小尺度固液两相流中旋转科氏力的试验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地转科氏力对大尺度水域水流运动的影响比较明显,在小尺度流体运动过程中一般把地转科氏力忽略不计,而对小尺度旋转多相流中固体颗粒是否受到旋转科氏力的影响,国内外的研究很少。本文采用试验研究和数值模拟方法对垂直放置与水平放置螺旋管道内球形单颗粒运动特性进行分析。试验过程中使用高速摄像机捕捉颗粒运动轨迹以获取其运动参数,采用单颗粒动力学模型分析颗粒在旋转流中的运动特性和受力规律。数值模拟过程中采用RNGκ-ε模型以及加载基于C语言的UDF文件的动网格技术,对二维垂直放置的螺旋管道内颗粒运动进行研究。得到以下主要结论:
     (1)垂直放置的螺旋管道在同一流量下,单颗粒无论在上升还是下降过程中,所受旋转科氏力、离心力和阻力随着管轴半径的减小而增大。颗粒在整运动过程中所受离心力随流量的增大或管轴半径的减小而增大,而且离心力的量值在整个过程中占据了重要作用。阻力和旋转科氏力在量值上具有同步性,而且两者量值上相差不大。重力对颗粒有较大的影响作用。速度无量纲量λ(颗粒切向速度与水流速度之比)与力的无量纲量ζ(旋转科氏力与离心力之比)存在明显的指数关系。颗粒所受旋转科氏力可以忽略的情况出现次数相对较少,约占实测总样本的四分之一
     (2)垂直放置的螺旋管道内作悬浮旋转运动的单颗粒,在整个运动过程中,主要受到有效重力、阻力的作用,在径向分量上主要受到旋转科氏力和有效重力的作用。在一定条件下,旋转科氏力与离心力满足抛物线的关系。绝大多数情况下,颗粒所受旋转科氏力为离心力的2~3个数量级。
     (3)水平放置的螺旋管道内作运动的单颗粒,主要受到离心力、阻力和旋转科氏力作用,但阻力径向分量作用较小。在同一管轴半径下,阻力随流量的增大而减小,旋转科氏力和离心力则随流量的增大而增大。在同一流量下,颗粒所受离心力随管轴半径的减小而增大,而旋转科氏力变化较为复杂,但总体而言,随管轴半径的减小而增大。无量纲量λ与ζ存在明显的指数关系。颗粒所受旋转科氏力不能忽略的样本数约占实测总样本数的四分之三。
     (4)采用动网格技术控制单颗粒运动轨迹的方法,对垂直放置螺旋管道内颗粒进行二维数值模拟,结果表明:在上升过程中,颗粒主要受到阻力、有效重力和旋转科氏力作用,而离心力与虚假质量力则较小。与实测数据相比,旋转科氏力的量值偏大,而离心力和阻力的量值偏小。在下降过程中,颗粒主要受到阻力、有效重力、离心力及旋转科氏力的作用,而虚假质量力则较小。与实测数据相比,而离心力和旋转科氏力的量值比较接近,但阻力比实测数据偏大,阻力径向分量偏大较明显。数值模拟能够较准确地反映颗粒的运动过程,数值模拟结果与试验数据比较吻合。
     无论是在垂直放置与水平放置的螺旋管道的模型试验,还是数值模拟过程中,颗粒所受旋转科氏力作用均占较大比例,即在小尺度低速度旋转流中,在受力分析中旋转科氏力不应被忽略。
Coriolis effect is obviously of water movement in large-scale water-area, and in small-scale flow, Coriolis force can be negligible, but there is little research for rotational Coriolis force in small-scale rotational multiphase flow in home and abroad. In this thesis, experiments and numerical simulation are done in vertical and horizontal spiral duct to study motion characteristics and force analysis of spherical single particle. In experiment, works are done by catching particle trajectory using high-speed camera and employing kinetic model of single granular. In numerically simulation, the RNGκ-εmethod and dynamic mesh method loaded UDF file based C language are employed to simulate a single particle trajectory in two-dimensional vertical spiral duct. The major conclusions are as following.
     (1) In vertical spiral duct, at the same flow, both in rising movement and in decline movement, rotational Coriolis force, centrifugal force and drag force upon single particle increase with pipe radius decrease. In whole movement, centrifugal force upon particle increases with the flow increase or with the pipe radius decrease, and the value of centrifugal force is an important role. The value of rotational Coriolis force sync with drag force, and both value are similar. Effectual gravity upon a particle is important in the whole movement. There is exponential relation between dimensionless quantityλandζ. The samples number of rotational Coriolis force which can be ignored measured measured about one-quarters of the total.
     (2) In the whole movement of a single particle suspended in vertical spiral duct, effective gravity, rotational Coriolis force and drag force are mainly effect upon the single particle, but in radial component, the main force are rotational Coriolis force and effective gravity, others are small. On some conditions, there is parabolic relation of rotational Coriolis force to centrifugal force. Rotational Coriolis force upon single particle is larger than centrifugal force 2 to 3 orders of magnitude in most conditions.
     (3) In horizontal spiral duct, centrifugal force, rotational Coriolis force and drag force are mainly effect upon the single particle, but the radial component of drag force is very small. At the same pipe radius, drag force decreases with flow increase, while rotational Coriolis force and centrifugal force increases with flow increase. At the same flow, centrifugal force upon particles decreases with pipe radius increase, while the changes of rotational Coriolis force is complicated, but it increase with pipe radius increasing in most codition. There is exponential relation between dimensionless quantityλandζ. The sample number of rotational Coriolis force which can not be ignored measured about three-quarters of the total.
     (4) The dynamic mesh method is employed to numerically simulate a single particle trajectory in two-dimensional vertical spiral duct. The results show that:In rising movement, effective gravity and Coriolis force rotation are mainly effect upon the single particle, while centrifugal force and virtual mass force are small. Compared with the measured data, the magnitude of rotational Coriolis force is larger, while centrifugal force and drag force are smaller. In decline movement, effective gravity, centrifugal force and rotational Coriolis force are mainly effect upon the single particle, while virtual mass force is small. Compared with the measured data, the magnitude of centrifugal force and rotational Coriolis force are close to, but drag force is larger than the measured data, especially in the radial component of drag force. The simulation can reflex the movement of particle in the experiment, and the results agree with experiment data of forces.
     Therefore, both in experiments which were done in vertically or horizontal spiral duct and in numerical simulation, the proportion of rotational Coriolis force upon the single particle is major, that is, the rotational Coriolis force should not be ignored on force analysis of a particle in a small-scale low-velocity rotational two-phase flow.
引文
[1]Anders O. Persson. The Coriolis Effect:Four centuries of conflict between common sense and mathematics [J]. History of Meteorology,2005(2):1-24.
    [2]D.J.特里顿.物理流体力学[M].董务民,等译.北京:科学出版社,1986.
    [3]钱宁,张仁,周志德.河床演变学[M].北京:科学出版社,1987.
    [4]侯杰,周著.河流泥沙工程[M].乌鲁木齐:新疆教育出版社,2002.
    [5]刘大有.现有泥沙理论的不足和改进一扩散模型和费克定律适用性的讨论[J].泥沙研究,1996(3),39-45.
    [6]Pai S I., Fundamental equations of a mixing of a gas and small spherical solid particles from kinetic theory [J]. Math.Phys.Sci.,1991(8):1-15.
    [7]Anderson T. B., Jackson R. A fluid mechanical description of fluidized beds:Equations of motion[J]. I & EC Fundamentals,1967,6(4),527-539.
    [8]Soo S.L..Fluid Dynamics of Multiphase Systems[M]. Blaisdell Publishing Co., Waltham, 1967,1-100.
    [9]Walks G.B.. One Dimensional Two-phase Flow [M]. McGrall-Hill, New York,1969,1-100.
    [10]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社,2007.
    [11]Tchen C.M. Mean values and correlation problems connected with the motion of small particles suspended in a turbulent fluid [D]. Ph. D. Thesis, Delft,1947.
    [12]Corrsin S. and Lumley J.L. On the equation of motion for a particle in turbulent fluid [J]. Appl. Sci. Res.,1956,6:114-121.
    [13]Lumley J.L. Some problems connected with the motion of small particles in turbulent fluid [D]. Ph.D. Thesis, Johns Hopkins Univ., Baltimore,1957.
    [14]Maxey M.R. and Riley J.J. Equation of motion for a small rigid sphere in a non-uniform flow[J]. Phys. Fluids,1983,26:883-889.
    [15]刘小兵.固液两相流动及在涡轮机械中的数值模拟[M].中国水利电力出版社,1996.
    [16]Zhou L X, Lin W Y, Jiang Z. Numerical modeling of evaporating spray two-phase flows caused by opposite injection of a swirl atomizer in duct [J]. Combus Sci & Tech,1984,3: 56-64.
    [17]李会雄,栾合飞,陈听宽,等.注水井投球调剖工艺的理论与实验研究[J].油田化学2003,20(2):113-118.
    [18]Crowe C T. Review-Numerical Models for Dilute Gas-Particle Flows. Journal of Fluids Engineering [J]. Trans. ASME,1982,104(3):297-303.
    [19]Crowe C T, T routt T R, Chung J N. Numercal Models for Two-Phase Tuibulent Flows [J]. Annual Review of Fluid Mechanics.1996,28:11.
    [20]Smoot L D, P J. Coal Combustion and Gasification [M]. Plenum Press,1985.
    [21]王维,李佑楚.颗粒流体两相流模型研究进展[J].化学进展,2000,12(2):208-217.
    [22]Spalding D.B. Mathematical models of continuous combustion. Emission from Continuous combustion system.Plenum Press,1972.
    [23]Jackson R. The mechanics of fluidized beds [J]. Trans. Inst. Chem. Eng.1963,41:13-28
    [24]Murray J.D. On the mathematics of fluidization. Part 2. Steady motion of fully developed bubbles [J]. Fluid Mech,1965,22:57-80.
    [25]Anderson T.B., Jackson R. A fluid mechanical description of fluidized beds [J]. I&EC Fundamentals,1967,6:527-539.
    [26]Soo S.L. Multiphase Fluid Dynamics [M]. Univ. of Illinois, Urabana,1983.
    [27]Drew D.A. Strd.Appl. Math,1971,5(3).
    [28]岑可法,樊建人著.工程气固多相流动的理论及计算[M].浙江:浙江大学出版社,1990.
    [29]Spalding D.B. Basic two-phase flow modeling in reactor safety and performance[C]. EPP1 Workshop Proceedings,1980.
    [30]周力行.欧拉坐标系中有相变的颗粒多相流的连续介质模型[C].第二届全国多相流力学,牛顿流体力学,物理化学流体力学学术会议论文汇编(上),1982.
    [31]Ishill, M.& Mishima, K. Two-fluid Model and hydrodynamic constitutive relations[J]. Nucl. Ene.& Des.,1984,82:107-126.
    [32]Zuber,N.& Findlay. J.A.. Average Volumetric Concentration in Two-Phase Flow Systems [J]. Heat Trans.,1965,87:453-468.
    [33]Pai S I., Fundamental equations of a mixing of a gas and small spherical solid particles from kinetic theory [J]. J. Math. Phys. Sci.,1991, (8):1-15.
    [34]Verloop, W.C. Teh inertial coupling force [J]. Int. J. Multiphase Flow,1995,21:929-933.
    [35]Ungarish, M. Hydrodynamics of suspensions:Fundamentals of centrifugal and gravity separation. Berlin:Springer,1993.
    [36]张人权,梁杏,万军伟.历史时期长江中游河道演变与洪灾发展的规律[J].水文地质工程地质,2003(4):26-30.
    [37]岳前进,张希,季顺迎.辽东湾海冰漂移的动力要素分析[J].海洋环境科学.2001,20(4):34-39.
    [38]高钰涯.尼亚加拉河流及瀑布演化浅析[J].水资源保护,2008,24(6):80-84.
    [39]刘南威.自然地理学[M].北京:科学出版社,2005.
    [40]贾建军,闾国年,宋志尧,等.中国东部边缘海潮波系统形成机制的模拟研究[J].海洋与湖沼,2000,31(2):159-166.
    [41]于东生,田淳,严以新.长江口水流运动特性分析[J].水运工程,2004(1):49-53.
    [42]许世远,王靖泰,李萍.论长江三角洲发育的阶段性[C].海岸河口区动力,地貌,沉积过程论文集,北京:科学出版社,1985.
    [43]金元欢,沈焕庭.科氏力对河口分叉的影响[J].海洋科学,1993,88(4):52-56.
    [44]刘凤岳,武桂秋.科氏力对黄河口淤积延伸和摆动的影响[J].人民黄河,1987(4):34-39.
    [45]李国英.黄河河势演变中科氏力的作用[J].水利学报,2007,12(38):1409-1413.
    [46]Ashabul Hoque, Azizur Rahman.A study of Coriolis effects on long waves propagating in an unbounded ocean, channel and basin[J]. Ocean Engineering,2007(34):1701-1705.
    [47]范植松.水平科氏力对内波平均流相互作用的影响[J].海洋学报,1988,10(1):16-30.
    [48]张南翔.科里奥利力质量流量计原理及在天然气计量方面的应用[J].石油仪器,2002(3):18-20.
    [49]许秀.科里奥利质量流量计原理及其应用[J].工业仪表与自动化装置,2005(1):52-54.
    [50]范本隽,周一届.U型科里奥利质量流量计的力学分析与灵敏度计算[J].无锡轻工大学学报,1998(4):81-85.
    [51]朱蕴璞,高欣宝,陈锦荣.科里奥利质量流量计灵敏度特性分析计算[J].南京理工大学学报,1997(6):498-501.
    [52]章本照,陈华军,张金锁.旋转环形截面弯管内流场结构及换热特性[J].空气动力学学报,2002,20(2):21-30.
    [53]苏霄燕,章本照,方勇军,等.旋转方形截面螺旋管内流动与传热特性[J].应用力学学报,2004,21(2):46-50.
    [54]张金锁,章本照,陈倩.旋转矩形截面弯管内流动特性的研究[J].空气动力学学报,2001,19(2):135-147.
    [55]章本照,张金锁.旋转弯管内粘性流动特性的研究[J].空气动力学学报,2000,18(3):336-344.
    [56]I. Leshev, G. Peev. Film flow on a horizontal rotating disk [J]. Chemical Engineering & Processing.2003 (42):925-/929.
    [57]Shawn Lillie. Orbital Mixing In Comsol Using Coriolis and Centrifugal Forces [D].University of Washington,2007,4.
    [58]Middleton, G.V. Sediment deposition from turbidity currents[J]. Annual Review of Earth and Planetary Sciences,1993,21:89-114.
    [59]Huppert, H.E. Quantitative modelling of granular suspension flows [D]. Philosophical Transactions of the Royal Society of London A,1998,356:2471-2496.
    [60]Kneller, B., Buckee, C.. The structure and fluid mechanics of turbidity currents:a review of some recent studies and their geological implications[J]. Sedimentology,2000,47:62-94.
    [61]Ungarish, M., Huppert, H.E. Simple models of Coriolis-influenced axisymmetric particle-driven gravity currents[J]. International Journal of Multiphase Flow,1999,25: 715-737.
    [62]Mathew G. Well.How Coriolis forces can limit the spatial extent of sediment deposition of a large-scale turbidity current[J]. Sedimentary Geology,2009(218):1-5.
    [63]李永强,郭星辉,李健.科氏力对旋转叶片动频的影响[J].振动与冲击,2006,1(25):79-81.
    [64]徐自力,李辛毅,Park Jong-Po.等.科氏力对高速旋转汽轮机叶片动态特性的影响[J].西安交通大学学报,2003,9(9):894-897.
    [65]徐自力.汽轮机叶片的现代力学分析及疲劳可靠性研究[D].西安:西安交通大学能源与动力工程学院,1997.
    [66]韩新月,申新贺,陈严,等.科氏力对水平轴风力机叶片的影响[J].能源工程,2008(3):8-1].
    [67]高忠信,周先进,张世雄,等.水轮机转轮固液两相三维紊流计算及磨损预估[J].水利学报,2002:37-43.
    [68]王艺义.旋转科氏力在小尺度液固两相流中对泥沙运动影响的研究[D].乌鲁木齐:新疆农业大学,2010.6
    [69]林建忠.流-固两相流拟序涡流及稳定性[M].北京:清华大学出版社,2003.8.
    [70]江帆,黄鹏FLUENT高级应用与实例分析[M].北京:清华大学出版社,2008.
    [71]Clift R. Bubble. drops and particles. New York:Academic Press,1978.
    [72]黄社华,李炜,陈良骏,等.任意流场中变速稀疏颗粒运动方程及其性质[J].应用数学和力学,2000,21(3):265-276.
    [73]Basset A.B.Hydrodynamics[M]. Dover:New York,1961,2:285-292.
    [74]L.普朗特,K.奥斯瓦提奇,K.维洛哈特.流体力学概率[M].郭永怀,陆士嘉译.北京:科学出版社,1981.
    [75]吴锤结,王明,王亮.湍流风场中三维风成沙波纹形成过程的大涡模拟研究[J].中国科学(G辑),2008,38(6):637-652.
    [76]姜远新.球形颗粒在静止溶液中自由上升行为研究[D].大连:大连理工大学,2009.5.
    [77]Saffman P G. The lift on a small sphere in a slow shere flow[J]. Journal of Fluid Mechanics, 1965,22:385-400.
    [78]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [79]Fluent Inc. Fluent6.3 User's Guide. December 2003.
    [80]Yakhot, V., Orszag, S.A. Renormalization group analysis of turbulence[J]. Journal of Scientific Computing,1986,1(1):3-5.
    [81]Patanker S.V., D.B. Spalding. A calculation pressure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. Int J Heat Mass Transfer,1972,15:1787-1806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700