超薄注塑充模理论研究及其在导光板成型中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着注塑产品轻、薄化的发展趋势,超薄注塑日益受到关注与青睐,它不但节省了材料,还能使产品更具美感。超薄塑件厚度小,熔体进入型腔后迅速冷却凝固,充模过程必须在极短时间内完成,以克服快速凝固而导致的填充不足。苛刻的工艺过程增加了成型的难度,也使超薄注塑具有与常规注塑不一样的特点。良好的熔体填充性、高标准的成型精度、稳定的工艺制程是产品竞争市场的先决条件。本文结合超薄导光板的生产实践,对超薄注塑的充模理论进行研究并将其结果应用于导光板的成型中,主要工作如下:
     (1)研究了超薄注塑成型剪切场,对超薄注塑成型“次相剪切效应”进行研究,在超薄导光板成型中利用次相剪切效应,有效提高了熔体充模性,有利于超薄注塑件的成型。
     超薄注塑中高射速降低了熔体充模黏度,为超薄成型提供了有利条件,但片面追求高射速也为成型过程带来诸多不利因素,如过高的射速增加了机器负载、使熔体容易剪切降解、成型过程不稳定等。基于生产实践,提出次相剪切效应概念,从理论上将超薄剪切场分为主相剪切场和次相剪切场,在分析主相剪切局限性的基础上,对次相剪切场进行了论述说明,并通过流变实验验证了次相剪切场的有效性。在理论分析的基础上,在超薄导光板设计中提出网点混排结构,利用网点混排使熔体充模产生次相剪切效应,有效提高了熔体充模性。
     (2)研究了注射压力对熔体黏度的影响,在黏度模型中提出“黏度当量压力影响系数”的概念,并证实了黏度当量压力影响系数对模拟结果的正确性。
     超薄成型注射压力可达300MPa以上,多种黏度模型中都引入黏度压力影响系数来表征黏度的压力依赖性,其值通过实验拟合为一推荐常量。超薄成型中熔体黏度对该常量极其敏感,并使数值分析结果严重偏离生产实际,如模拟中注射压力比实际成型压力大很多。基于自由体积理论,在黏度模型中提出黏度当量压力影响系数概念,认为熔体中自由体积的膨胀比与压缩比之商不为常数,压力对黏度的影响等同于将熔体玻璃化温度非线性提高,而非线性提高。在熔体P-V-T关系的基础上,研究了高压下压力与黏度的关系,推导出Cross-WLF黏度模型中黏度的当量压力影响系数,并通过短射实验证实了黏度当量压力影响系数对模拟结果的正确性。
     (3)研究了模具-型腔对流换热系数,测试了不同型腔厚度在不同注射速度下模具-型腔对流换热系数,证实了所测对流换热系数在超薄成型应用中的正确性。
     超薄件表体比大,散热边界条件对成型的影响不容忽视。本文通过狭缝流变仪和自制狭缝口模,测试了不同型腔厚度在不同注射速度下模具-型腔对流换热系数,发现超薄成型中模具-型腔对流换热系数随着型腔厚度、注射速度的不同而有较大差异。使用测试值与推荐值进行双折射模拟,将模拟所得光的迟滞带与光弹应力带对比,发现使用推荐值进行模拟时,光的迟滞带大于光弹应力带,而使用测试值进行时,光的迟滞带与光弹应力带吻合度高,证实了所测对流换热系数在超薄成型应用中的正确性。
     (4)探讨了基于超薄充模理论注塑参数对超薄塑件成型精度的影响。
     基于超薄导光板生产实践,定义尺寸精度、翘曲量、平整度为成型品质管控目标,分析了混排网点导光板与单排网点导光板成型品质的差异,分析了基于当量黏度压力系数、超薄换热系数对混排网点导光板品质的影响。通过正交试验,筛选了对成型品质影响显著的工艺参数。
     (5)基于超薄充模理论,对超薄导光板的成型品质进行了多目标优化研究。
     以尺寸精度、翘曲量、平整度为设计目标,以模具温度、保压压力、熔体温度、保压时间为响应变量,在数值模拟基础上,利用Kriging插值法拟合了三个设计目标的代理数学模型。基于NSGA-II遗传算法分析了多目标优化pareto解集。为了得到理想解,根据导光板具体设计要求,利用Vague集多目标评价模型,在考虑方案客观权重、主观权重的基础上,通过评分方法计算pareto解集中各方案相对于理想方案的适应度,根据适应度大小从pareto解集中甄选出最佳设计方案,保证了工艺过程的优化与稳健性。
Ultra-thin plastic injection becomes increasingly popular as products are getting muchlighter and thinner. In addition to saving in material, the technique makes the finishedproducts appear more beautiful. Since the ultra-thin plastic parts have thin thickness and cooland solidify instantly upon entering into the mold cavity, mold filling must be completed invery short time so as to overcome insufficient filling as a result of instant solidification. Thedemanding craft process makes molding even more difficult and enables ultra-thin injectionmolding to have different characteristics from regular molding. Fine melt filling, high-levelmolding precision and stable craft process are the prerequisites for products to compete in themarket. The article, in line with the production of ultra-thin LGP, studies some theories ofultra-thin plastic injection mold filling and th applies them to the light guide plate molding
     The research is summarized as the following:
     (1) studing injection molding shear field, and first proposed the "second phase shearingeffect" study, the use of sub-phase shear effects in ultra-thin light guide plate molding,effectively improve the melt filling, is conducive to super-injection molding of thin parts.
     However, high rate of fire may have some negative effects on molding process such as themachine load caused by high rate of fire, melt shear degradation and instability in moldingprocess. Based on production practice, the article proposes for the first time the notion ofsecond phase shear effect, and theoretically classify ultra-thin shear field into main phase andsecond phase shear fields. The article analyses limitations of main phase shear field as well assome issues concerning second phase shear field, and proves the effectiveness of second shearfield with rheological experiments. For the first time, the research, based on theoreticalanalysis, puts forward mixed network structure in the design of ultra-thin LGP, whichimproves the melt mold filling as a result of second shear effect of mixed network structure.
     (2)studing the effect of the injection pressure on the melt viscosity, propose the Conceptof"equivalent pressure effect factor on the viscosity of the model and confirmed thecorrectness of effects of viscosity equivalent pressure coefficient in simulation results.
     The research on the impact of injection pressure on melt viscosity. The injection pressureof ultra-thin molding runs as high as300MPa. The viscosity pressure influence coefficient isintroduced in many viscosity models to indicate viscosity pressure dependency. Thecoefficient, by experiment, is a recommended constant. In ultra-thin molding, melt viscosity isvery sensitive to the constant and makes numerical analysis results deviate vastly from realproduction, for example, the injection pressure is much higher than practical molding pressure.Based on free volume theory, the article proposes the concept of equivalent pressure influencecoefficient in viscosity model, which holds that the ratio between expansion ratio andcompression ratio in free volume is not a constant. The impact of pressure on viscosity isequal to the non-linear increase of melt glass transition temperature, not linear. On the basis ofmelt P-V-T relationship, the article researches on the relation between pressure and viscosityunder high pressure, eliciting equivalent pressure influence coefficient in viscosity model andproves the validity of equivalent pressure influence coefficient to simulated results by shortshot experiment.
     (3)studing the mold-Cavity convective heat transfer coefficient.This paper tested themold-Cavity convective heat transfer coefficient of different thickness at different cavity moldinjection speed and confirmed the validity of heat transfer coefficient measured in ultra-thinmolding applications.
     The research on mold-cavity convective heat transfer coefficient. Surface-to-volumeratio of ultra-thin parts is big, so the impact of heat transmission boundary conditions onmolding is not to be ignored. The research, by using slit rheometer and self-made slit openingmold, tests mold-cavity convective heat transfer coefficient of different cavity thickness underdifferent injection speed. It finds that, in ultra-thin molding, mold-cavity convective heattransfer coefficient varies greatly with different cavity thickness and injection speed. Theresearch applies both convective heat transfer coefficient and the recommended value tobirefraction simulation, and compares simulated light hysteresis zone with photoelastic stresszone. It’s found in the research that light hysteresis zone is bigger than photoelastic stresszone for the recommended value in simulation process, while the simulated result ofconvective heat transfer coefficient coincides with photoelastic stress zone. So the validity ofthe application of tested convective heat transfer coefficient to ultra-thin molding isconfirmed.
     (4)disscusing the effects on ultra-thin parts molding precision of certain parameters onthe theory of ultra-thin filling.The research on molding precision of ultra-thin plastic partsbased on ultra-thin theory. It makes dimensional precision, warpage and flatness the qualitystandards for finished products based on the production practice of ultra-thin LGP. Then theresearch analyzes the quality differences of mixed network LGP and single network LGP. Andthe influence of equivalent viscosity coefficient and ultra-thin heat transfer coefficient on thequality of mixed network LGP is also discussed. By orthogonal experiment, the researchchooses the technological parameter that has obvious effects on the quality of finishedproducts.
     (5)The research on multi-objective optimization of the quality of ultra-thin LGP, basedon ultra-thin theory. It makes dimensional precision, warpage and flatness the designobjective, and mold temperature, dwell pressure, melt temperature and dwell time theresponse variable. And by numerical stimulation, the research over-fits the agentmathematical model of three design objectives using Kriging interpolation method. Then it,based on NSGA-II genetic algorithm, analyzes pareto disaggregation of multi-objectiveoptimization. To have ideal solution, the research is conducted in accordance with specificdesign requirements of LGP and makes use of multi-objective evaluation model of Vaguedisaggregation. Based objective and subjective weight and by method of marking to decide onthe fitness of each scheme in the pareto disaggregation to the satisfactory scheme, the researchchooses the optimal scheme, and thus guarantees the optimization and stability of the craftprocess.
引文
[1] Whetten A., Belcher D. Flow marks during injection Moulding [A]. SPEANTEC Tech. Papers[C].1994,40,593-600
    [2] Fassett J., Thin-wall molding. How its Processing considerations differ from standard Injection molding [J].Plastics Engineering,1995,51(12):35-37
    [3] Maloney R.P., Poslinski A.J. Viscosity pressure depend-ence and material degradation effects on thin wallmould filling simulation [A]. SPEANTEC Tech. Papers[C].1998,44,542-548
    [4] Shi-Chang Tseng and Yu-Te Liao, The Effects of High Shear Rates on Ultra Thin Injection Molding,CSME-2008[C].2008,11,685-691
    [5]杨卫民,丁玉梅,谢鹏程.注射成型新技术[M].北京:化学工业出版社,2008年3月
    [6] Yao D.G., Kim B. Inereasing flow length in thin wall injection molding using a rapidly heated mold [J].Polyme-Plastics technology and engineering,2002,41(5):819-832
    [7] Poslinski A.J. Effects of processing Conditions and Material models on the injection Pressure and flow lengthin thin wall Parts[J], ANTEC,1996,470-474
    [8] Mahishi M. Material characterization for thin wall moulding simulation [C]. SPE ANTEC Tech. Papers,1998,44,547-551
    [9] Losch K. Thin Wall molding: demanding but rewarding [J]. Modern Plastics,1997,74(11):79-82
    [10] Tantakom P, Nick R.S. Processing Strategies for Thin Wall injection molding[J]. ANTEC,1998,367-731
    [11] Chun-Sheng Chen, Tsyr-Jang Chen, Rean-Der Chien, et al. Investigation on the weldline strength of thin-wallinjection molded ABS parts [J]. International Communications in Heat and Mass Transfer, Volume34, Issue4,Pages448-455
    [12] Guo-jun Xu. Study of thin-wall injection molding[D].The Ohio State: The Ohio State University,2004
    [13] Liyong Yu, Chee Guan Koh, L. James Lee. Experimental investigation and numerical simulation of injectionmolding with micro-features[J]. Polymer Engineering&Science, May2002,42(5):871-888
    [14]沈永康,吴伟裕,洪荣宏.微射出成型导光板的微结构分析[J].纳米技术与精密工程,2006年6,4(2):111-114
    [15] Huang M.C, Tai CC. The effeetive factors in the warpage problem of an injection-molded Part with a thinshell feature [J]. Materials Processing Technology,2001,110(l):1-9
    [16]王桂龙,赵国群,李辉平,等.薄壁注塑制品翘曲影响因素分析与工艺优化[J].中国机械工程,2009,(04):489-491
    [17]蒋炳炎,沈龙江,罗建华,等.微特征结构对导光板翘曲变形的影响[J].光学精密工程,2007年2月,15(2):181-185
    [18]宋满仓,刘柱,于同敏.注射工艺参数对超薄塑件成型影响实验研究[J].大连理工大学学报.2006,46(2):198-201
    [19]徐斌,于同敏,王敏杰,等.微尺度聚合物熔体粘性耗散效应对流变行为的影响[J].机械工程学报,2010年7月,46(14):47-52
    [20]庄俭,王敏杰,于同敏.微注塑成型中壁面滑移对熔体充模流动影响的研究[J].中国机械工程,2007年8月,18(16):1995-1999
    [21] Ainoya K, Amano O. Accuracy of filling analysis program. SPE ANTEC Conference Proceedings, Texas,2001.1:726-735.
    [22] Narh K A, and Sridhar L. Measurement and modeling of thermal contact resistance at a plastic metalinterface. SPE ANTEC Conference Proceedings, Toronto,1997,43:2273-2277.
    [23] Staggs J E.. A simple model of polymer pyrolysis including transport of volatiles.Fire safe J,2000,34(1):69-80
    [24]谷诤巍,杨慎华,寇淑清,等.注射成型中塑料熔体充填流动的黏度模型研究[J].模具工业,2002,261(11):13-15
    [25]申长雨,王利霞,李倩,等.注塑成型充填过程的可压缩流动分析[J].化工学报,2006年7月,57(7):1537-1542
    [26]刘春太,陈静波,王利霞,等.注射成型过程中非牛顿塑料熔体的黏度模型[J].1997年1月,11(1):48-51
    [27] M.A. Peydró*, F. Parres, J.E. Crespo, et al. Study of rheological behavior during the recovery process of highimpact polystyrene using cross-WLF model[J]. Journal of Applied Polymer Science,15May2011,120(4):2400–2410
    [28] M.A. Peydró, F. Parres, J.E. Crespo, et al. Study of rheological behavior during the recovery process of highimpact polystyrene using cross-WLF model [J]. Sci.,2011,120(4):2400-2410
    [29]林师沛.塑料加工流变学及其应用[M].北京:国防工业出版社,2008
    [30]李德群.现代塑料注射成型的原理、方法与应用[M].上海:上海交通大学出版社,2005
    [31]宋满仓,刘柱,于同敏,等.超薄塑件注塑成型特性的试验研究与数值模拟[J].机械工程学报,2008,44(8):148-151
    [32]杨智韬,瞿金平,魏宝华.振动力场对聚合物动态加工功耗的影响[J].华南理工大学学报:自然科学版,2010,38(2):44-48
    [33]仇中军,郑辉,房丰洲,等.纵向超声波辅助微注塑方法[J].纳米技术与精密工程,2012,10(2):170-175
    [34]林师沛.塑料加工流变学及其应用[M].北京:国防工业出版社,2008
    [35]庄俭.微注塑成型充模流动理论与工艺试验研究[D].大连:大连理工大学,2007
    [36]徐佩弦.高分子流变学及其应用[M].北京:化学工业出版社,2003:233-238
    [37] Tune G, Bayazitoglu Y. Heat transfer in micro-tubes with viscous dissipation [J]. International Journal of Heatand Mass Transfer,2001,44(13):2395-2403
    [38]姜开宇,横井秀俊.注射成型过程熔体前沿充填不平衡现象的试验研究[J].机械工程学报,2009,45(2):294-300
    [39]张娟,瞿金平.振动剪切场对聚合物熔体缠结密度的影响机理[J].华南理工大学学报:自然科学版,2003,31(4):1-2
    [40] Goldstein S. Modern Devel0pments in Fluid Dynamics[M]. Oxford: Oxford University Press, Vo1.II
    [41] GB/T25278-2010,塑料用毛细管和狭缝口模流变仪测定塑料的流动性[S].中国
    [42]蒋炳炎,沈龙江,罗建华,等.微特征结构对导光板翘曲变形的影响[J].光学精密工程,2007,15(2):180-185
    [43]蒋金波,杜雪,李荣彬,等.用于手机背光模组的轮廓渐变V-槽形自由曲面结构的新颖设计[J].液晶与显示,2005,20(3):178-184
    [44]杨申语,粘世智.具双面微结构之超薄件微射出成型[C].中国机械工程学会第二十一届学术研讨会论文集,台湾高雄:国立中山大学,2004
    [45] Kleinstreuer C, Koo J. Computational analysis of wall roughness effects for liquid flow in micro-conduits [J].ASME Journal of Fluids Engineering,2004,126(l): l-9
    [46] R.F. Westover. Effect of hydrostatic pressure on polyethylene melt rheology [J]. POLYMER ENGINEERING&SCIENCE, January196,1(1):14–20
    [47] Kadijk S E, Van den Brule BHAA. On the pressure dependency of the viscosity of molten polymers[J].Polym Eng Sci,1994,34(20):1535-1546
    [48] Fatma Dinc, Tomas Sedlacek, Cumali Tav, et al. On the non-newtonian viscous behavior of polymer melts interms of temperature and pressure-dependent hole fraction[J]. Journal of Applied Polymer Science,2014,131(12)
    [49] P.Van Puyvelde, A.Vananroye, A.-S. Hanot, et al. On the Pressure Dependency of the BagleyCorrection[J], International Polymer Processing,2013,28,5,558
    [50] L. Halász, A. Huszár, Free Volume from Pressure and Temperature Dependent Viscosity and from PVTMeasurements for Homo-and Copolymers [J]. International Polymer Processing,2011,26,4,403
    [51]吴其晔,巫静安.高分子材料流变学[M].北京:高等教育出版社,2002
    [52] D. Huilier, C. Lenfant, J. Terrisse, et al. Modeling the packing stage in injection molding of thermoplastics[J].POLYMER ENGINEERING&SCIENCE, December1988,28(24):1637–1643
    [53]何曼君.高分子物理[M].上海:复旦大学出版社,2011
    [54]张忠良,闫晓丽,高舒,等.压强和温度对聚苯乙烯自由体积的影响[J].武汉大学学报(理学版),2012年10月,58(5)
    [55] G. Dlubek, M. Q. Shaikh, R. Krause-Rehberg, et al. a Effect of free volume and temperature on the structuralrelaxation in polymethylphenylsiloxane: A positron lifetime and pressure-volume-temperature study[J]. THEJOURNAL OF CHEMICAL PHYSICS,2007,126,024906
    [56]沈维道,工程热力学[M].北京:高等教育出版社,2007年6月
    [57] Chang P C, and Hwang S J. Experimental investigation of infrared rapid surface heating for injectionmolding[J]. Appl. Polym. Sci,2006,102(44):3704-3713
    [58] Tuckerman D, Pease B. High performance heat singking for VLST[J]. IEEE Electron Device and Measureletters,1981,2:126-129
    [59] Shah R K, London A L. Advances in Heat Transfer [M]. London: Academic Press,1978:170-175
    [60] Yu L Y, Lee L J, Koelling K.W. Flow and heat transfer simulation of injection molding with microstructures[J]. Polym1Eng1Sci1,2004,44(10):1866-1876
    [61] Ainoya K, Amano O. Accuracy of filling analysis program [A]. SPE ANTEC Conference proceedings[C].Texas:2001,1:726-735
    [62] Kim D H, Kang M H and Chun Y H. Momentary mold surface heating process Development of a newinjection molding technology[J]. Injection Molding Technol,2001,8(4):229-232
    [63] Kamal M R, Mutel A T, Salloum G, et al. Heat Transfer Measurement at the Mold Surface During InjectionMolding of Thermoplastic Melts[A]. M. Proc. SPE ANTEC[C].1991:483-487
    [64]刘瑞兰,贾斗南王增辉,等.环形狭缝通道内环状流模型的数值分析[J].核科学与工程,2002年12月,22(4):318-324
    [65] ZHAO Zeng-hui, YU Jian-zu. Single-Phase Forced Convection Heat Transfer in Micro Rectangular Channels[J]. CHINESE JOURNAL OF AERONAUTICS, February2003,6(1):7-10
    [66]庄俭,于同敏,王敏杰,等.微注塑成型中对流换热系数对熔体充模流动的影响[J].高分子材料科学与工程,2007年11月,23(6):169-172
    [67]于同敏,徐华,田慧卿,等.微注塑成型充模流动中的对流换热行为[J].化工学报,2011年7月,62(7):1824-1830
    [68]徐文莉.透明注塑件残余应力与光学性能的研究[D].郑州:郑州大学,2006年
    [69] Erzurumlu T, Ozcelik B. Minimization of Warpage and Sink Index in Injection-molded Thermoplastic PartsUsing Taguchi Optimization Method[J]. Materials&Design,2006,27(10):853-861
    [70] BABUR O, SONAT I. Warpage and structural analysis of thin shell plastic in the plastic injection molding [J].Materials and Design,2009,30(2):367-375
    [71] R. Sánchez, J. Aisa, A. Martinez, et al. On the relationship between cooling setup and warpage in injectionmolding [J]. Measurement, June2012,45(5):1051–1056
    [72] Friedl R W, Burin J G D. Measurement of the density distribution in Quenched PC specimens [J].PolymerSeienee, PartB, PolymerPhysics,1992,30(l),83-90
    [73] Jansen K M B, Titomanlio G. Effect of Pressure History on Shrinkage and Residual Stresses-injectionMolding with Constrained Shrinkage [J]. Polymer Engineering and Science,1996,36(15):2029-2040
    [74] Bushko W C, Stokes V K. Solidification of Thermoviscoelastic Melts. Part I: Formulation of Model Problem[J]. Polymer Engineering and Science,1995,35(4):351-364
    [75] Shen Yongkang, Micro-Struction of Light Guide Plate for Micro Injection Molding[J]. Nanotechnology andPrecision Engineering,2006,4(2)
    [76] Hasan Kurtaran, Tuneay Erzurumlu.Efficient warpage optimization of thin shell plastic parts using responsesurface methodology and genetic algorithm[J]. Advanced Manufaeturing Teehnology,2006,27(l):5-6
    [77] BaburOzeelik, Tuneay Erzurumlu. Determination of Effeeting Dimensional Parameters on Warpage of ThinShell Plastics Parts Using Integrated Resvonse Surface Method and Genetie Algorithm[C]. InternationalConununieations in Heat and MassTransfer,2005,32:1085-1094
    [78]许建文,刘斌.注塑件体积收缩率变化的数值模拟优化与预报[J].华侨大学学报(自然科学版),2010年5月,31(3):241-245
    [79]宋满仓,乔飞,王振.注塑制品厚度对收缩率变化影响的研究[J].模具制造,2006年,6:47-49
    [80]徐征,王继章,吕治斌,等.工艺参数对平板微小器件注塑翘曲的影响[J].光学精密工程,2013年7月,21(7):1825-1830
    [81]陈巍,周雄辉,张汝珍,等.基于Kriging代理模型的注塑产品翘曲优化[J].上海交通大学学报,2010年4月,44(4):588-592
    [82]乔飞.注塑制品收缩规律的实验研究[D].大连:大连理工大学,2006
    [83]蒋炳炎,吴旺青,彭华建,等.注射成型参数对微结构阵列导光板翘曲量的影响[J].光学精密工程,2007年11月,15(11):1738-1744
    [84]白杨,柳和生.注射成型工艺参数对聚丙烯制品翘曲的影响及机理研究[J].中国塑料, Vol.23, No.5,2009年5月
    [85]王利霞,杨杨,王蓓,申长雨,注塑成型工艺参数对制品体收缩率变化的影响及工艺参数优化[J].高分子材料科学与工程,2004年3月,20(2):173-176
    [86]梁尚明,殷国富.现代机械设计优化方法[M].北京:化学工业出版社,2005年
    [87] Shang-Jeng Tsai, Tsung-Ying Sun, Chan-Cheng Liu, Sheng-Ta Hsieh, et al. An improved multi-objectiveparticle swarm optimizer for multi-objective problems [J]. Expert Systems with Applications, August2010,37(8):5872-5886
    [88] Patrick N. Ngatchou, Anahita Zarei, Warren L. J. Fox, et al. Pareto Multiobjective Optimization MODERNHEURISTIC OPTIMIZATION TECHNIQUES[J]. THEORY AND APPLICATIONS TO POWER SYSTEMS,2007,189–207
    [89] Mitsuo Gen, Runwei Cheng, GENETIC ALGORITHMS AND ENGINEERING OPTIMIZATION [M]. USA:Wiley-Interscience,2007.12,97–141
    [90] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, et al. A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, APRIL2002, VOL.6, NO.2
    [91] Deb K, Agrawal S, Pratap A, Meyarivan T. A Fast Elitist Non-dominated sorting genetic algorithm formulti-objective optimization: NSGA-II [A]. Proceedings of the Parallel Problem Solving from Nature VIConference[C]. France:2000:849-858
    [92]程文渊,崔德刚.基于Pareto遗传算法的复合材料机翼优化设计[J].北京航空航天大学学报,2007年2月,33(2):145-148
    [93]王珑,王同光,吴江海,等.基于改进NSGA-Ⅱ算法的风力机叶片多目标优化设计[J].南京航空航天大学学报,2011年10月,43(5):672-676
    [94] Coello C A, Van Veldhuizen D A, Lamont G B. Evolutionary Algorithms for Solving Multi-ObjectiveProblems[M]. New York: Springer-Verlag New York Inc.,2007.9
    [95] Martin J D, Simpson T W. A study on the use of kriging models to approximate deterministiccomputer models[A]. Design Engineering Technical Conferences and Computers and Information inEngineering Conference[C]. Chicago:2003
    [96]谢延敏.基于Kriging模型和灰色关联分析的板料成型工艺稳健优化设计研究[D].上海:上海交通大学,2007年4月
    [97] Kaymaz I. Application of kriging method to structural reliability problems [J]. Structural Safety,2005,27(2):133-151
    [98] Simpson T W, Mauery T M, Korte J J, et al. Kriging models for global approximation in simulation-basedmultidisciplinary design optimization [J], AIAA Journal,2001,39(12):2233-2241
    [99] Li, Y.Q., Cui, Z.S., Ruan, X.Y., Zhang, D.J. CAE-based six sigma robust optimization for deep-drawingsheet metal process[J]. International Journal of Advanced Manufacturing Technology,2006,30(7-8):631-637
    [100] Lophaven SN, Nielsen HB, Sondergaard J. DACE-A Matlab Kriging Toolbox[M]. Denmark: Informaticsand mathematical modeling,2002
    [101] Chen S M, Tan J M. Handling Multicriteria Fuzzy Decision-making Problems Based on Vague SetTheory[J]. Fuzzy Sets and Systems,1994,67:163172
    [102] Maeda H, Murakami S. A Fuzzy Decision-making Method and its Application to a Company ChoiceProblem [J]. Information Sciences,1998,45:331346
    [103]张振华.几类特殊模糊集的理论与应用研究[D].南京:南京理工大学,2012
    [104] Lophaven SN, Nielsen HB, Sondergaard J. DACE-A Matlab Kriging Toolbox[D]. Denmark: Informaticsand mathematical modeling,2002
    [105] Chen S M, Tan J M. Handling Multicriteria Fuzzy Decision-making Problems Based on Vague SetTheory[J]. Fuzzy Sets and Systems,1994,67:163172
    [106] Maeda H, Murakami S. A Fuzzy Decision-making Method and its Application to a Company ChoiceProblem [J]. Information Sciences,1998,45:331346
    [107]张振华.几类特殊模糊集的理论与应用研究[D].南京:南京理工大学,2012
    [108]张英芝,申桂香,吴甦.基于模糊理论的数控车床故障分析[J].中国机械工程,2009年10,20(19):2354-2357
    [109]桑怀胜,郁文贤.模糊数学在故障树分析中的应用[J].质量与可靠性,2002(2):26-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700