旋翼绕流的高效数值计算方法及主动流动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了适用于复杂非定常粘性流动的高效数值计算方法及其微射流主动流动控制技术。通过使用隐式求解、引入预处理方法、多重网格法等数值模拟技术,发展了一套适用于从不可压缩流动到超声速流动的Navier-Stokes(N-S)方程统一求解方法和高效计算程序。在发展高效数值模拟技术基础上,开展了直升机旋翼前飞非定常粘性流动以及翼型和旋翼微射流主动流动控制的数值模拟研究,并结合N-S方程和气动声学Ffowcs Williams-Hawkings(FW-H)方程开展了旋翼悬停和前飞气动噪声的高效预测方法研究。本文的研究为新型旋翼气动和声学设计提供了一种高效计算分析工具,并探讨了一种基于MEMS技术的旋翼主动流动控制技术的实现途径。
     本文完成的研究工作主要表现在如下几个方面:
     (1)发展了一套适用于定常/非定常粘性流动的全速域高效、高精度数值计算方法和计算程序(命名为PMNS3D)。在有限体积法的基础上,空间离散以改进的JST格式和基于MUSCL方法的高阶AUSM+-up格式为主,时间推进以改进的LU-SGS格式和全隐式双时间法为主,并引入预处理方法和多重网格法等高效率加速收敛技术。为了提高LU-SGS格式在粘性流动计算中的效率和稳定性,本文引入粘性修正,给出了一种牛顿型LU-SGS迭代方法。为了提高非定常粘性流动的计算效率,发展了含牛顿型LU-SGS子迭代的全隐式双时间法,并提出了一种采用直接LU-SGS方法进行子迭代初场预估的预报校正法。
     (2)为了改善现有可压缩计算方法在低马赫数流动计算中面临的收敛困难和收敛精度低的问题,本文对矩阵预处理方法进行了深入研究,并通过与多重网格方法结合,发展了同时适用于从不可压流动到超声速流动的高效、高精度计算方法。推导了针对显式时间推进和隐式时间推进以及双时间推进格式的预处理方法,同时也发展了适用于JST格式和AUSM+格式的预处理方法。将AUSM+-up空间离散格式同预处理时间推进方法相结合,发展了一种预处理AUSM+-up格式,可实现从极低马赫数流动(如Ma=10~(-5))到超声速流动的高效、高精度数值模拟。通过二维/三维、定常/非定常流动数值模拟算例,表明所发展的预处理方法既能显著提高计算效率,又能提高计算精度。
     (3)研究发展了适用于N-S方程数值求解的隐式多重网格方法。在课题组原有的定常流动显式多重网格技术基础上,发展了适用于定常和非定常粘性流动的LU-SGS隐式多重网格技术。研究表明,隐式多重网格方法计算效率和计算稳定性明显优于显式多重网格方法。对隐式多重网格技术的循环方式进行了研究,总结出了比较有效的多重网格循环方式。针对预处理方法的应用,发展了程序改动量小、通用性强且易于实现的预处理多重网格技术,并给出了该技术的流程图。
     (4)研究发展了适用于前飞直升机旋翼非定常粘性流动计算的隐式多重网格方法。针对运动嵌套网格技术,提出了一种改进的贡献单元搜索方法,并发展了一种高效实用的嵌套多重网格技术。将多重网格方法与含牛顿型LU-SGS子迭代的全隐式双时间法相结合,发展了适用于前飞旋翼粘性绕流的高效数值计算方法和计算程序(命名为FORWARD)。算例研究表明,本文所发展的计算方法显著地提高了计算效率,减少了计算时间。
     (5)研究发展了翼型微射流主动流动控制的数值模拟技术及相应的控制参数优化方法。在翼型表面施加非定常吹/吸气边界条件,发展了微射流与翼型干扰流动的数值分析方法。对NACA0015翼型、YLSG107高升力翼型、VR-7B旋翼翼型的失速控制进行了数值模拟,并对OA212R旋翼翼型的动态失速控制进行了数值模拟,深入研究了零质量射流技术在翼型主动流动控制方面的控制效果、控制机理和参数影响规律。研究表明:近切向射流比法向射流具有更好的分离控制效果,可有效增加翼型升力、减小分离阻力和减小力矩绝对值;射流动量系数达到0.001以上可获得较明显的控制效果。为实现最优控制,还提出了一种基于“代理模型”的控制参数优化方法。该方法将均匀试验设计与二次响应面、Kriging模型以及径向基神经网络等近似技术相结合,构造出目标函数和状态变量的代理模型,并采用序列二次规划方法和遗传模拟退火算法进行优化。以NACA0015翼型和VR-7B旋翼翼型的失速控制为例验证了该方法的有效性。
     (6)在发展前飞旋翼高效数值模拟方法的基础上,开展了三维旋翼微射流控制的探索性研究。提出了三维非定常吹/吸气边界条件,并对悬停旋翼的定常射流控制、有升力前飞旋翼的零质量射流增升以及前进桨激波-附面层干扰的零质量射流控制进行了初步研究,表明主动流动控制在提高旋翼气动性能方面具有很好的应用前景。
     (7)在国内首次开展了结合RANS方程和可穿透数据面FW-H方程(简称RANS/FW-H_(pds)方法)的直升机旋翼气动噪声预测方法研究。首先通过RANS方程数值模拟获得旋翼近场噪声,然后通过求解FW-H_(pds)方程得到远场气动噪声。悬停旋翼和前飞旋翼气动噪声算例研究表明,RANS/FW-H_(pds)方法能更准确地预测高速脉冲(HSI)噪声,并具有一定桨涡干扰噪声预测能力。
In present dissertation, efficient simulation of complex unsteady viscous flowsand active flow control based on synthetic jet technology are studied. By usingLU-SGS implicit method and introducing preconditioning method coupling withmultigrid scheme, an efficient and robust numerical method solving Navier-Stokesequations for flows at all speed is presented and investigated. Based on this method,the unsteady viscous flows past helicopter rotors in forward flight are simulated, andactive flow control over airfoils and rotor blades are conducted. At last, theaeroacoustic nosie generated by helicopter rotor and in hover and forward flight arepredicted by solving Navier-Stokes equations and Ffowcs Williams/Hawkingsequation with penetrable data surface. This dissertation develops an efficient analysismethod for aerodynamic and aeroacoustic design of advanced helicopter rotors andalso presents a new-concept flow control techniques based on synthetic jettechnology.
     The main research work and increasing contribution of this dissertation are listedas follows:
     1) An efficient, robust and accurate method for simulating steady/unsteadyflows at all speed is developed and applied to solve a variety of two-dimensional andthree-dimensional viscous flows. All methods are implemented within the frameworkof Finite-Volume method. Revised JST scheme and high-order AUSM+-up schemeare employed for spatial discretization. Improved LU-SGS scheme and fully implicitdual-time stepping method are utilized for time integral. Preconditioning method andmultigrid method is used as the highly efficient techniques for accelerating theconvergence of residual. To improve the efficiency and stability for viscous flows, aviscous correction is introduced into LU-SGS scheme and a Newton-like scheme isobtained. A fully implicit dual-time stepping method is developed to improve theefficiency of unsteady flow simulation and a prediction-correction method is proposedby predicting the initial flow field of sub-iteration with the direct LU-SGS method.
     2) To overcome the he difficult in solving compressible equations for low Machnumber flows, preconditioning method is investigated and successfully applied intoour code. The preconditioning scheme for explicit and implicit time steppingmethod and also for JST and AUSM+ scheme is derived and discussed. Coupling thespatial discretization with AUSM+-up scheme and time stepping usingpreconditioning method, efficient and accurate simulation of flows from extremelylow speed (Ma=10~(-5)) to supersonic speed has been realized.
     3) An implicit muligrid scheme for solving Navier-Stokes equations ispresented. It is proved by numerous examples that implicit multigrid method is moreefficient and robust than explicit multigrid method. Introducing preconditioningmethod, this paper develops a preconditioning multigrid method, and the flow chart ofthis general technique is presented and discussed.
     4) A chimera multigrid method and a fully implicit dual-time stepping method for simulating the viscous flows over helicopter rotors in forward flight is presented,and an efficient code named FORWARD is developed. To improve the efficiency androbustness of moving-over-set-grid technique, a revised method for searchingcontributing cell is proposed. A new technique for implementing multigrid cycle onmoving-over-set grid is also proposed. The flows past hovering rotor, non-lifting andlifting forward flight rotor are simulated. The computed pressure distribution iscompared with experimental data and good agreement has been achieved. It's shownthat the present method markedly improves the efficiency and reduces the CPU timeof numerical simulation of viscous flow past helicopter rotor in forward flight.
     5) Numerical analysis method for active flow control over airfoils withsynthetic jet is presented, and optimization method for control parameters based on"surrogate model" is proposed. By imposing unsteady blowing/suction boundarycondition on airfoil, the numerical method considering the interaction betweensynthetic jet and the flow around airfoil is developed. The simulations of stall controlover NACA0015 airfoil, YLSG107 high-lift airfoil and VR-7B rotor airfoil anddynamic stall over OA212R rotor airfoil are conducted. The income and mechanismof synthetic jet as well as the effect of control parameters are analyzed and discussed.In order to optimize the control parameters, a method based on "surrogate model" isproposed. The numerical examples for NACA0012 and VR-7B airfoil shows that thismethod is efficient and engineering applicable.
     6) Based on the developed efficient numerical method for flows over helicopterrotors, the active flow control on three-dimensional rotor blades is investigated.Three-dimensional unsteady blowing/suction boundary condition is developed anddefinitions of momentum coefficient, non-dimensional frequency and jet angle arepresented. The active flow control on hovering rotor and forward flight rotor forincreasing thrust and removing the chock wave/boundary layer interaction isnumerically studied.
     7) The RANS/FW-H_(pds) method is applied to predict the aeroacoustic noisegenerated by helicopter rotors in hover and forward flight for the first time. Thenear-filed noise is obtained by solving Reynolds-Averaged Naiver-Stokes equations,and far-field noise is predicted by solving Ffowcs Williams-Hawking equation.Numerical examples shows that RANS/FW-H_(pds) method can predict High-SpeedImpulsive noise more accurately and also this method can be used to predict theBlade-Vortex-Interaction noise.
引文
[1] 王适存,徐国华.直升机旋翼空气动力学的发展.南京航空航天大学学报.2001,33(3):203-211.
    [2] 徐国华,招启军.直升机旋翼计算流体力学的研究进展.南京航空航天大学学报.2003,35(3):338-344.
    [3] Yang Z, Sankar L N, Smith M, 等.Recent Improvements to a Hybrid Method for Rotors in Forward Flight. AIAA Paper, 2000-0260, 38th Aerospace Sciences Meeting & Exhibit, Reno, NV, 10-13 January 2000.
    [4] Conlisk A T. Modern helicopter rotor aerodynamics. Progress in Aerospace Sciences. July 2001, Vol.37(No.5): 419-476.
    [5] Nathan, Hariharan, Lakshmi N., Sankar. A Review of Computational Techniques for Rotor Wake Modeling. AIAA Paper 2000-0114, AIAA 38th Aerospace Sciences Meeting & Exhibit, Reno, NV, January 10-13.
    [6] 高正.直升机空气动力学的新成果.航空工业出版社,1999.
    [7] 曹义华,王吉飞.CFD开拓了旋翼空气动力学的研究新领域.国际航空,2001(5):65-66.
    [8] 庄逢甘,黄志澄.未来高技术战争对空气动力学创新发展的需求.2003年空气动力学前沿研究论文集,北京:中国宇航出版社,2003:73-79.
    [9] Smith B L, Glezer A. Vectoring and Small-Scale Motions Effected in Free Shear Flows Using Synthetic Jet Actuators. AIAA Paper 97-0213, 35th AIAA Aerospace Sciences Meeting, Reno, NV, January 1997.
    [10] Hassan A A. Numerical Simulations and Potential Applications of Zero-Mass Jets for Enhanced. Rotorcraft Aerodynamic Performance. AIAA Paper 98-0211, 1998.
    [11] Nagib H, Greenblatt D, Kiedaisch J, 等.Effective flow control for rotorcraft applications at flight Mach numbers. AIAA Paper 2001-2974, 31st, AIAA Fluid Dynamics Conference & Exhibit, Anaheim, CA, June 11-14, 2001.
    [12] Johnson W. a Comprehensinve Analytical Model of Rotorcraft Aerodynamics and Dynamics. Tech. Rep. NASA TM-81182, 1980.
    [13] Scully M P. Computation of Helicopter Rotor Wake Geometry and Its Influence on Rotor Harmonic Airload. MIT. Tech. Rep. ASRL-TR-178-1, 1975.
    [14] Caradonna F X, Isom M P. Subsonic and Transonic Potential Flow Slover over Helicopter Rotor Blades. AIAA Journal. 1972, 10(12): 1606-1612.
    [15] Caradonna F X, Dessopper A, Tung C. Finite Difference Modeling of Rotor Flow Including Wake Effects. Journal of the American Helicopter Society. 1984, 29(2): 26-33.
    [16] Arieli R, Tauber M E. Computational of Subsonic and Tansonic Flow about Lifting Rotor Blade. AIAA Paper 79-1667, 1979.
    [17] Chang I C. Transonic Flow Analysis for Rotors. Tech. Rep. NASA TP-2375, 1984.
    [18] Egolf T A, Sparks S P. A Full Pentential Rotor Analysis with Wake Influnce Using an Inter-Outer Domain Technique. 42nd Annual AHS Forum, June, 1986.
    [19] Sankar L N, Prichard D. Solution of Transonic flow past Rotor Blades Using the Conservatinve Full Potential Euqation. AIAA Paper 85-5012, October, 1985.
    [20] Strawn R C. Numerical Modelling of Rotor Flows with a Conservative Form of the Full Potential Equation. AIAA Paper 86-0079, July, 1986.
    [21] Bridgeman J O, Strawn R C, Caradonna F X. An Entropy and Viscosity Corrected Potential Method for Rotor Performance Prediction. 44th Annual AHS Forum, June, 1988.
    [22] Strawn R C, Caradonna F X. Conservative Full Potential Model for Unsteady Transonic Rotor Flows. AIAA Journal. February, 1987, 25:193-198.
    [23] Sankar L N, Wake B E, Lekoudis S G. Solution of the Unsteady Euler Equations for Fixed and Rotor Wing Configurations. Journal of Aircaft. April, 1986,23(4): 283-289.
    [24] Agarwal R K, Deese J E. Euler Calculations for Flowfield of a Helicopter Rotor in Hover. AIAA paper 86-1782,1986.
    [25] Hassan A A, Tung C, Sankar L N. An Assessment of Full Potential and Euler Solutions for Self Generated Blade-Votex Interaction. 46th Annual AHS Forum, May, 1990.
    [26] Liu C H, Thomas J L, Tung C. Navier-Stokes Calculations for the Vortex Wake of a Rotor in Hover. AIAA Paper 83-1676,1983.
    [27] Srinivasan G R, McCriskey W J. Navier-Stokes Calculation of Hovering Rotor Flowfield. Journal of Aircaft. 1988, 25(10): 871-872.
    [28] Narramore J C, Sankar L N, Vermeland R. A evaluation of a Navier-Stokes Code for Calculation of Retreating Blades Stall on a Helicopter Rotor. Proceedings of 44th Anaula Forum of AHS, 1988.
    [29] Wake B E, Sankar L N. Solution of Navier-Stokes Equations for the Flow over a Rotor Blade. Journal of the American Helicopter Society. April, 1989,
    [30] Mello O A F. An Improved Hybrid Navier-Stokes/Full Potential Method for Computation of Usteady Compressible Flows: (博士学位论文). Atlanta, GA: Ph.D Thesis, Georgia Institute of Technology, November, 1994
    [31] Berezin C R, Sankar L N. An Improved Navier-Stokes/Full Pontential Coupled Analysis for Rotors. Mathmatical Computational Modelling. 1994,19(3/4): 125-133.
    [32] Moulton M A, Hafez M M, Caradonna F X. Zonal Precedure for Predicting the Hovering Preformance of a Helicopter. ASME Journal. 1984, 184
    [33] Bangalore A K, Moulton M A, Caradonna F X. The Development of an Overset/HybridMethod for Rotorcaft Applications. AHS Specialists' Meeting for Rotorcaft Aerodynamics and Aeroacoustics, Williamsburg, Virginia, Oct.27-30, 1997.
    [34] Zhao Q J, Xu G H, Zhao J G. New Hybrid Method for Predicting the Flowfields of Helicopter Rotors. Journal of Aircaft. 2006, 43(2): 372-380.
    [35] Kroll N. Computation of the Flow fields of Propellers and Hovering Rotors Using Euler Equations, the 12th European Rotorcraft Forum, 1986.
    [36] Chen C L, McCroskey W J, Obayashi S. Numerical Solution of Forward-Flight Rotor FlowUsing an Upwing Method. Journal of Aircaft. 1991,28(6): 374-380.
    [37] Strawn R C, Barth T J. A finite-Volume Eulersolver for Computing Rotary—Wing Aerodynamics on Unstructured Meshes. Proceedings of 48th Annual Forum of the American Helicopter Society, 1992.
    [38] Boniface J C, Mialon B, Sides J. Numerical Simulation of Unsteady Euler Flow Around Multi-bladed Rotor in Forward Flight Using a Moving Grid Approach. In the AHS 51th Annual Forum, Fort Worth, TX, May 9-11, 1995.
    [39] Webster R S, Chen J P, Whitfield D L. Numerical Simulation of a Helicopter Rotor in Hover and Forward Flight. AIAA paper 95-0193,1995.
     [40] Sheffer S G, Alonso J J, Martinelli L, 等. Time - accurate Simulation of Helicopter Rotor Flows Including Aeroelastic Effects. AIAA Paper 97-0399,1997.
     [41] Srinivasan G R, Baeder J D, Obayashi S, 等. Flowfield of a Lifting Rotor in Hover: a Navier-Stokes Simulation. AIAA Journal. 1992,30(10): 2371-2378.
    [42] Bangalore A, Sankar L N. Forward Flight Analysis of Slatted Rotors Using Navier-Stokes Methods. AIAA paper 96-0675, 1996.
    [43] Ahmad J, Duque, E. P. N. Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Overset Grids. Journal of Aircaft. 1996, 33(1): 54-60.
    [44] Sides J, Pahlke K, Costes M. Numerical simulation of flows around helicopters at DLR and ONERA. Aerospace Science and Technology. 2001, 5(1): 35-53.
    [45] Pahlke K, Boniface J C. A detailed comparison of DLR and ONERA 3D Euler methods for rotors in high speed forward flight. 24th European Rotorcraft Forum, Marseille, France, , September 1998.
    [46] Pomin H, Wagner S. Navier-Stokes Analysis of Helicopter Rotor Aerodynamics in Hover and Forward Flight. AIAA 2001-0998, 39th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, 8-11 January 2001:
    [47] Pahlke K, van der Wall, B.G. Chimera simulations of multibladed rotors in high-speed forward flight with weak fluid-structure-coupling, Aerospace Science and Technology. 2005, 9(5): 379-389.
    [48] Nathan H, Sankar L N. High Order Numerical Simulation of Rotor Flow field. Proceeding s of 50th Annual Forum of AHS, 1994.
    [49] Hariharan N, Sankar L N. First-principles Based High Order Methodologies for Rotorcraft Flowfield Studies. 1999.
    [50] Steinhoff J, Wenren Y, Mersch T, 等.Computational Vorticity Capturing: Application to Helicopter Rotor Flow. AIAA paper 92-0056, 1992.
    [51] Steinhoff J, Raviprakash G. Navier-Stokes Computation of Blade-Vortex Interaction Using Vorticity Confinement. AIAA Paper 95-0161, 1995.
    [52] 乔志德,王立群.双时间法求解直升机旋翼前飞流场.第二届海峡两岸航空航天技术暨流固耦合技术学术研讨会论文集,1998:135-140.
    [53] 王立群,乔志德,钟伯文,直升机旋翼悬停流场的欧拉方程计算.空气动力学学报.1998,16(3):282-287.
    [54] 江雄,陈作斌,张玉伦.用双时间法数值模拟悬停旋翼流场(英文).空气动力学学报.1998,16(3):288-296.
    [55] 江雄.直升机旋翼/机身干扰流场数值模拟方法研究:(博士学位论文).中国空气动力学研究与发展中心,2001.
    [56] 杨爱明,乔志德.用运动嵌套网格方法数值模拟旋翼前飞非定常流场.空气动力学学报.2000,18(4):427-433.
    [57] 杨爱明,翁培奋,乔志德.用多重网格方法计算旋翼跨声速无粘流场.空气动力学学报.2004,22(3):313-318.
    [58] 招启军,徐国华.使用高阶逆风通量差分裂格式的悬停旋翼流场数值模拟.航空动力学报.2005,20(2):186-191.
    [59] 招启军,徐国华.基于高阶逆风通量差分裂格式的直升机旋翼前飞流场模拟.空气动力学学报.2005,23(4):408-413.
    [60] 招启军,徐国华.基于嵌套网格和计入尾迹影响的旋翼流场数值模拟.南京航空航天大学学报.2005,37(6):675-679.
    [61] 招启军,徐国华.基于Navier-Stokes方程/自由尾迹/全位势方程的旋翼流场模拟混合方法.空气动力学学报.2006,24(1):15-21.
    [62] 童自力,孙茂.共轴式双旋翼流动的N-S方程模拟.航空学报.1998,19(1):1-5.
    [63] Cao, Y H, Yu Z Q, Su Y, 等.Combined Free Wake/CFD Methodology for Predicting Transonic Rotor Flow in Hover.Chinese Journal of Aeronautics. 2002, 02.:65-71.
    [64] 曹义华,康凯.Euler方程数值模拟绕悬停旋翼桨叶的流动.北京航空航天大学学报. 1999,25(1),57-59.
    [65] 于子文,曹义华.前飞旋翼三维湍流场的数值模拟.北京航空航天大学学报.2006,32(7):751-755.
    [66] Ingard U, Ising H. Acoustic Nonlinearity of an Orifice. The Joumal of the Acoustical Society of America. 1967, 42(1): 6-17.
    [67] Lighthill M J. Acoustic streaming. Journal of Sound and Vibration. 1978, 61: 391-418.
    [68] Davidson B J, Riley N. Jets induced by oscillatory motion. Journal of Fluid Mechanics. 1972, 53: 287-303.
    [69] 明晓.钝体尾流的特性及控制:(博士学位论文).南京:南京航空航天大学,1988
    [70] 明晓.整流效应的新现象.力学学报.1992,24(1):52-60.
    [71] 孙建红,明晓.非线性气体振荡整流效应对翼尖涡的影响.南京航空航天大学学报.2004,36(1):39-43.
    [72] Smith B L, Glezer A. Vectoring of a High Aspect Ratio Rectangular Air Jet Using a Zero Net-Mass-Flux Control Jet. Bull. Am. Phys. Soc. 39, 1994.
    [73] Smith B L, Glezer A. The Formation and Evolution of Synthetic Jets. Physics of Fluids. 1998, 10(9): 2281-2297.
    [74] Smith B L, Trautrnan M A, Glezer A. Controlled Interactions of Adjacent Synthetic Jets. AIAA Paper 99-0669, 37th AIAA Aerospace Sciences Meeting, Reno, NV, January. 1999.
    [75] Schaeffier N W. Overview of Active Flow Control Actuator Develoment at NASA Langley Research Center. AIAA Paper 2002-3159, 2002.
    [76] Kral L D, Donovan J F, Cain A B, 等.Numerical Simulation of Synthetic Jet Actuators. AIAA 97-1824, 4th AIAA Shear Flow Control Conference, Snowmass, CO, June, 1997.
    [77] Rizzetta D P, Visbal M R, Stanek M J. Numerical Investigation of Synthetic Jet Flowfields. AIAA Paper 98-2910, 1998.
    [78] Guo D, Kral L D. Numerical Simulation of the Interaction of Adjacent Synthetic Jet Actuators. AIAA Paper 2000-2565, 2000.
    [79] Schaeffler N W. The Interaction of a Synthetic Jet and a Turbulent Boundary Layer. AIAA Paper 2003-0643, 2003.
    [80] Yarnaleev N K, Carpenter M H, Ferguson F. Reduced-Order Model for Efficinent Simulatin of Synthetic Jet Actuators. AIAA Journal. 2005, 43, (2): 357-369.
    [81] Milanovic I M, Zaman K B M Q. Synthetic Jet in Crossflow AIAA Journal. 2005, 43(5): 929-940.
    [82] Rumsey T B, Gatski W L. Summary of the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control. AIAA paper 2004-2217, 2004.
    [83] Amitay M, Smith D R, Kibens V, 等.Aerodynamic Flow Control Over an Unconventional Airfoil Using Synthetic Jet Actuators. AIAA Journal. 2001, 39(3): 361-370.
    [84] Gilarranz J L, Traub W, Rediniotis O K, characterization of a compact, high-power synthetic jet actuator for flow separation control, AIAA Paper 2002-127, AIAA Aerospace Sciences Meeting and Exhibit, 40th, Reno, NV, Jan. 14-17, 2002
    [85] Chen Y L, S., Aung K, Glezer A, 等.Enhanced Mixing in a Simulated Combustor Using Synthetic Jet Actuators. AIAA Paper 99-0449, AIAA 37th Aerospace Sciences Meeting, 1999.
    [86] Roos F W. Synthetic-Jet Microblowing for Forebody Flow-Asymmetry Management. AIAA Paper 98-0212, Reno, NV, January, 1998.
    [87] Chen F J, Beeler G B. Virtual Shaping of a Two-dimensional NACA0015 Airfoil Using Synthetic Jet Actuator. AIAA Pape 2002-3273, 2000.
    [88] Lorber P, McCormick D, Anderson B W, 等.Rotorcraft Retreating Blade Stall Control. AIAA Paper 2000-2475, 2000.
    [89] Amitay M, Washburn A E, Anders S G, 等.Active Flow Control on the Stingray UAV: Transient Behavior. AIAA Journal. 2004, 42(11): 2205-2215.
    [90] Washburn A E, Amitay M. ActiVe Flow Control on the Stingray UAV: Physical Mechanisms. AIAA Paper 2004-0745, 2004.
    [91] Smith D R, Amitay M, Kibens V, 等.Modification of Lifting Body Aerodynamics using Synthetic Jet Actuators. 36th AIAA Aerospace Sciences Meeting, Reno, NV, January, 1998.
    [92] Amitay M, Kibens V, Parekh D, 等.The Dynamics of Flow Reattachment over a Thick Airfoil controlled by Synthetic Jet Actuator. AIAA Paper 99-1001, 37th AIAA Aerospace Sciences Meeting, Reno, NV, January, 1999.
    [93] Honohan A M, Amitay M, Glezer A. Aerodynamics Control using Synthetic Jets. AIAA Paper 2000-2401, FLUIDS 2000 Conference and exhibit, Denver, CO, June, 2000.
    [94] Seifert A, Darabi A, Wyganski I. Delay of Airfoil Stall by Periodic Excitation. Journal of Aircafl. 1996, 33(4): 691-697.
    [95] Seifert A, Pack L G. Oscillatory Excitation of Unsteady Compressible Flows over Airfoils at Flight Reynolds Numbers. AIAA Paper99-0925, 37th AIAA Aerospace Sciences Meeting, Reno, NV, January, 1999.
    [96] Hires M, Nagib H, Bachar T, 等.Enhanced performance of airfoils at moderate Mach numbers using zero-mass flux pulsed blowing. AIAA Paper 2001-0734, 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 8-11, 2001.
    [97] Pack L G, Schaeffler N W, Yao C S. Active Control of Separation from the Slat Shoulder of a Supercritical Airfoil. AIAA Paper 2002-3156, 2002.
    [98] Anders S G, Sellers Ⅲ, W. L, Washburn A E. Active Flow Control Activities at NASA Langley. AIAA Paper 2004-2623, 2004.
    [99] Gilarranz J L. Development of High Power, Compact Synthetic Jet for Flow Separation Control: (博士学位论文). Texsas A&M University, 2001
    [100] Wu J Z, Lu X Y, Denny A G, 等.Post-Stall Flow Control on an Airfoil by Local Unsteady Forcing. Journal of Fluid Mechanics. 1998, 371: 21-58.
    [101] Donovan J F, Kral L D, Cary A W. Active Flow Control Applied to an Airfoil. AIAA Paper 98-0210, 36th AIAA Aerospace Sciences Meeting, Reno, NV, January, 1998.
    [102] Ravindran S S. Active Control of Flow Separation Over an Airfoil. Tech. Rep. NASA TM-1999-209838, 1999.
    [103] He Y, Kral L D. Post-Stall Control on an Airfoil Using Localized Jet Actuators. AIAA Paper 2000-0408, 2000.
    [104] McCormick D C. Boundary Layer Separation Control with Directed Synthetic Jets. AIAA 2000-0519, 38th Aerospace Sciences Meeting & Exhibit, Reno, Nevada, 10-13 January 2000.
    [105] Hassan A A, Munts E A. Transverse and Near-Tangent Synthetic Jets for Aerodynamic Flow Control. AIAA Paper 2000-4334, 18th Applied Aerodynamics Conference, Denver, Colorado, 2000.
    [106] Celerino R R. Numerical simulation of flow separation control by oscillatory fluid injection. (博士学位论文). [Ph.D.], Texas A&M University, 2005
    [107] Vadillo J L. Numerical studies of the application of active flow control to subsonic and transonic airfoil flows using a synthetic jet actuator: (博士学位论文). [Ph.D], Washington University: 2005
    [108] Nae C. Unsteady Flow Control Using Synthetic Jet Actuators. AIAA Paper 2000-2403, 2000.
    [109] Duvigneau R, Visonneau M. Simulation and optimization of stall control for an airfoil with a synthetic jet. Aerospace Science and Technology. 2006, 10(4): 279-287.
    [110] Duvigneau R, Visonneau M. Optimization of a synthetic jet actuator for aerodynamic stall control. Computers & Fluids. 2006, 35(6): 624-638.
    [111] Gilarranz J L, Traub L W, Rediniotis O K. Characterization of a compact, high-power synthetic jet actuator for flow separation control. AIAA Paper 2002-0127, 2002:
    [112] Hassan A A, JanakiRam R D. Effects of zero-mass synthetic jets on. the aerodynamics of the NACA-0012 airfoil. AIAA Paper 97-2326, 1997.
    [113] Hassan A A. Improving flap aerodynamics using oscillatory jet control. AIAA Paer 2003-3664, 21st AIAA Applied Aerodynamics Conference, Orlando, FL, June 23-26, 2003.
    [114] Hassan A A. Oscillatory and pulsed jets for improved airfoil aerodynamics-A numerical simulation. AIAA Paper 2004-0227.42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 5-8, 2004.
    [115] Florea R, Wake B E. Parametric analysis of directed-synthetic jets for improved dynamic-stall performance. AIAA Paper 2003-216, 2003.
    [116] Rehman A, Kontis K. Synthetic Jet Control Effectiveness on Stationary and Pitching Airfoils. JOURNAL OF AIRCRAFT. 2006, Vo.43(No.6): 1782-1789.
    [117] Hassan A A, Straub F K, Charles B D. Effects of Surface Blowing/suction on the Aerodynamics of Helicopter Rotor Blade-Vortex Interactions(BVI)-a Numerical Simulation. Proceedings of the 52nd AHS Forum, Washington, DC, June 4-6, 1996.
    [118] Dindar M, Jansen K, Hassan A A. Effect of transpiration flow control on hovering rotor blades. AIAA Paper 99-3192, 1999.
    [119] 洪俊武,陈晓东,张玉伦,等.主动流动控制技术的初步数值研究.空气动力学学报.2005,23(4):402-407.
    [120] 肖中云,牟斌,陈作斌,等.零质量射流与分离控制的数值模拟.空气动力学学报.2006,24(1):46-50.
    [121] 罗振兵,夏智勋,王志吉,等.应用合成射流技术增强燃气/氧气掺混.推进技术.2003,24(2):166-168.
    [122] 罗振兵,夏智勋,胡建新,等.相邻激励器合成射流流场数值模拟及机理研究.空气动力学学报.2004,22(1):52-59.
    [123] 王德全,夏智勋,罗振兵.相邻合成射流激励器低速射流矢量控制研究.固体火箭技术.2006,29(5):325-328.
    [124] 罗振兵,夏智勋.合成射流技术及其在流动控制中应用的进展.力学进展.2005,35(2):221-234.
    [125] 罗振兵,夏智勋,胡建新,等.新型合成射流流动控制激励器流场特征.第十一届全国分离流、旋涡和流动控制会议,湖南,大庸,2006年11月7日-10日:287-297.
    [126] 顾蕴松,明晓.应用PIV技术研究“零质量”射流的非定常流场特性.实验流体力学.2005,19(1):83-86.
    [127] 赵宏,伍耐明.声激励喷流流动的实验研究.航空动力学报.2000,15(4):419-422.
    [128] 赵宏,杨治国,娄慧娟.合成射流流动特性实验研究及在燃烧中的应用探讨.航空动力学报.2004,19(4):512-519.
    [129] 杨京南,赵宏,伍耐明,等.主动流动控制实验台及测量系统.燃气涡轮试验与研究.2004,17(1):50-53.
    [130] 郑新前,周晓勃,侯安平,等.合成射流速度特性的实验研究.推进技术.2005,26(6): 504-507;525.
    [131] 赵宏,杨治国,娄慧娟.压电陶瓷激励影响燃气燃烧器性能的实验研究.热能动力工程.2005,20(1):22-26.
    [132] 韩忠华,乔志德,宋文萍.翼型大攻角分离流动微射流控制的数值模拟.第十一届全国分离流、旋涡和流动控制会议,湖南,大庸,2006年11月7日-10日:309-317.
    [133] 郝礼书,乔志德.合成射流用于翼型分离流动控制的研究.西北工业大学学报.2006,24(4):528-531.
    [134] 郝礼书,韩忠华,乔志德,等.合成射流致动器出口流场特性分析.机械设计与制造.2006.8:138-140.
    [135] 高峰,何高让.微射流流场原理性实验研究.空军工程大学学报:自然科学版.2002,3(3):8-11.
    [136] 何高让,汪亮.微射流作动器出口流场数值分析.空气动力学学报.2000,18(4):395-400.
    [137] 何高让,汪亮.微射流作动器参数分析.西北工业大学学报.2001,19(1):140-143.
    [138] Lin C Q, Pahlke K. Numerical Solution of Euler Equations for Aerofoils in Arbitrary Motion. Aeronautical Journal. 1994:207-214.
    [139] Jameson A, Schmidt W, Turkel E. Numerical Solution of the Euler Equation by Finite Volume Methods with Runge-Kutta Time Stepping Schemes. AIAA Paper 81-1259, 1981.
    [140] Swanson R C, Turkel E. On Central-Difference and Upwind Schemes. Journal of Computational Physics. 1992, 101: 292-306.
    [141] Liou M S, Steffen C J. A new flux splitting scheme. Journal of computational Physics. 1993, 107(1): 23-29.
    [142] Liou M S. Progress towards an improved CFD method: AUSM+. AIAA Paper 95-1701-Cp. 1995.
    [143] Liou M S. A sequel toAUSM:AUSM+. Joumal of Computational Physics. 1996, 129(1): 12-16.
    [144] Liou M S. Probing numerical fluxes: mass flux, positivity, and entropy-satisfying property. AIAA Paper 97-2035, 1997.
    [145] Liou M S. A sequel to AUSM, part Ⅱ: AUSM+-up for all speeds. Journal of Computational Physics. 2006, 214(1): 137-170.
    [146] Liou M S. A Further Development of the AUSM+ Scheme towards Robust and Accurate Solutions for All Speeds. AIAA Paper 2003-4116, 2003.
    [147] Krist S L, Biedron R T, Rumsey C L. CFL3D User's Manual (Version 5.0. Tech. Rep. NASA TM-1998-208444, 1998.
    [148] van Albada G D, van Leer B, and Roberts W W. A Comparative Study of Computational Methods in Cosmic Gas Dynamics. Astron. Astrophysics. 1982, 108: 76-84.
    [149] Yoon S, Jameson A. Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier-Stokes Equations. AIAA Paper 87-0600, 1987.
    [150] 黄长征,乔志德.跨音速流动的欧拉方程数值计算.中国航空科技文献.Tech.Rep.HJL910078,1991.
    [151] Tysinger T L, Caughey D A. Implicit Multigrid Algorithm for the Navier-Stokes Equations. AIAA Paper 91-0242, 1991.
    [152] Jameson A. Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings. AIAA Paper 91-1596, 1991.
    [153] Baldwin B, Lomax H. Thin Layer Approximation and Algebraic Model for Separated Turbulent Flow. AIAA Paper 78-257, 1978.
    [154] Spalart P R, Allmaras S R. A One Equation Turbulence Model for Aerodynamic Flows. AIAA Paper 92-0439, 1992.
    [155] Spalart P R, Jou W H, Strelets M, 等.Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach, in Advances in DNS/LES. Proceedings of the First AFOSR International Conference on DNS/LES, Edited by Liu C.and Liu, Z. Greyden Press, Columbus, OH, 1997.
    [156] Turkel E. Robust Low Speed Precondition for Viscous High Lift Flows. AIAA Paper 2002-0926, 2002.
    [157] Rogers S E, Kwak D. An Upwind Differencing Scheme for the Incompressible Navier-Stokes Equations. pplied Numerical Mathematics. 1991, 8: 43-46.
    [158] Turkel E. Preconditioning Techniques in Computation Fluid Dynamics. Annual Review of Fluid Mechanics. 1999, 31: 385-416.
    [159] Choi Y H, Merkle C L. The Application of Precondition in Viscous Flows. Journal of Computational Physics. 1993, 105: 207-223.
    [160] Weiss J M, Smith W A. Preconditioning Applied to Variable and Constant Density Flows. AIAA Journal. 1995, 33: 2050-2057.
    [161] Turkel E. Preconditioned Methods for solving the incompressible and Low Speed Compressible Equations. Journal of Computational Physics. 1987, 72: 277-298.
    [162] Weiss J M, Maruszewski W A, Smith W A. Implicit Solution of Preconditioned Navier-Stokes Equation Using Algebraic Multigrid. AIAA Journal. 1999, 37: 29-36.
    [163] van Leer B, Lee W T, Roe P L. Characteristic Time-Stepping or Local Preconditioning of the Euler Equations. AIAA Paper 91-1552, 1991.
    [164] Briley W R, McDonald H, Shamroth S J. A Low Mach Number Euler Formulation and Application to Time-Iterative LBI Schemes. AIAA Journal. 1983, 21(10): 1467-1469.
    [165] Choi D, Merkle C L. Application of Time-Iterative Schemes to Incompressible Flow. AIAA Journal. 1985, Vol.23: 1516-1524.
    [166] Merkle C L, Choi Y H, ". Computation of Low-Speed Flow with Heat Addition. AIAA Journal. 1987, 25:831-839.
    [167] Pletch R H, Chen K H. On Solving the Compressible Navier-Stokes Equations for Unsteady Flows at Very Low Mach Number. AIAA Paper 93-3368-CP, 1993.
    [168] Muradoglu M, Caughey D A. Implicit Multigrid Solution of the Precondtitioned Muli-Dimensional Euler Equations. AIAA Paper 98-0114, 1998.
    [169] Turkel E. A Review of Preconditioning Methods for Fluid Dynamics. Applied Numerical Mathematics. 1993, 12: 257-284.
    [170] Turkel E, Vatsa V N, Radespiel R. Preconditioning Methods for Low Speed flow. AIAA paper 96-2460, 1996.
    [171] Vatsa V N, Turkel E. Choice of Variables and Preconditioning for Time Dependent Problems. AIAA paper 2003-3692-CP, AIAA 16th Computational Fluid Dynamics Conference, Orlando, 2003.
    [172] 廖守亿,王正华.预处理方法在低速粘性流动中的应用.国防科技大学学报.2000,22(1):89-93.
    [173] 苏莫明,赵兴艳.基于预处理方法的流动数值分析.西北工业大学学报.2001,19(3):332-335.
    [174] 薛具奎.非定常不可压N—S方程的一种有效预处理数值方法.水动力学研究与进展:A辑.2002,17(6):729-738.
    [175] 刘仙名,符松.预处理算法在非定常流动计算中的应用.清华大学学报:自然科学版.2004,44(2):240-243.
    [176] 潘沙,李桦,范晓樯,等.预处理方法在化学非平衡流场数值模拟中的应用.空气动力学学报.2006,24(3):380-384.
    [177] 韩忠华 乔志德 熊俊涛,等.Navier—Stokes方程预处理方法及其对翼型绕流数值模拟的应用.西北工业大学学报.2006,24(3):275-280.
    [178] 潘沙,李桦,廖守亿,等.预处理方法在全速度流场数值模拟中的应用.国防科技大学学报.2006,28(3):5-9.
    [179] 傅德薰.流体力学数值模拟.国防工业出版社,1993.
    [180] 刘超群.多重网格法及其在流体力学中的应用.清华大学出版社,1995.
    [181] Ni R. A multiple grid scheme for solving the Euler equations. AIAA Journal. 1982, 20: 1565-1571.
    [182] Jameson A, Yoon S. Multigrid solution of the Euler equations using implicit schemes. AIAA Paper 85-0293, 1985.
    [183] Venkatakrishnan V. Improved multigrid performance of compressible Navier-Stokes solvers..AIAA Paper 98-2967, 1998.
    [184] Allmaras S R. Multigrid for the 2-D Compressible Navier-Stokes Equations. AIAA Paper 99-3336, 1999.
    [185] Dailey L D, Pletcher R H. Evaluation of Multigrid Acceleration for Preconditioned Time-accurate Navier-Stokes Algorithms. AIAA Paper 95-1668-CP, 1995.
    [186] Swanson R C, Turkel E. Multistage Schemes With Multigrid for Euler and Navier-Stokes Equstions. Tech. Rep. NASA TP-3631, 1997.
    [187] Lyn F, van Leer B. semi-coarsened multigrid solver for the Euler and Navier-Stokes. equations with local preconditioning. AIAA Paper 95-1667-CP, 1995.
    [188] 吕宏强,伍贻兆.三维非结构聚合多重网格法数值模拟研究.力学学报.2003,35(3):337-340.
    [189] 朱培烨.Euler方程的自适应多重非结构网格计算.航空计算技术.2003,33(2):1-4.
    [190] 何光洪.机翼数值优化设计中的高效气动计算方法研究:(硕士学位论文).西安:西北工业大学硕士学位论文,2004
    [191] Davis H. Compendium of Unsteady Aerodynamic Measurements. Tech. Rep. AGARD Report No.702 Addendum 1., May 1985.
    [192] 杨爱明.基于嵌套网格的直升机旋翼流场雷诺平均Navier-Stokes方程数值模拟:(博士学位论文).西安:西北工业大学,2000
    [193] Chiu I T, Meakin R L. On Automating Domain Connectivity for Overset Grids. AIAA paper 95-0854, 1995.
    [194] Juvigny X, Canonne E, Benoit C. Multigrid Algorithms for the Chimera Method. AIAA Paper 2004-758, 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 5-8, 2004.
    [195] Caradonna F X, Tung C. Experimental and analytical studies of a model helicopter rotor in hover. Vertica. 1981, 5(2): 149-161.
    [196] Vung H. Vu, OheeTung, Judith Gallman, Klaus J. Schultz, Berendvan der Wall, Pierre Spiegel, Bertrand Michea. Aerodynamics and Acoustics of Rotor Blade-Vortexlnteractions. Journal of Aircaft. 1995, Vol. 32(No. 5): 970-977.
    [197] Seifert A, Bachar T, Koss D, 等.Oscillatory Blowing: A Tool to Delay Boundary-Layer Separation. AIAA Journal. 1993, 31(11): 2052-2060.
    [198] 熊俊涛,乔志德,韩忠华.响应面方法在跨声速翼型气动优化设计中的应用研究.西北工业大学学报.2006,24(2):232-236.
    [199] 熊俊涛,乔志德,韩忠华.基于响应面法的跨声速机翼气动优化设计.航空学报.2006,27(3):399-402.
    [200] 方开泰, 马长兴.正交与均匀试验设计.北京:科学出版社,2001.
    [201] Simpson T W, Mauery T M, Korte, J.J, et al. Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization. AIAA Journal. 2001, 39(12): 2233-2241.
    [202] 王洪元,史国栋.人工神经网络技术及其应用.北京:中国石化出版社,2002.
    [203] Vadillo, J L, Agarwal, R K, Hassan, A A. Active Control of Shock/Boundary Layer Interaction in Transonic Flow over Airfoils. AIAA Paper 2005-486, 3rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 10-13 Jan. 2005.
    [204] Fsrassat F, Posey J W. The Role of Analytical Methods in Computational Aeroacoustics. Aerospace National Simulation Symposium, Tokyo, Japan, June 12-13, 2003.
    [205] Ffowcs Williams J E, Hawkings D L. Sound Generated by Turbulence and Surfaces in Arbitrary Motion. Philosophical Transactions of the Royal Society. 1969, A264(1151): 321-342.
    [206] Farassat F, Succi G P. A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations. Journal of Sound and Vibration, . 1980, 71(3): 399-419.
    [207] Farassat F, Myers M K. Extension of Kirchhoffs Formulation to Radiation from Moving Surface. Journal of Sound and Vibration. 1988, 23(3): 451-460.
    [208] Crighton D G, Dowling A P, Ffowcs Williams J E, 等.Modern Method in analytical Acoustics: Lecture Notes. Springer-Verlag, London, 1992.
    [209] di Francescantonio P. A New Boundary Integral Formulation for the Prediction of Sound Radiatio. Journal of Sound and Vibration. 1997, 202(4): 191-509.
    [210] Brentner K S, Farassat F. Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulation for Moving Surfaces. AIAA Journal. 1998, 36(8): 1379-1386.
    [211] Brentner K S. Modeling Aerodynamically Generated Sound: Recent Advance in Rotor Noise Prediction. AIAA Paper 2000-0345, 2000.
    [212] Han Z H, Song W P, Qiao Z D. Investigation of Rotor Noise Prediction Using Different Aeroacoustic Methods in Time Domain. 24th International Congress of the Aeronautical Sciences, ICAS 2004-3.4.R, Yokohama, Japan, Japan, 2004.
    [213] 韩忠华,宋文萍,乔志德.基于FW-H方程的旋翼气动声学计算研究.航空学报.2003,24(5):400-404.
    [214] 韩忠华,宋文萍,乔志德.应用于直升机旋翼跨声速气动声学计算的两种时域方法的比较.航空学报.2006,27(5):756-762.
    [215] Boxwell D A, Yu Y H, Schmitz F H. Hovering Impulsive Noise: Some Measured and Calculated Results. Vertica. 1979, 3(1): 35-45.
    [216] Kuntz M. Rotor Noise Prediction in Hover and Forward Flight Using Different Aeroacoustic Methods. AIAA Paper 1996-169, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700