板材粘性介质胀形过程力学行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高强度、低塑性轻质合金在现代工业中的应用越来越广泛,如何提这类材料的成形性成为板材加工领域的研究热点之一。粘性介质压力成形(Viscous Pressure Forming, VPF)是一种板材软模成形新工艺,采用高粘度、可流动的半固态软模(称为粘性介质)作为传力介质,能够提高成形件的形状尺寸精度、表面质量和壁厚分布均匀性,在金属精密塑性成形中具有良好的应用前景。深入研究粘性介质对板材变形的影响规律,对于粘性介质性能的合理利用和成形方案的优化具有重要的指导意义。本文通过粘性介质压力胀形(Viscous Pressure Bulge, VPB)过程的光测试验分析、理论分析和有限元分析手段,系统地研究了粘性介质对板材稳定变形和失稳发展过程的影响规律,得到粘性介质切向粘着应力对试件材料流动、形状、应力应变分布以及变形薄弱区失稳发展过程的影响规律,解释了粘性介质有助于提高VPF板材变形均匀性和成形极限的原因。根据本文的工作不仅可以加深对粘性介质与板材相互作用过程的理解,而且可以扩展粘性介质压力成形的应用范围,对于实际生产具有重要的指导意义。
     首先,设计了粘着拉伸试验和光塑性测量方法相结合的试验方案,分析切向粘着应力作用下板材单向拉伸变形行为,并与传统单向拉伸试验进行比较分析。获得了聚碳酸酯试件的等差线条纹图,根据条纹分布对粘着拉伸试件平面内的应变分布进行全场定性分析和定量计算,并且分析了粘着拉伸试件应力状态,得到应力应变关系。结果表明切向粘着应力可以使试件发生较大的塑性变形,粘着拉伸试件的变形符合传统单向拉伸试件变形规律。面分布的切向粘着应力可提高试件应力和应变分布的连续性和稳定性,有利于延缓应变集中的发生。
     利用投影散斑数字相关(Projected Speckle Digital Correlation, PSDC)方法的连续测量特征,设计粘性介质压力胀形过程试件三维形状的投影散斑测量装置,分析不同粘度粘性介质和不同加载速度条件下试件形状的变化规律,确定切向粘着应力对胀形试件应力和应变分布的影响。相对于液压胀形试件,粘性介质胀形试件半径较大处趋于扁球状,试件顶端区域趋于长椭球状。切向粘着应力随介质粘度和加载速度增加而增大,促进半径较大区域的变形,阻碍试件中心的变形,降低应变梯度,使应变分布趋于均匀。试件顶点的流动应力随介质粘度减小和加载速度增加而增大。
     利用电子散斑干涉方法(Electronic Speckle Pattern Interferometry, ESPI)连续测量了胀形过程的应变速率,根据应变速率分布特点分析试件的应变集中现象,研究了分散性失稳和集中性失稳发展过程。通过散斑条纹图实时观察了缺陷发展引起分散性失稳、凹槽形成和扩展、引起集中性失稳直至试件破裂的失稳演化全过程,确定了分散性失稳和集中性失稳极限应变,研究粘性介质对胀形试件失稳发展过程的影响。试验结果表明粘性介质提高胀形试件成形极限的主要原因是粘性介质能明显延缓板材缺陷出现和发展,阻碍失稳区扩展,提高分散性失稳极限应变,从而提高了集中性失稳极限应变。
     其次,在形状变化与失稳过程试验研究结果的基础上,建立了有限元模型对粘性介质胀形失稳过程进行分析。采用带有损伤效应的塑性模型作为板材材料模型,通过有限元方法得到胀形试件缺陷出现和发展、分散性失稳、集中性失稳和破裂等各失稳阶段失稳区内的变形发展过程,失稳区位置、形状和发展过程与试验结果比较一致。有限元分析模型可为粘性介质压力成形试件的成形极限预测和成形方案的优化提供指导。
     最后,建立了加入切向粘着应力的粘性介质胀形理论分析模型,研究切向粘着应力对胀形试件应力状态和形状、应变分布等力学行为的影响规律。理论分析结果与试验结果相互验证,解释了粘性介质使试件应变分布趋于均匀的试验现象,并预测了粘性介质对试件变形危险点位置的影响规律,为切向粘着应力的合理应用提供了理论指导。
The forming application of high strength and lightweight alloys are wider and wider in modern industry. The way to promote the quality of these materials becomes one of the research focuses. Viscous Pressure Forming (VPF) is one of the soft-die forming processes for sheet metal proposed in recent years. The high viscous, flowable and semi-solid soft-die (so-called viscous medium) can promote the dimensional accuracy, surface quality and thickness uniformity of parts. VPF has a good application prospect in precision plastic forming. Research on the influence of viscous medium on sheet metal formability possesses guiding significance for reasonable using of viscous medium and optimization of processing scheme. In this dissertation, optical measuring methods for experimental research, theoretical analysis and Finite Element Analysis (FEA) are combined to analyze the influence of viscous medium on both stable and instable deformation behavior of specimens in Viscous Pressure Bulging (VPB). The influence of tangential adhesive stress on material flow, shape, stress and strain distributions and evolution of weak region of the specimen is obtained. The way how viscous medium promotes uniformity and forming limit of sheet metals is explained. The obtained results would help deeper understanding the interaction of viscous medium and sheet blanks and possess guiding significance for VPF applications.
     Firstly, the tension of specimens loaded by tangential adhesive stress is researched by viscous adhesive tensile test. Photoplastic method is used for qualitative and quantitative analysis of the specimens’strain distributions. Relation of stress and strain is also obtained. Deformations of viscous adhesive tensile specimens agree well with that of uniaxial tensile specimens. The surface loaded tangential adhesive stress can promote the continuity and stability of deformation. Strain localization of specimen is postponed as a result.
     Projection speckle digital correlation method is applied in the 3D shape measurement of viscous pressure bulge specimen. The influence of viscous medium and loading speed on specimens’shape, strain and stress distributions during the whole deformation process is analyzed. The tangential adhesive stress increases with viscosity of viscous medium and loading speed. The deformation of VPB specimen is promoted by viscous medium at positions away from the center of the specimen. However, viscus medium would restrain the deformation at the apex of the dome. The strain gradient along the specimen’s radius is decreased. Curvature radius on the apex of dome is measured by PSCM to calculate flow stress. Flow stress increases with lower viscous medium viscosity or larger loading speed.
     Electronic speckle pattern interferometry is applied in the real-timely strain rate measurement of VPB. Strain localization and diffuse necking and localized necking of VPB specimen are analyzed though strain rate distribution. The evolution of weaken region, including defect emergence, diffuse necking, groove expanding and the onset of localized necking are observed directly and real-timely. The effects of viscous medium properties on the deformation of specimen from stable stage to failure process are discussed. Critical strains on diffuse necking and localized necking are determined with higher accuracy. Experimental results show that visocus medium can distinctly delays the evolution of weaken region and the onset of diffuse necking. The critical strain of diffuse necking is increased. So the forming limit is improved.
     Secondly, the effect of viscous medium on the instable deformation of VPB specimen is analyzed by finite element method (FEM). Plasticity with damage modle is used as material model to simulate the deformation of weaken region and predict necking. Each instable states including emergence of flaw, diffuse necking, localized necking and broken are simulated successfully by the proposed FEM model. Results such as weaken region’s location, shape, and evolution agree well with the results measured by ESPI. This model indicates a new way for quality prediction and forming method optimization of VPF.
     A theoretical model of VPB is proposed to consider the effect of tangential adhesive stress on specimens’shape, stress and strain distribution. Variety of specimen’s shape and strain distribution are explained. The location of largest strain is predicted. The results provide theoretical foundation for usage of vicous medium.
引文
[1]苑世剑.轻量化成形技术[M].北京:国防工业出版社,2010:1-5.
    [2] Roades M L, Roades L J. Method and Apparatus for Die Forming Sheet Materials[P]. United States Patent,1992,No. 5085068.
    [3]戴美云,周贤宾.高压橡皮囊成形工艺及应用[J].航空制造工程,1994,(9):12-18.
    [4] Siegert K. Recent Developments in Hydroforming Technology[J]. Journal of Materials Processing Technology,2000,98(2):251-258.
    [5]袁清华,黄重国,吴昕.轻合金板材气压成形工艺的研究与应用[J].轻合金加工技术,2008,36(4):6-11.
    [6]王新云,夏巨谌,胡国安等.粘性介质压力成形研究进展(上)[J].锻压技术,2003:40-43.
    [7] Wang Z J, Liu J G, Wang X Y, et al. Viscous Pressure Forming (VPF): State-of-the-art and Future Trends[J]. Journal of Materials Processing Technology,2004,151:80-87.
    [8]王忠金.粘性介质压力成形技术(VPF)研究—王仲仁教授指导的学术新方向[J].塑性工程学报,2004,11(2):41-53.
    [9] Wang Z J, Liu J G, Wang Z R. The Role of Interface Adhesive Friction Stress during Viscous Pressure Forming (VPF) [J]. Proceedings of Second International Conference on Technology in Manufacturing Processes. Nyborg, Denmark,2004,6:613-620.
    [10] Ahmetoglu M, Hua J, Kulukuru S. Hydroforming of Sheet Metal Using a Viscous Pressure Medium[J]. Journal of Materials Processing Technology,2004,146:97-107.
    [11] Leonid B S, Ronald A P, Mustafa A A, et al. Blank Holder Force (BHF) Control in Viscous Pressure Forming (VPF) of Sheet Metal[J]. Journal of Materials Processing Technology,2000,98:7-16.
    [12]李新军,万敏,周贤宾.粘介质成形工艺特点与应用分析[J].锻压技术,1999,(6):28-30.
    [13]刘建光,王忠金,王仲仁,王新云,卢玉红,王君平.涡扇发动机铝合金碗形件的粘性介质压力成形[J].推进技术,2003,24 (6):573-576.
    [14] Wang Z J, Wang X Y, Wang Z R. Study of the Effect of Blank HolderPressure (BHP) on Viscous Pressure Forming (VPF) Aluminum Alloy Ladder Parts[J]. Transaction of Nonferrous Metals Society of China,2002,12(1):109-114.
    [15] Wang X Y, Wang Z J, Wang Z R. Finite Element Analysis and Experiment Research on Aluminum Alloy Ladder Bowl with Viscous Pressure Forming (VPF) [J]. Journal of Harbin Institute of Technology,2002,2(9):1-5.
    [16] Wang X Y, Wang Z J, Wang Z R. Numerical Simulation of Aluminum Alloy Ladder Parts with Viscous pressure Forming[J]. Transaction of Nonferrous Metals Society of China,2003,13(2):391-397.
    [17] Wang Z J, Wang X Y, Wang Z R. Viscous Pressure Forming (VPF) of Corrugated Thin-walled Sheet Part with Small Radius[J]. Journal of Materials Processing Technology,2004,145(3):345-351.
    [18]高铁军,王忠金.加载方式对黏性介质外压缩径成形的影响[J].模具工业,2009,35(1):23-27.
    [19]高铁军,王忠金,李毅.薄壁筒形件粘性介质外压缩径失稳起皱分析[J].材料科学与工艺,2010,18(4):289-293.
    [20]高铁军,王忠金.变径薄壁零件粘性介质外压缩径变形分析[J].锻压技术,2009,34(1):16-19.
    [21]高铁军,贺平,王忠金.薄壁零件粘性介质外压缩径成形及数值模拟[J].机械设计与制造,2010,6:132-133.
    [22]高铁军,王忠金,邓建懂.缩径区长度对粘性介质外压缩径成形的影响[J].锻压技术,2007,32(5):23-26.
    [23]高铁军,王忠金.缩径区形状对粘性介质外压缩径成形的影响[J].塑性工程学报,2009,16 (6):77-80.
    [24]高铁军,王忠金.筒坯直径对黏性介质外压缩径成形的影响[J].模具工业,2009,35(6):35-38.
    [25]高铁军,王忠金,宋辉. 1Cr18Ni9Ti薄壁曲面件粘性介质内、外压力成形[J].塑性工程学报,2006,13(3):40-43.
    [26] Wang Z J, Gao T J. Inner and Outer Pressure Forming of Nickel Based Super-alloy Thin-walled Part with Variable Diameter Sections[J]. Transaction of Nonferrous Metals Society of China,2008,18:285-290.
    [27]高铁军,郭德龙,王忠金.薄壁变径构件黏性介质内压成形方法及应用研究[J].现代制造工程,2010,(6):96-98.
    [28]刘建光,王忠金,李毅等.铝合金圆锥形零件粘性介质温成形研究[J].锻压技术,2007,32(5):33-36.
    [29] Bariani P F, Salvador M, Lucchetta G. Development of a Test Method for the Rheological Characterization of Polymers under the Injection Molding Process Conditions[J]. Journal of Materials Processing Technology,2007,191:119-122.
    [30] Bariani P F, Bruschi S, Ghiotti A, et al. An Approach to Modelling the Forming Process of Sheet Metal-Polymer Composites[J]. Annals of the CIRP,2007,56(1):261-264.
    [31]胡世光,陈鹤峥,李东升等.板料冷压成形的工程解析[M].北京:北京航空航天大学出版社,2009:194-227.
    [32]王新云,夏巨谌,胡国安等.板料粘性介质胀形、聚氨酯以及钢凸模胀形的实验研究[J].金属成形工艺,2003, 21(2):10-12.
    [33] Liu J, Westhoff B, Ahmetogla M, Altan T, Application of Viscous Pressure Forming (VPF) to Low Volume Stamping of Difficult-to-forming Alloys—Results of Preliminary FEM Simulations[J]. Journal of Materials Processing Technology,1996,53 (1):49-58.
    [34]高铁军.1Cr18Ni9Ti轴对称曲面板材构件VPF工艺研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2003:22-36.
    [35] Wang Z J, Li Y. Formability of 6k21-T4 Car Panel Sheet for Viscoelastic-plastic Flexible-die Forming[J]. Journal of Materials Processing Technology,2008,21:408-412.
    [36]高铁军.薄壁变形零件粘性介质外压缩径成形机理及应用研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2008:30-64.
    [37] Vollertsen F, Niehoff H S. Homogenisation of Thickness through High Viscous Fluid Flow[J]. CIRP Annals,2003,52(1):223-236.
    [38] Niehoff H S, Vollertsen F. Principle of Hydroforming Influenced by High Viscous Fluid Flows[C]. Proceedings of 7th ICTP,Yokohama,2002,2:1447-1452.
    [39] Geiger M, BóP D, Hecht J. Improvement of Formability in Tube Hydroforming by Reduction of Friction with a High Viscous Fluid Flow[C]. Proceedings of the 11th International Conference on Sheet Metal ,Erlangen:University Erlangen-Niirnbereg,2005:369-376.
    [40]刘建光,王忠金,高铁军.板材粘性介质压力成形粘性附着力影响因素试验研究[J].机械工程学报,2006,42(10):146-150.
    [41]宋辉. VPF粘性传力介质力学性能的实验研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2004:25-36.
    [42]王新云.薄板件粘性介质压力成形过程数值模拟与试验研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2002:20-27.
    [43] Gutscher G, Wu H C, Ngaile G, et al. Determination of Flow Stress for Sheet Metal Forming Using the Viscous Pressure Bulge (VPB) Test[J]. Journal of Materials Processing Technology,2004,146:1-7.
    [44] Nasser A, Yadav A, Pathak P, et al. Determination of the Flow Stress of Five AHSS Sheet Materials (DP 600, DP 780, DP 780-CR, DP 780-HY and TRIP 780) Using the Uniaxial and the Biaxial Viscous Pressure Bulge (VPB) Tests[J]. Journal of Materials Processing Technology,2010,210:429-436.
    [45]王忠金,王仲仁.板料粘性介质胀形过程应变速率的模拟研究[J].塑性工程学报,1999,(3):46-48.
    [46]王哲.法向压力加载方式对板材塑性变形行为的影响研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:78-83.123-128.
    [47] Wang Z J, Liu J G, Wang Z R, Jun L. Deformation Behavior of Sheet Metals and Viscous Medium in Viscous Pressure Bulging Process with Back Viscous Pressure[J]. Transaction of Nonferrous Metals Society of China,2003,13 (special1):136-139.
    [48]邢晓冬,郭斌,杨玉英.半球形件粘性介质压力成形的数值模拟研究[J].金属成形工艺,2002,20:20-22.
    [49]王忠金,王仲仁,杨海峰.非均匀压边力板料粘性介质拉深成形的试验研究[J].塑性工程学报,1999,6(2):50-52.
    [50] Wang Z J, Wang X Y, Wang Z R. Effect of Blank Holder Pressure on Viscous Pressure Forming Aluminum Alloy Ladder Parts[J]. Transaction of Nonferrous Metals Society of China,2002,12(1):109-114.
    [51] Wang Z J, Wang X Y, Wang Z R. Viscous Pressure Forming (VPF) of Corrugated Thin-walled Sheet Part with Small Radius[J]. Journal of Materials Processing Technology,2004,145(3):345-351.
    [52]刘建光.粘性介质压力成形有限元分析与实验研究[D].哈尔滨:哈尔滨工业大学博士论文,2006:32-40.
    [53] Liu J G, Wang Z J, Wang Z R. Numerical Simulation of the Influence of Viscous Adhesive Stress on the Viscous Pressure Bulging Process of Hemispherical Sphere[J]. Transaction of Nonferrous Metals Society of China,2003,13 (6):1354–1359.
    [54] Wang Z J, Liu J G, Wang Z R. The Role of Interface Adhesive Friction Stress During Viscous Pressure Forming (VPF)[C]. Proceedings of Second International Conference on Technology in Manufacturing Processes,Nyborg,2004:613-620.
    [55] Wang Z J, Li Y, Liu J G, et al. Evaluation of Forming Limit in Viscous Pressure Forming of Automotive Aluminum Alloy 6k21-T4 Sheet[J]. Transaction of Nonferrous Metals Society of China,2007,17:1169-1174.
    [56] Liu J, Ahmetoglu M, Altan T. Evaluation of Sheet Metal Formability, Viscous Pressure Forming (VPF) Dome Test[J]. Journal of Materials Processing Technology,2000,98:1-6.
    [57] Kim H, Yamanaka M, Altan T. Prediction and Elimination of Ductile Fracture in Cold Forging Using FEM Simulations[J]. Trans. NAMRI/SME XXIII,1995:63-69.
    [58] Gleyzal A. Plastic Deformation of a Circular Diaphragm under Pressure[J]. Journal of Applied Mechanics,1948,70:288-296.
    [59] Hill R. A Theory of Plastic Bulging of a Metal Diaphragm by Lateral Pressure[J]. Philosophical Magazine Ser. 7,1950,41 (322):1133-1142.
    [60] Ross E W, Prager W. On the Theory of the Bulge Test[J]. Q. Appl. Math,1954,12(1):86-91.
    [61] Shang H M, Hsu T C. Deformation and Curvatures in Sheet-metal in the Bulge Test[J]. Transaction of the ASME,1979,101:341-347.
    [62] Ilahi M F, Parmar A, Mellor P B. Hydrostatic Bulging of a Circular Aluminium Diaphragm[J]. International. Journal of Mechanical. Science,1981,23:221-227.
    [63] Tan Z, Melin L, Magnusson C. Application of an Image Processing Technique in Strain Measurement in Sheet Metal Forming[J]. Journal of Materials Processing Technology,1992,33:299–310.
    [64]马瑞,赵军,杨嵩,李建.简单形状零件拉深成形智能化控制技术研究[J].材料科学与工艺,2008,16(4):449-453
    [65] Geiger M, Merklein M. Determination of Forming Limit Diagrams– a New Analysis Method for Characterization of Materials’Formability[J]. Annals of CIRP,2003,52(1):213-216.
    [66] Arrieux R, Chalons J M, Bedrin C, et al. Computer Aided Method for the Determination of the FLD at Necking[J]. Annals of ClRP,1984,33(1):171–174.
    [67] Kaya S, Altan T, Groche P, et al. Determination of the Flow Stress of Magnesium AZ32-O Sheet at Elevated Temperatures Using the Hydraulic bulge test[J]. International Journal of Machine Tools and Manufacture,2008,48:550-556.
    [68] Stachowicz F. Biaxial Stress-strain Relationship of Sheet Metal from Hydraulic Bulging Test[C]. Proceedings of 5th International Multidisciplinary Conference,2003:469-474.
    [69] Young R F, Bird J E, Duncan J L. An Automated Hydraulic Bulging Tester[J]. Journal of applied metalworking,1981,2(1):11-18.
    [70] Santos A D, Mendes J G, Almeida F G, et al. Developing a Bulging Tester for Sheet Metal Stress-strain Determination[C]. Proceedings of 3rd International Conference on Integrity, Reliability and Failure ,Porto/Portugal,2009:560-569.
    [71]王开福,高明慧,周克印.现代光测力学技术[M].哈尔滨:哈尔滨工业大学出版社,2009:128-157.
    [72] Koc M, Billur E, Cora O N. An Experimental Study on the Comparative Assessment of Hydraulic Bulge Test Analysis Methods[J]. Materials and Design,2011,32:272–281.
    [73] Keeler S P, Backhofen W A. Plastic Instability and Fracture in Sheet Stretched Over Rigid Punches[J]. ASM Trans. Quart.,1963,56:25–48.
    [74]李春峰,李雪春,杨玉英.椭圆凹模液压胀形法制作成形极限图[J].材料科学与工艺,1996,4(2):101-105.
    [75]梁炳文,胡世光.弹塑性稳定理论[M].北京:国防工业出版社,1983:320-338.
    [76] Edwards C V, Guelorget B, Fran?ois M, et al. Determination of Forming Llimits of Sheet Metals by Speckle Interferometry[C]. Proceedings of 8th International Symposium on Laser Metrology,Merida,2005:699-708.
    [77] Vacher P, Haddad A, Arrieux R. Determination of the Forming Limit Diagrams Using Image Analysis by the Correlation Method[J]. Ann. CIRP.,1999,48(1):227-230.
    [78] Swift H W. Plastic Instability Under Plane Stress[J]. Journal of the Mechanics and Physics of Solids,1952,1:1–18.
    [79] Hill R. On Discontinuous Plastic States with Special Reference to Localized Necking in Thin Sheets[J]. Journal of the Mechanics and Physics of Solids,1952,1:19–30.
    [80] Marciniak Z, Kuczynski K. Limit Strains in the Processes of Stretch Forming Sheet Steel[J]. Journal of the Mechanics and Physics of Solids,1967,1:609–620.
    [81] McCarron T J, Kain K E, Hahn G T, Flanagan W F. Effect of Geometrical Defects in Forming Sheet Steel by Biaxial Stretching[J]. Materials Transactions A,1988,19A:2067–2074.
    [82] Shi M F, Gerdeen J C. Effect of Strain Gradient and Curvature on Forming Limit Diagrams for Anisotropic Sheets[J]. Journal of Materials Shaping Technology,1991,9 (4):253–268.
    [83] Neil C J, Agnew S R. Crystal Plasticity-based Forming Limit Prediction for Non-cubic Metals: Application to Mgalloy AZ31B[J]. International Journal of Plasticity,2009,5(3):379-398.
    [84] Signorelli J W, Betinetti M A, Turner P A. Predictions of Forming Limit Diagrams Using a Rate-Dependent Polycrystal Selfconsistent Plasticity Model[J]. International Journal of Plasticity,2009,25:1–25.
    [85] Eyckens P, Bael A V, Houtte P V. Marciniak–Kuczynski Type Modelling of the Effect of Through-Thickness Shear on the Forming Limits of Sheet Metal[J]. International Journal of Plasticity,2009,25(12):2249-2268.
    [86] Allwood J M, Daniel R. Generalised Forming Limit Diagrams Showing Increased Forming Limits with Non-planar Stress States[J]. International Journal of Plasticity,2009,25:1207–1230.
    [87] Lemaitre J. A Continuous Damage Mechanics Model for Ductile Fracture[J]. Journal of Engineering Materials and Technology,1985,107:83-89.
    [88] Guo Y Q, Li Y M, Bogard F, et al. An Efficient Pseudo-inverse Approach for Damage Modeling in the Sheet Forming Process[J]. Journal of Materials Processing Technology,2004,151:88-97.
    [89] Tasan C C, Hoefnagels J P M, Horn C H L J, et al. Experimental Analysis of Strain Path Dependent Ductile Damage Mechanics and Forming Limits[J]. Mechanics of Materials,2009,41:1264–1276.
    [90]陈光南,胡世光.板材拉伸成形中损伤、失稳与成形极限曲线的建立[J].塑性工程学报,1994,1(1):31-36.
    [91]朱明海,范琳.现代光塑性[M].北京:国防工业出版社,1995:8-20.
    [92] Karalekas D E, Agelopoulos A. On the Use of Stereo Litho Graphy Built Photoelastic Models for Stress Analysis Investigations[J]. Materials andDesign,2006,27:100-106.
    [93] Abbasi N E, Cirne J S, Meguid S A. Numerical and Experimental Investigations on Contact in Thin and Thick Rings[J]. International Journal of Mechanical Sciences,1999,41:1051-1066.
    [94]苗张木.用光塑性方法研究Ⅰ-Ⅱ复合型裂纹尖塑性区[J].机械强度,2000,22(1):46-48.
    [95] Guagliano M, Vergani L. Experimental and Numerical Analysis of Sub-surface Cracks in Railway Wheels[J]. Engineering Fracture Mechanics,2005,72:255-269.
    [96]李仕华,刘助柏.圆柱体(H/D>1)在普通平板间镦粗时应力场的定量物理模拟[J].中国机械工程,2001,12(1):1301-1303.
    [97] Wang G, Guan J, Zhao G. A Photo-plastic Experimental Study on Deformation of Rotary Forging a Ring Workpiece[J]. Journal of Materials Processing Technology,2005,169:108-114.
    [98]贺幼良,白光润.连续包覆形腔内应变分布的三维光塑性实验研究[J].塑性工程学报,1999,6(4):75-79.
    [99]张新宇,闫伟国,宋宝韫.铝包钢线包覆型腔金属流动特性的光塑性实验研究[J].塑性工程学报,2000,7(1):79-81.
    [100] Burger C P, Oyinlola A K, Scott T E. Full Field Strain Distributions in Hot Rolled Billets by Simulation[J]. Trans.of ASME,1976:26-29.
    [101]佟景伟,李鸿琦.光力学原理及测试技术[M].北京:科学出版社,2009:157-173.
    [102] LabbéF. Strain-rate Measurements by Electronic Speckle-pattern Interferometry[J]. Optics and Lasers in Engineering,2007,45:827-833.
    [103] Toyooka S, Gong X L. Digital Speckle Pattern Interferometry for Observing the Entire Process of Plastic Deformation of a Solid Object[J]. Jpn. J. Appl. Phys.,1995,34:L1666-L1668.
    [104] Toyooka S, Toyooka S. Time-division Observation of Plastic Deformation Process Using Digital Speckle Pattern Interferometry[J]. Optical Review,1997,4(2):284-287.
    [105] Gong X L, Toyooka S. Investigation on Mechanism of Plastic Deformation by Digital Speckle Pattern Interferometry[J]. Experimental Mechanics,1999,39(1):25-29.
    [106] Zhang Q, Jiang Z, Jiang H, et al. On the Propagation and Pulsation of Portevin-Le Chatelier Deformation Bands: An Experimental Study withDigital Speckle Pattern Metrology[J]. International Journal of Plasticity,2005,21:2150-2173.
    [107]刘颢文,张青川,卢俊勇等. Al-Cu合金中PLC剪切带成核过程三维变形的实验研究[J].金属学报,2006,42(9):925-930.
    [108] Guelorget B, Fran?ois M, Edwards C V, et al. Strain Rate Measurement by Electronic Speckle Pattern Interferometry: a New Look at the Strain Localization Onset[J]. Materials Science and Engineering: A,2006,415:234-241.
    [109] Guelorget B, Fran?ois M, Montay G. Strain Localization Band Width Evolution by Electronic Speckle Pattern Interferometry Strain Rate Measurement[J]. Scripta Materialia,2009,60:647-650.
    [110] Montay G, Fran?ois M, Tourneix M, et al. Analysis of Plastic Strain Localization by a Combination of the Speckle Interferometry with the Bulge Test[J]. Optics and Lasers in Engineering,2007,45:222-228.
    [111] Montay G, Fran?ois M, Tourneix M, et al. Strain and Strain Rate Measurement During the Bulge Test by Electronic Speckle Pattern Interferometry[J]. Journal of Materials Processing Technology,2007,184:428-435.
    [112] Becker T, Splitthof K, Siebert T, Kletting P. Error Estimations of 3D Digital Image Correlation Measurements[J]. Proceedings of SPIE,2006,6341:63410F.
    [113] Galanulis K, Hofmann A. Determination of Forming Limit Diagrams Using an Optical Measurement System[C]. Proceedings of Shetmet 99,1999:245-252.
    [114] Palumbo G, Sorgente D, Tricarico L. The Design of a Formability Test in Warm Conditions for an AZ31 Magnesium Alloy Avoiding Friction and Strain Rate Effects[J]. International Journal of Machine Tools Manufacture,2008,48:1535~1545.
    [115] Quan C, Tay C J, Huang Y H. 3-D Deformation Measurement Using Fringe Projection and Digital Image Correlation[J]. Optics and Lasers in Engineering,2004,115(4):164-168.
    [116] Pan B, Xie H M, Gao J X, Asundi A. Improved Speckle Projection Profilometry for Out-of-plane Shape Measurement[J]. Applied Optics,2008,47(29):5527-5533.
    [117]杨国标,方如华,丁祖泉,高建新.投影散斑相关法测量精度影响因素的综合分析[J].实验力学,2000,15(2):240-245.
    [118] Zhu F, Liu W, Shi H, He X. Accurate 3D Measurement System and Calibration for Speckle Projection Method[J]. Optics and Lasers in Engineering,2010,48:1132-1139.
    [119] Hu E, Zhu L. 3-D Profile Measurement by Using Projection Speckle Pattern Correlation Method[J]. Proceedings of SPIE,2010,7855:7855F.
    [120]陈凡秀,杨福俊,何小元.投影散斑相关方法测量芯片翘曲度[J].仪器仪表学报,2006,27(12):1700-1703.
    [121] Brillaud J, Lagattu F. Digital Correlation of Grainy Shadow Images for Surface Profile Measurement[J]. International Journal for Light and Electron Optics,2006,117(9):411-417.
    [122] Gao J, Xu W. Geng J. 3D Shape Reconstruction of Teeth by Shadow Speckle Correlation Method[J]. Optics and Lasers in Engineering,2006,(44):455-465.
    [123]陈光南.板料拉伸变形损伤、失稳与成形极限研究[D].北京:北京航空航天大学博士学位论文,1991:130-133.
    [124] Sciarra F M. A Nonlocal Model with Strain-based Damage[J]. International Journal of Solids and Structures,2009,46:4107–4122.
    [125] Mirone G, Corallo D. A Local Viewpoint for Evaluating the Influence of Stress Triaxiality and Lode Angle on Ductile Failure and Hardening[J]. International Journal of Plasticity,2010,26(3):348-371.
    [126] Soyarslan C, Tekkaya A E. Finite Deformation Plasticity Coupled with Isotropic Damage: Formulation in Principal Axes and Applications[J]. Finite Element in Analysis and Design,2010,46:668-683.
    [127] Wisselink H H, Huetink J. Modelling of Ductile Failure in Metal Forming[C]. 7th European LS-DYNA Conference,2009.
    [128] Lademo O G, Hopperstad O S, Berstad T, et al. Prediction of Plastic Instability in Extruded Aluminium Alloys Using Shell Analysis and a Coupled Model of Elasto-Plasticity and Damage[J]. Journal of Materials Processing Technology,2005,166:247-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700