transient Pressure Analysis: Finite Conductivity Fracture Case Versus Damaged Fracture Case. SPE 10179.
    [198] Holditch, S A, Morse, R A. The Effects of Non-Darcy Flow on the Behavior of Hydraulically Fractured Wells. JPT, Oct, 1976.
    [199] Holditch, S A. Factors Affecting Water Blocking and Gas Flow from Hydraulically Fractured Gas Wells. JPT, Dec, 1979.
    [200] Rodriguez, F, Cinco-Ley, H, Samaniego, F. Evaluation of Fracture Asymmetry of Finite Conductivity. SPE 20583.
    [201] Resurreicao, C E S, Femando, R. Transient Rate Behavior of Finite Conductivity Asymmetry Fractured Wells Producing at Constant Pressure. SPE 22657.
    [202] Berumen, S, Tiab, D, Rodriguez, F. Constant Rate Solutions for a Fractured Well with an Asymmetric Fracture. JPSE, Oct, 1999.
    [203] 陈建新,王鸿勋.识别水力裂缝参数的曲线自动拟合法.石油学报,13(1),1992.
    [204] Rosa, A J, Horne, R N. Automated Type-Curve Matching in Well Test Analysis Using Laplace Space Determination of Parameter Gradients. SPE 12131.
    [205] Nanba, T, Horne, R N. An Improved Regression Algorithm for Automated Well Test Analysis. SPE 18161.
    [206] Barua, J, Horne, R N, Greenstadt, J L, Lopez, L. Improved Estimation Algorithms for Automated Type Curve Analysis of Well Test. SPEFE, March, 1988.
    [207] Watson, A J, Lee, W T. A New Algorithm for Automatic History Matching Production Data. SPE 15228.
    [208] Watson, A J, Gatens, J M, Lane, H S. Model Selection for Well Test and Production Data Analysis. SPEFE, March, 1988.
    [209] Hanson, J M. Nonlinear Inversion of Pressure-Transient Data. SPEFE, Aug, 1986.
    [210] Rosa, A J, Horne, R N. Automated Well Test Analysis Using Robust (LAV) Nonlinear Parameter Estimation. SPE 22679.
    [211] Rosa, A J, Horne, R N. New Approaches for Robust Nonlinear Parameter Estimation in Automated Well Test Analysis Using the Least Absolute Value Criterion. SPE 26964.
    [212] Carvalho, R S etc. Robust Procedures for Parameter Estimation by Automated Type-Curve Matching. SPE 24732.
    [213] Onur, M, Yeh, N, Reynolds, A C. New Derivative Type Curves for Well Test Analysis. SPE 16810.
    [214] 徐建平.实现典型曲线自动拟合程序的步骤及计算方法.油气井测试,2(1),1993.
    [215] 姚军等.Gauss—Marguart方法在试井解释中的应用.油气井测试,2(4),1993.
    [216] 虞绍永.试井资料的计算机自动分析新方法.石油钻采工艺,13(6),1991.
    [217] 李治平等.试井曲线计算机自动拟合算法及应用研究.西南石油学院学报,20(3),1998.
    [218] 段永刚等.有限导流垂直压裂井混合遗传自动试井分析.西南石油学院学报,22(4),2000.
    [219] 陈伟,段永刚.遗传算法在试井自动拟合中的应用研究.西南石油学院学报,19(增刊),1997.
    [220] 万仁溥,罗英俊主编.采油技术手册.北京:石油工业出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700