粘细菌的环境分布、季节演替及其相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘细菌(myxobacteria)是一类能够滑动运动的革兰氏阴性杆菌,在系统进化上对应变形菌门、δ变形菌纲的粘球菌目(Myxococcales),分为3个亚目,23个属和50多个种。粘细菌能够产生丰富的次级代谢产物,被公认为是继放线菌之后的又一个重要的药源微生物新类群;因其具有复杂的多细胞群体行为和能形成多细胞聚集、形态特异的子实体结构,被认为是“社会性的细菌”。
     粘细菌曾被认为是一类典型的土壤微生物,近年来浅海水域分离得到嗜盐和耐盐菌株;分子生态学研究表明在海洋不同深度、不同位置的沉积物中均有粘细菌分布。此外,一些文献报道了湖泊河流中粘细菌的分离纯化,但这些菌株在形态上与陆地粘细菌高度相似,长期以来人们普遍认为水流或风力把陆地粘细菌的子实体带入淡水环境,淡水生境只是粘细菌的“暂居地”。因此,淡水环境是否为粘细菌的重要生境依然不清晰。
     我们在程海湖采集沉积物样品,进行菌株分离纯化,共获得113株粘细菌,绝大多数菌株隶属于Myxococcus、 Sorangium和Nannocystis,与分离自土壤的典型菌株形态高度相似,且16S rRNA基因的差距在2%以内;其中三株菌位于进化树的独立分支,与Cystobacter gracilis的相似性在92.2%与97.5%之间,可能属于新的种属。使用试剂盒提取1.0g沉积物的总DNA,并分两步对沉积物中的细菌群落进行454高通量测序。首先,使用两对通用细菌引物分别扩增16SrRNA基因的V3-V4高变区和V6-V8高变区,构建通用细菌文库UV34和UV678,分别获得25305和30604条高质量序列,包括2546和5559个种(以0.03的差异水平划分OTU)。粘细菌是沉积物细菌群落中的主要种群,占据序列数量的5.77%(在目的水平据第三位;两个文库中分别为7.25%和4.29%)和种类的7.52%(据第一位;两个文库中分别为9.62%和5.41%);粘细菌中较多的几个属是Archangium(16.63%)、Anaeromyxobacter(9.14%)、Kofleria(8.77%)、Chondromyces(4.45%)和Phaselicystis (4.15%),其他属均低于3%。然后,分别使用Cystobacterineae和Sorangineae特异引物构建粘细菌的特异文库CV34和SV678,Cystobacterineae中较多的几个属是Anaeromyxobacter、Cystobacter和Corallococcus; Sorangineae中较多的属是Byssovorax、Sorangium和Phaselicystis。
     随后,我们调查了公开发表的高通量测序数据,在三个研究共39组普通淡水沉积物样品中(290658条细菌序列),粘细菌普遍存在,平均数量比例为(3.73±2.84)%,但不同样品中粘细菌的内部分类单元组成差距较大;在普通淡水水体和温泉环境中,粘细菌的比例则很低(<0.3%)。这些结果表明普通淡水沉积物是粘细菌的重要生境。土壤、海洋和淡水粘细菌的系统发育比较分析显示,陆地、海洋粘细菌在高分类水平(科)分离,即使在同一个分支,海洋粘细菌和陆地粘细菌的序列差异一般也比较大;淡水环境粘细菌一般和陆地粘细菌处于相同分支,与陆地序列亲缘关系近于海洋序列,但仍有部分序列形成了独立于陆地、海洋粘细菌的特有分支(特有的分类单元)。
     另一方面,粘细菌在土壤生境中分布广泛,但因其捕食特征和多细胞群体行为,而被认为是一类数量偏少的种群。一个常规土壤样品(SDU)的宏基因组测序显示,粘细菌在数量和种类上分别占4.10%和7.75%,是优势菌群。为深入理解粘细菌多样性的横向范畴(环境分布)和纵向范畴(季节演替),我们详细考察了公共数据库各类生境中粘细菌的存在及数量比例。在森林、草地、农田等普通土壤中(525组数据,6776656条细菌序列),粘细菌在细菌群落中的比例约为(3.01±±2.35)%;在海滩泥沙、极地的苔原冰川沙漠等非典型的土壤环境,粘细菌的平均数量比例也在1%以上;在普通淡水环境沉积物中,粘细菌分布广泛且数量较多(3.73%);普通淡水水体中粘细菌分布较为普遍,存在于85.8%的样品,但数量比例较低,仅为0.23%;在温泉及海洋环境中,粘细菌数量一般小于0.2%,且存在不具有普遍性(26.7%-68.5%)。
     分析全球各地320组有采样时间记录的土壤样品,其中粘细菌的平均比例为3.41%(粘细菌数目与细菌数目的Pearson相关性分析,R2=0.6827,F检验P<0.001)。在不考虑样品之间差异的情况下,粘细菌的比例似乎有随季节周期性变化的趋势,在春季(3-5月)和秋季(9-11月)较多,而夏季和冬季则减少。选择一组对样品进行连续监测(5,6,7,8,10,11六个月)的测序数据(凯洛格生物站测序样品),其中粘细菌的平均比例为(2.27±0.69)%,在目的水平据第8位。三种土壤类型中粘细菌都有8月份数量、种类减少的趋势;这与整个细菌群落多样性(以Faith's phylogenetic diversity作为指标)以及其他捕食性细菌的变化趋势均不相同。粘细菌的波动幅度最小,且数量维持在稳定的较高水平(1.2%-3.2%)。三种土壤类型的细菌群落多样性几乎都与土壤湿度和温度显著相关,而环境参数对各类捕食性细菌的数量比例影响均不明显;推测环境因素对微生物群落的影响并非具体到每一个类群,粘细菌的数量变化是多种环境参数、甚至生物因素综合作用的结果,而每种参数对其影响都不是线性的,需要结合实际情况进行分析:8月份样品采集前持续的高温干燥导致了粘细菌进入休眠状态,即形成子实体,期间大量的细胞(60-90%)发生程序性死亡致使粘细菌数量显著下降;之后经过几次降水,土壤湿度回升,10月份(秋季)样品中粘细菌数量比例上调;到了11月份,低温(促使粘细菌以形成子实体的形式休眠)逐渐成为限制因素,其数量增长变慢甚至略有下降。土壤类型对粘细菌的影响可能表现在最大值出现时间、数值波动幅度等方面。统计各样品的粘细菌内部组成并进行聚类分析,样品没有因土壤类型或采集时间聚集,说明粘细菌的内部组成也是多种因素(土壤类型、采集时间、各种环境参数、生物因素等)综合作用的结果。粘细菌各科随季节的变化趋势各不相同,甚至有此消彼长的趋势,暗示了粘细菌群落中各分类单元具有差异性,存在着种间相互作用。
     产自纤维堆囊菌的大环内酯类化合物埃博霉素(Epothilones),是一种作用机理类似紫杉醇的抗肿瘤药物,目前已有结构类似物商品化上市。相对于埃博霉素需求的日趋增长,通过纤维堆囊菌发酵产生的埃博霉素产量极低成为其价格高昂的主要原因。埃博霉素产生菌只占分离菌株数目的2.5%,是相对稀缺的资源菌株;纤维堆囊菌生长缓慢,遗传操作困难,而异源表达埃博霉素的产量经过发酵优化后仍然很低。因此,我们采取了菌株改良与发酵优化外的两种策略:寻找更多的埃博霉素产生菌,以期分离到具有优良性状的菌株,用于后续的基因操作,还可以对比研究埃博霉素的合成机制;利用纤维堆囊菌的共培养,验证种内相互作用是否像种间相互作用一样影响(提高)次级代谢产物的产量。
     结合前期工作中获得的菌株,我们发现相对于未知土壤的低埃博霉素阳性菌株比例(2.5%),在阳性土壤中进行菌株二次分离,可以获得较多的埃博霉素产生菌(25%-75%);在一个阳性土壤附近10平方千米内的几个土样中,阳性菌株的比例也较高(27.3%)。分析一个阳性菌株(So0157-2)的基因组发现,埃博霉素基因簇连同上下游共计128kb的区段可能来自水平基因转移。对比三株菌的埃博霉素全基因簇,其相似性约为98.5%;埃博霉素基因簇中的酰基转移酶(AT)结构域显著区别于其他来源(非纤维堆囊菌或纤维堆囊菌中其他基因)的AT;在4个已报道埃博霉素基因簇的纤维堆囊菌中,同一模块中的AT蛋白序列差异水平都小于3.2%;14株纤维堆堆囊菌的ATModC2(epoC模块的第2个AT结构域)的蛋白序列的最大差异约为5.8%。这说明了埃博霉素基因簇的高度保守与相对多样。单个样品中获得的16S rRNA基因序列最大差异约为3.1%,与不同土壤来源的菌株序列差异相当,而埃博霉素产量更是相差2000倍以上,这说明了单一样品中纤维堆囊菌的多样化。对于遗传操作复杂的微生物,寻找更多的阳性菌株是一种可供选择的简明有效策略。
     在两个不同土样各选择6株纤维堆囊菌(产生埃博霉素或不产生埃博霉素)进行共培养的影响研究。菌株之间在生长上均呈现明显的相互抑制,双方生长变弱,生物量低于纯培养物对照(两个纯培养物生物量之和)的35%,推测由空间和营养的争夺所致。共培养大大影响了埃博霉素产量,45个组合平均提高倍数为2.45±3.25;33个组合的产量显著改变(提高或降低倍数在50%以上);29个(64.4%)组合产量提高,最大提高倍数为10.4。荧光定量PCR显示,共培养物中埃博霉素的8个基因区段表达量均上调,提升倍数为2.41-7.16。可能是因为基因簇上存在不止一个启动子,或者mRNA的不同区段降解速率不同,导致了各区段检测到的表达量提升有所不同。当然,影响埃博霉素基因簇转录水平改变的深层机制还有待阐明。
     本工作确认了粘细菌在淡水沉积物中的普遍存在,表明淡水沉积物是粘细菌的重要生境;详细探讨了粘细菌在各类环境中的分布及多样性,发现土壤粘细菌数量比例有随季节动态变化的趋势;粘细菌内部各分类单元的季节性变化趋势各不相同。发现阳性土壤中埃博霉素产生菌株的比例大大高于未知土壤;阳性菌株似乎能够扩展到阳性土壤的邻近环境,从而在一个较大范围内形成了具有多样基因组成的埃博霉素产生菌资源库。纤维堆囊菌的共培养能够通过基因簇转录水平的变化显著地改变埃博霉素的合成能力。
The Gram-negative myxobacteria are phylogenetically located in the delta division of Proteobacteria, corresponding to the order "Myxococcales", including three suborders, twenty-three genera and more than fifty species. Myxobacteria are famous for their complicated multicellular behavior and excellent production ability of secondary metabolites, and are thus among important microbial resources for drug screening and of model organisms for the studies of prokaryotic intercellular communication, multicellular morphogenesis, and biological evolution.
     Myxobacteria are recognized as typical soil bacteria. Recently, halophilic and halotolerant myxobacterial strains have been isolated from coastal areas; molecular surveys have indicated that myxobacteria-related16S rRNA gene sequences are also widely distributed in marine sediments at different depths and sites. Besides, several publications have reported the isolation of myxobacteria from river or lake. However, the accuracy of these early isolations was questioned because the limnetic isolates were highly similar in morphology to soil myxobacteria. It has long been accepted that these myxobacterial isolates from aquatic environments germinated from myxospores or myxospores-containing fruiting bodies that had been washed or blown into rivers or lakes. Thus, it is still unknown whether freshwater environments are also native habitats for myxobacteria.
     We collected mud sample from Chenghai Lake, and isolated113myxobacterial strains (87cellulolytic strains and26bacteriolytic strains), most of them belong to Myxococcus, Sorangium and Nannocystis, with high similar morphology and16S rRNA gene sequences to their soil relatives. Interestingly, three of them may belong to new genera. Then we investigated the presence of myxobacteria in lake mud using a two-step strategy by454pyrosequencing. First, we constructed two universal bacterial libraries from the V3-V4(UV34) and V6-V8(UV678) hypervariable regions of16S rRNA gene sequences. High-throughput454pyrosequencing revealed that myxobacteria were one of the major bacterial groups in the lake mud. They accounted for5.77%of the total sequences and7.52%of the total operational taxonomic units (OTUs) at a phylogenetic distance of0.03. The community composition and taxonomic structure of the mud myxobacterial community were further analysed using myxobacteria enriched libraries targeting the V34and V678regions, which were amplified with Cystobacterineae and Sorangineae-specific primer pairs respectively.
     In addition, we surveyed several published data in GenBank, which showed that myxobacteria are widely distributed in normal limnetic sediments, and accounted for3.73%of total bacteria sequences. However, the compositions of myxobacteria varied among different samples. In normal limnetic water body and hotspring environments, myxobacteria have a very low proportion (<0.3%) among bacteria. These results indicated that normal limnetic sediments are primary habitats for myxobacteria. Comparatively phylogenetic analysis showed that the limnetic myxobacteria exhibited closer relationships to their soil than their marine relatives, but there were also exclusive taxa of limnetic myxobacteria detected.
     The concept that myxobacteria are widely distributed is commonly held beliefs, however, as their multicellular behavior and microbial-predation characteristics, myxobacteria are recognized as minor bacteria group. To understand the diversity of myxobacteria in levels of space and time, we surveyed public databases. For normal soil samples in forest, grassland and agricultural lands, myxobacteria have a proportion of3.01%; surprisingly, myxobacteria account for more than1%in beach sands and deserts, glacier foreland, tundra of high latitude region; myxobacteria are widely distributed in normal limnetic environments, but have two distinct proportions among sediments (3.73%) and water body (0.25%); hotspring and ocean are not preferred habitats for myxobacteria, where they had lower distribution frequencies (26.7%-68.5%) and quantitative proportions (<0.1%).
     Then we selected320global soil samples that have clear collection times, which had an average proportion of3.41%. Taking the heterogeneity of different samples out of consideration, myxobacteria population seems have a seasonal changing, i.e., a larger numbers in spring (February to May) and autumn (September to November), and reduced in summer and winter. Afterwards, we surveyed a set of pyrosequencing data with samples collected from May to November. In three soil types, a-Diversity of bacteria community was significantly correlated with soil moisture and temperature. However, neither of the predatory bacteria was significantly correlated with single environmental factor, and their changing tendencies differed with each other and total bacteria. The amount of myxobacteria reduced in August, which may be resulted from long time high temperature without of rainfall, but other complicated factors (environmental or biotic factors) effect collectively. The changing tendencies of different myxobacteria families are not identical, which indicated that myxobacteria are not a homogeneous community, and complicated interactions works.
     Sorangium producing epothilones are16-membered macrolides that mimic taxol-induced microtubule stabilization, thus leading to mitotic arrest at the G2-M transition and cytotoxicity in proliferating cells. Four epothilone modified derivatives has been approved for clinical use by the U.S. Food and Drug Administration. However, in contrast to increasing progress in their applications, the low production of epothilones in Sorangium strains makes the price very expensive. Epothilone producing strains account only a small proportion (about2.5%) of total S. cellulosum strains; Sorangium cells grow slowly and hard to be genetically manipulated, however, epothilone productions are very low among heterologous hosts even in optimized ferment conditions. In this study, we take two additional strategies rather than stains or culture conditions optimized:First, searching for more epothilone producers to obtain potentially suitable characteristics for further genetic modification, and comparative analysis the biosynthetic mechanisms; Second, culture Sorangium strains pairwise to learn whether intraspecies interactions affect the production of anti-fungal epothilones.
     Compared with the<2.5%positive strains collected from different places, epothilone producers comprised25.0-75.0%of the Sorangium isolates in positive soil samples. These sympatric epothilone producers differed not only in their16S rRNA gene sequences and morphologies but also in their production of epothilones and biosynthesis genes. A further exploration of14soil samples collected from a larger area around a positive site showed a similar high positive ratio of epothilone producers among the Sorangium isolates. Thus, in an area containing epothilone producers, the long-term genetic variations and refinements resulting from selective pressure form a large reservoir of epothilone producing Sorangium strains with diverse genetic compositions.
     Co-cultivation on filter papers showed that different Sorangium strains inhibited one another's growth, whereas epothilone production by the producing strains changed markedly for most (73%) pairwise mixtures. Using a quantitative polymerase chain reaction, we demonstrated that the expression of epothilone biosynthetic genes in the epothilone producers typically changed significantly when these bacteria were mixed with non-producing strains. The results indicated that intraspecies interactions between different S. cellulosum strains not only inhibited the growth of partners, but also could change epothilone production. Future studies are needed to determine the factors involved in the expression level changes of the epothilone biosynthetic clusters.
     To summarize, we demonstrated that myxobacteria are widely distributed in limnetic sediments as a predominant group, and limnetic mud is a primary habitat for myxobacteria; then we descripted the distribution of myxobacteria in various environments and seasonal succession of the community and sub-group. Epothilone producing strains are more likely appeared in positive places and neighborhood than unknown samples; co-cultivation of different Sorangium strains could markedly changing epothilone production, as a result of the changed expression level of biosynthetic genes in the epothilone producers.
引文
Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V & Polz MF (2005) PCR-induced sequence artifacts and bias:insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Applied and Environmental Microbiology 71:8966-8969.
    Araujo JF, de Castro AP, Costa MM, Togawa RC, Junior GJ, Quirino BF, Bustamante MM, Williamson L, Handelsman J & Kruger RH (2012) Characterization of soil bacterial assemblies in Brazilian savanna-like vegetation reveals acidobacteria dominance. Microbial Ecology 64:760-770.
    Baker GC, Smith JJ & Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. Journal of Microbiological Methods 55:541-555.
    Be'er A, Zhang HP, Florin EL, Payne SM, Ben-Jacob E & Swinney HL (2009) Deadly competition between sibling bacterial colonies. Proceedings of the National Academy of Sciences of the United States of America 106:428-433.
    Besemer K, Peter H, Logue JB, Langenheder S, Lindstrom ES, Tranvik LJ & Battin TJ (2012) Unraveling assembly of stream biofilm communities. The 1SME Journal 6:1459-1468.
    Bohorquez LC, Delgado-Serrano L, Lopez G, Osorio-Forero C, Klepac-Ceraj V, Kolter R, Junca H, Baena S & Zambrano MM (2012) In-depth characterization via complementing culture-independent approaches of the microbial community in an acidic hot spring of the Colombian Andes. Microbial Ecology 63:103-115.
    Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E & Woods CM (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Research 55:2325-2333.
    Borodovsky M & Lomsadze A (2011) Gene identification in prokaryotic genomes, phages, metagenomes, and EST sequences with GeneMarkS suite. Current Protocols in Bioinformatics Chapter 4:Unit 4 5 1-17.
    Bowen De Leon K, Gerlach R, Peyton BM & Fields MW (2013) Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park. Frontiers in Microbiology 4:330.
    Brazelton WJ, Morrill PL, Szponar N & Schrenk MO (2013) Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Applied and Environmental Microbiology 79:3906-3916.
    Brenner D, Krieg N & Staley J (2006) The Proteobacteria (Part C):the Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Garrity GM (ed), Bergey's Manual of Systematic Bacteriology 2nd ed. New York:Springer,2005:1059-1144.
    Brinkhoff T, Fischer D, Vollmers J, et al, (2012) Biogeography and phyloGenetic diversity of a cluster of exclusively marine myxobacteria. The ISME Journal 6: 1260-1272.
    Chakravorty S, Helb D, Burday M, Connell N & Alland D (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods 69:330-339.
    Cheng YQ, Tang GL & Shen B (2003) Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 100:3149-3154.
    Chien M, Morozova I, Shi S, et al. (2004) The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305:1966-1968.
    Claesson MJ, O'Sullivan O, Wang Q, Nikkila J, Marchesi JR, Smidt H, de Vos WM, Ross RP & O'Toole PW (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PloS One 4:e6669.
    Claverys JP & Havarstein LS (2007) Cannibalism and fratricide:mechanisms and raisons d'etre. Nature Reviews Microbiology 5:219-229.
    Clingenpeel S, Macur RE, Kan J, et al. (2011) Yellowstone Lake:high-energy geochemistry and rich bacterial diversity. Environmental Microbiology 13: 2172-2185.
    Cole JR, Cascarelli AL, Mohn WW & Tiedje JM (1994) Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol. Applied and Environmental Microbiology 60:3536-3542.
    Crespi BJ (2001) The evolution of social behavior in microorganisms. Trends in Ecology & Evolution 16:178-183.
    Czaran T & Hoekstra RF (2009) Microbial communication, cooperation and cheating:quorum sensing drives the evolution of cooperation in bacteria. PloS One 4: e6655.
    Czaran TL, Hoekstra RF & Pagie L (2002) Chemical warfare between microbes promotes biodiversity. Proceedings of the National Academy of Sciences of the United States of America 99:786-790.
    Dallinger A & Horn MA (2014) Agricultural soil and drilosphere as reservoirs of new and unusual assimilators of 2,4-dichlorophenol carbon. Environmental Microbiology 16:84-100.
    Davies J, Spiegelman GB & Yim G (2006) The world of subinhibitory antibiotic concentrations. Current Opinion in Microbiology 9:445-453.
    Davinic M, Fultz LM, Acosta-Martinez V, Calderon FJ, Cox SB, Dowd SE, Allen VG, Zak JC & Moore-Kucera J (2012) Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition. Soil Biol Biochem 46:63-72.
    Dawid W (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiology Reviews 24:403-427.
    Delcher AL, Bratke KA, Powers EC & Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673-679.
    Demain AL & Adrio JL (2008) Strain improvement for production of Pharmaceuticals and other microbial metabolites by fermentation. Progress in Drug Research Fortschritte der Arzneimittelforschung Progres des Recherches Pharmaceutiques 65:251,253-289.
    Dietrich LE, Teal TK, Price-Whelan A & Newman DK (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321:1203-1206.
    Dong H, Li YZ & Hu W (2004) Analysis of purified tubulin in high concentration of glutamate for application in high throughput screening for microtubule-stabilizing agents. Assay and Drug Development Technologies 2: 621-628.
    Dubuis C & Haas D (2007) Cross-species GacA-controlled induction of antibiosis in pseudomonads. Applied and Environmental Microbiology 73:650-654.
    Dubuis C & Haas D (2007) Cross-species GacA-controlled induction of antibiosis in pseudomonads. Applied and Environmental Microbiology 73:650-654.
    Dunny GM, Brickman TJ & Dworkin M (2008) Multicellular behavior in bacteria:communication, cooperation, competition and cheating. BioEssays:News and Reviews in Molecular, Cellular and Developmental Biology 30:296-298.
    Dworkin M (1996) Recent advances in the social and developmental Biology of the myxobacteria. Microbiological Reviews 60:70-102.
    Edgar RC (2004) MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792-1797.
    Eiler A, Heinrich F & Bertilsson S (2012) Coherent dynamics and association networks among lake bacterioplankton taxa. The ISME Journal 6:330-342.
    Fajcsak Z, Gabor A, Kovacs V & Martos E (2008) The effects of 6-week low glycemic load diet based on low glycemic index foods in overweight/obese children--pilot study. Journal of the American College of Nutrition 27:12-21.
    Ferrer M, Guazzaroni ME, Richter M, et al. (2011) Taxonomic and functional metagenomic profiling of the microbial community in the anoxic sediment of a sub-saline shallow lake (Laguna de Carrizo, Central Spain). Microbial Ecology 62: 824-837.
    Fiegna F & Velicer GJ (2005) Exploitative and hierarchical antagonism in a cooperative bacterium. PLoS Biology 3:e370.
    Fierer N (2008) Microbial biogeography:patterns in microbial diversity across space and time. Accessing Uncultivated Microorganisms:from the Environment to Organisms and Genomes and Back (Zengler K, ed.) pp.95-115. ASM Press Washington DC
    Florentin Constancias, Nicolas Chemidlin Prevost-Boure S, ebastien Terrat, et al. (2014) Microscale evidence for a high decrease of soil bacterial density and diversity by cropping. Agronomy for Sustainable Development DOI 10.1007/s13593-013-0204-3.
    Fortunato CS, Eiler A, Herfort L, Needoba JA, Peterson TD & Crump BC (2013) Determining indicator taxa across spatial and seasonal gradients in the Columbia River coastal margin. The ISME Journal 7:1899-1911.
    Fortunato CS, Herfort L, Zuber P, Baptista AM & Crump BC (2012) Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient. The ISME Journal 6:554-563.
    Fraenkel GS (1959) The raison d'etre of secondary plant substances; these odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science 129:1466-1470.
    Frenk S, Ben-Moshe T, Dror I, Berkowitz B & Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PloS One 8:e84441.
    Frykman SA, Tsuruta H, Starks CM, Regentin R, Carney JR & Licari PJ (2002) Control of secondary metabolite congener distributions via modulation of the dissolved oxygen tension. Biotechnology Progress 18:913-920.
    Fu J, Wenzel SC, Perlova O, Wang J, Gross F, Tang Z, Yin Y, Stewart AF, Muller R & Zhang Y (2008) Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Research 36: e113.
    Fudou R, Jojima Y, Iizuka T & Yamanaka S (2002) Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov.:novel moderately halophilic myxobacteria isolated from coastal saline environments. The Journal of General and Applied Microbiology 48:109-116.
    Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459:193-199.
    Garbeva P & de Boer W (2009) Inter-specific interactions between carbon-limited soil bacteria affect behavior and gene expression. Microbial Ecology 58:36-46.
    Garbeva P, Silby MW, Raaijmakers JM, Levy SB & Boer W (2011) Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phyloGenetically different bacterial competitors. The ISME Journal 5:973-985.
    Garcia RO, Gerth K, Stadler M. Dogma Jr IJ & Muller R. (2010). Expanded phylogeny of myxobacteria and evidence for cultivation of the 'unculturables'. Molecular Phylogenetics and Evolution 57:878-887.
    Garcia RO, Reichenbach H, Ring MW & Muller R (2009) Phaselicystis flava gen. nov., sp. nov., an arachidonic acid-containing soil myxobacterium, and the description of Phaselicystidaceae fam. nov.. International Journal of Systematic and Evolutionary Microbiology 59:1524-1530.
    Gerth K, Bedorf N, Hofle G, Irschik H & Reichenbach H (1996) Epothilons A and B:antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. The Journal of Antibiotics 49:560-563.
    Gerth K, Pradella S, Perlova O, Beyer S & Muller R (2003) Myxobacteria: proficient producers of novel natural products with various biological activities--past and future biotechnological aspects with the focus on the genus Sorangium. Journal of Biotechnology 106:233-253.
    Gerth K, Steinmetz H, Hofle G & Reichenbach H (2000) Studies on the biosynthesis of epothilones:the biosynthetic origin of the carbon skeleton. The Journal of Antibiotics 53:1373-1377.
    Gerth K, Steinmetz H, Hofle G & Reichenbach H (2001) Studies on the biosynthesis of epothilones:the PKS and Epothilone C/D monooxygenase. The Journal of Antibiotics 54:144-148.
    Ginolhac A, Jarrin C, Gillet B, Robe P, Pujic P, Tuphile K, Bertrand H, Vogel TM, Perriere G, Simonet P & Nalin R (2004) Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. Applied and Environmental Microbiology 70:5522-5527.
    Giovannoni SJ & Stingl U (2005) Molecular diversity and ecology of microbial plankton. Nature 437:343-348.
    Goffredi SK, Kantor AH & Woodside WT (2011) Aquatic microbial habitats within a neotropical rainforest:bromeliads and pH-associated trends in bacterial diversity and composition. Microbial Ecology 61:529-542.
    Goh EB, Yim G, Tsui W, McClure J, Surette MG & Davies J (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proceedings of the National Academy of Sciences of the United States of America 99:17025-17030.
    Gokhale RS, Sankaranarayanan R & Mohanty D (2007) Versatility of polyketide synthases in generating metabolic diversity. Current Opinion in Otructural Biology 17: 736-743.
    Gonzalez-Pastor JE, Hobbs EC & Losick R (2003) Cannibalism by sporulating bacteria. Science 301:510-513.
    Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237-264.
    Gray CJ & Engel AS (2013) Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer. The ISME Journal 7:325-337.
    Green JL, Bohannan BJ & Whitaker RJ (2008) Microbial biogeography:from taxonomy to traits. Science 320:1039-1043.
    Han K, Li ZF, Peng R, et al. (2013) Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Scientific Reports 3:2101.
    Han SJ, Park SW, Park BW & Sim SJ (2008) Selective production of epothilone B by heterologous expression of propionyl-CoA synthetase in Sorangium cellulosum. Journal of Microbiology and Biotechnology 18:135-137.
    Handelsman J, Rondon MR, Brady SF, Clardy J & Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products. Chemistry & Biology 5:R245-249.
    Harris TD, Buzby PR, Babcock H, et al. (2008) Single-molecule DNA sequencing of a viral genome. Science 320:106-109.
    He Q & Yao K (2010) Microbial reduction of selenium oxyanions by Anaeromyxobacter dehalogenans. Bioresource Technology 101:3760-3764.
    He R, Wooller MJ, Pohlman JW, Catranis C, Quensen J, Tiedje JM & Leigh MB (2012) Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environmental Microbiology 14: 1403-1419.
    He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, Van Nostrand JD, Hobbie SE, Reich PB & Zhou J (2010) Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecology Letters 13: 564-575.
    Headd B & Engel AS (2013) Evidence for niche partitioning revealed by the distribution of sulfur oxidation genes collected from areas of a terrestrial sulfidic spring with differing geochemical conditions. Applied and Environmental Microbiology 79:1171-1182.
    Hedlund BP, Dodsworth JA, Cole JK & Panosyan HH (2013) An integrated study reveals diverse methanogens, Thaumarchaeota, and yet-uncultivated archaeal lineages in Armenian hot springs. Antonie van Leeuwenhoek 104:71-82.
    Hibbing ME, Fuqua C, Parsek MR & Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology 8:15-25.
    Hodgkin J & Kaiser D (1979) Genetics of gliding motility in Myxococcus xanthus (Myxobacterales):two gene Systems control movement. Molecular and General Genetics MGG 171:177-191.
    Hou W, Wang S, Dong H, et al. (2013) A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PloS One 8:e53350.
    Hu W, Dong H, Li YZ, Hu XT, Han GJ & Qu YB (2004) A high-throughput model for screening anti-tumor agents capable of promoting polymerization of tubulin in vitro. Acta Pharmacologica Sinica 25:775-782.
    Huang Q, Jiang H, Briggs BR, et al. (2013) Archaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines. FEMS Microbiology Ecology 85:452-464.
    Hyun H, Chung J, Kim J, Lee JS, Kwon BM, Son KH & Cho K (2008) Isolation of Sorangium cellulosum carrying epothilone gene clusters. Journal of Microbiology and Biotechnology 18:1416-1422.
    Iizuka T, Jojima Y, Fudou R & Yamanaka S (1998) Isolation of myxobacteria from the marine environment. FEMS Microbiology Letters 169:317-322.
    Iizuka T, Jojima Y, Fudou R, Hiraishi A, Ahn JW & Yamanaka S (2003) Plesiocystis pacifica gen. nov., sp. nov., a marine myxobacterium that contains dihydrogenated menaquinone, isolated from the Pacific coasts of Japan. International Journal of Systematic and Evolutionary Microbiology 53:189-195.
    Iizuka T, Jojima Y, Fudou R, Tokura M, Hiraishi A & Yamanaka S (2003) Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. Systematic and Applied Microbiology 26:189-196.
    Ishii K & Fukui M (2001) Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Applied and Environmental Microbiology 67:3753-3755.
    Jaoua S, Neff S & Schupp T (1992) Transfer of mobilizable plasmids to Sorangium cellulosum and evidence for their integration into the chromosome. Plasmid 28:157-165.
    Jenke-Kodama H, Sandmann A, Miiller R & Dittmann E (2005) Evolutionary implications of bacterial polyketide synthases. Molecular Biology and Evolution 22: 2027-2039.
    Jiang DM, Kato C, Zhou XW, Wu ZH, Sato T & Li YZ (2010) Phylogeographic separation of marine and soil myxobacteria at high levels of classification. The ISME Journal4:1520-1530.
    Jiang DM, Wu ZH, Zhao JY & Li YZ (2007) Fruiting and non-fruiting myxobacteria:a phyloGenetic perspective of cultured and uncultured members of this group. Molecular Phylogenetics and Evolution 44:545-552.
    Julien B & Fehd R (2003) Development of a mariner-based transposon for use in Sorangium cellulosum. Applied and Environmental Microbiology 69:6299-6301. Julien B & Shah S (2002) Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus. Antimicrobial Agents and Chemotherapy 46: 2772-2778.
    Julien B, Shah S, Ziermann R, Goldman R, Katz L & Khosla C (2000) Isolation and characterization of the epothilone biosynthetic gene cluster from Sorangium cellulosum. Gene 249:153-160.
    Jurkevitch E & Davidov Y (2006) Phylogenetic diversity and evolution of predatory prokaryotes. (Steinbiichel A, ed) Predatory Prokaryotes-Biology, Ecology and Evolution. Springer-Verlag Berlin Heidelberg:11-56.
    Kalyuzhnaya MG, Lidstrom ME & Chistoserdova L (2008) Real-time detection of actively metabolizing microbes by redox sensing as applied to methylotroph populations in Lake Washington. The ISME Journal 2:696-706.
    Kanagawa T (2003) Bias and artifacts in multitemplate polymerase chain reactions (PCR). Journal of Bioscience and Bioengineering 96:317-323.
    Kegler C, Gerth K & Muller R (2006) Establishment of a real-time PCR protocol for expression studies of secondary metabolite biosynthetic gene clusters in the G/C-rich myxobacterium Sorangium cellulosum So ce56. Journal of Biotechnology 121:201-212.
    Keller M & Zengler K (2004) Tapping into microbial diversity. Nature Reviews Microbiology 2:141-150.
    Kim M, Singh D, Lai-Hoe A, Go R, Rahim RA, Ainuddin AN, Chun J & Adams JM (2012) Distinctive Phyllosphere Bacterial Communities in Tropical Trees. Microbial Ecology 63:674-681.
    Kjelleberg S & Molin S (2002) Is there a role for quorum sensing signals in bacterial biofilms? Current Opinion in Microbiology 5:254-258.
    Knight V, Sanglier JJ, DiTullio D, Braccili S, Bonner P, Waters J, Hughes D & Zhang L (2003) Diversifying microbial natural products for drug discovery. Applied Microbiology and Biotechnology 62:446-458.
    Kopp M, Irschik H, Gross F, Perlova O, Sandmann A, Gerth K & Muller R (2004) Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So cel2 and So ce56:development of a mariner-based transposon mutagenesis system. Journal of Biotechnology 107:29-40.
    Kurata S, Kanagawa T, Magariyama Y, Takatsu K, Yamada K, Yokomaku T & Kamagata Y (2004) Reevaluation and reduction of a PCR bias caused by reannealing of templates. Applied and Environmental Microbiology 70:7545-7549.
    Lau J, Frykman S, Regentin R, Ou S, Tsuruta H & Licari P (2002) Optimizing the heterologous production of epothilone D in Myxococcus xanthus. Biotechnology and Bioengineering 78:280-288.
    Lauber CL, Hamady M, Knight R & Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology 75:5111-5120.
    Lauber CL, Ramirez KS, Aanderud Z, Lennon J & Fierer N (2013) Temporal variability in soil microbial communities across land-use types. The ISME Journal 7: 1641-1650.
    Levy SB & Marshall B (2004) Antibacterial resistance worldwide:causes, challenges and responses. Nature Medicine 10:S122-129.
    Li Y, Li J, Zhou L, Zhang Y, Hu W & Chen Q (2000) Isolation and identification of myxobacteria. Acta Microbiologica Sinica 40:652-656 (in Chinese).
    Li YZ, Hu W, Zhang YQ, Qiu Z, Zhang Y & Wu BH (2002) A simple method to isolate salt-tolerant myxobacteria from marine samples. Journal of Microbiological Methods 50:205-209.
    Li ZF, Zhao JY, Xia ZJ, Shi J, Liu H, Wu ZH, Hu W, Liu WF & Li YZ (2007) Evolutionary diversity of ketoacyl synthases in cellulolytic myxobacterium Sorangium. Systematic and Applied Microbiology 30:189-196.
    Logue JB, Langenheder S, Andersson AF, Bertilsson S, Drakare S, Lanzen A & Lindstrom ES (2012) Freshwater bacterioplankton richness in oligotrophic lakes depends on nutrient availability rather than on species-area relationships. The ISME Journal 6:1127-1136.
    Loman NJ, Constantinidou C, Chan JZ, Halachev M, Sergeant M, Penn CW, Robinson ER & Pallen MJ (2012) High-throughput bacterial genome sequencing:an embarrassment of choice, a world of opportunity. Nature Reviews Microbiology 10: 599-606.
    Lopez D, Fischbach MA, Chu F, Losick R & Kolter R (2009) Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 106:280-285.
    Lozupone CA & Knight R (2007) Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America 104: 11436-11440.
    Lueders T, Kindler R, Miltner A, Friedrich MW & Kaestner M (2006) Identification of bacterial micropredators distinctively active in a soil microbial food web. Applied and Environmental Microbiology 72:5342-5348.
    Lundin D, Severin I, Logue JB, Ostman O, Andersson AF & Lindstrom ES (2012) Which sequencing depth is sufficient to describe patterns in bacterial alpha-and beta-diversity? Environmental Microbiology Reports 4:367-372.
    Mardis ER (2008) The impact of next-generation sequencing technology on Genetics. Trends in Genetics:TIG 24:133-141.
    Margulies M, Egholm M, Altman WE, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376-380.
    Marshall MJ, Dohnalkova AC, Kennedy DW, Plymale AE, Thomas SH, Loffler FE, Sanford RA, Zachara JM, Fredrickson JK & Beliaev AS (2009) Electron donor-dependent radionuclide reduction and nanoparticle formation by Anaeromyxobacter dehalogenans strain 2GP-C. Environmental Microbiology 11: 534-543.
    Martiny JB, Bohannan BJ, Brown JH, et al (2006) Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology 4:102-112.
    Meyer F, Paarmann D, D'Souza M, et al. (2008) The metagenomics RAST server
    a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386.
    Miyashita NT, Iwanaga H, Charles S, Diway B, Sabang J & Chong L (2013) Soil bacterial community structure in five tropical forests in Malaysia and one temperate forest in Japan revealed by pyrosequencing analyses of 16S rRNA gene sequence variation. Genes & Genetic Systems 88:93-103.
    Mohr KI, Garcia RO, Gerth K, Irschik H & Muller R (2012) Sandaracinus amylolyticus gen. nov., sp. nov., a starch-degrading soil myxobacterium, and description of Sandaracinaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology 62:1191-1198.
    M(?)ller AK, S(?)borg DA, Al-Soud WA, S(?)rensen SJ & Niels K (2013) Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation. Polar Research 32:1-11.
    Molnar I, Schupp T, Ono M, et al (2000) The bioSynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chemistry & Biology 1:97-109.
    Mueller-Spitz SR, Goetz GW & McLellan SL (2009) Temporal and spatial variability in nearshore bacterioplankton communities of Lake Michigan. FEMS Microbiology Ecology 67:511-522.
    Mutka SC, Carney JR, Liu Y & Kennedy J (2006) Heterologous production of epothilone C and D in Escherichia coli. Biochemistry 45:1321-1330.
    Nacke H, Thurmer A, Wollherr A, Will C, Hodac L, Herold N, Schoning I, Schrumpf M & Daniel R (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PloS One 6:e17000.
    Neidig N, Paul RJ, Scheu S & Jousset A (2011) Secondary metabolites of Pseudomonas fluorescens CHAO drive complex non-trophic interactions with bacterivorous nematodes. Microbial Ecology 61:853-859.
    Osburn MR, Sessions AL, Pepe-Ranney C & Spear JR (2011) Hydrogen-isotopic variability in fatty acids from Yellowstone National Park hot spring microbial communities Geochimica et Cosmochimica Acta 75:4830-4845.
    Osswald C, Zipf G, Schmidt G, Maier J, Bernauer HS, Muller R & Wenzel SC (2012) Modular Construction of a Functional Artificial Epothilone Polyketide Pathway. ACS Synthetic Biology DOI:10.1021/sb300080t.
    Pace NR (1997) A Molecular View of Microbial Diversity and the Biosphere. Science 276:734-740.
    Park SR, Park JW, Jung WS, Han AR, Ban YH, Kim EJ, Sohng JK, Sim SJ & Yoon YJ (2008) Heterologous production of epothilones B and D in Streptomyces venezuelae. Applied Microbiology and Biotechnology 81:109-117.
    Park WS, Park SJ, Han SJ, Lee J, Kim DS, Kim JH, Kim BW, Lee J & Sim SJ (2007) Repeated batch production of epothilone B by immobilized Sorangium cellulosum. Journal of Microbiology and Biotechnology 17:1208-1212.
    Pascal Lienhard, Sebastien Terrat, Olivier Mathieu, et al. (2013) Soil microbial diversity and C turnover modified by tillage and cropping in Laos tropical grassland. Environmental Chemistry Letters 11:391-398.
    Perez J, Munoz-Dorado J, Brana AF, Shimkets LJ, Sevillano L & Santamaria RI (2011) Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor. Microbial Biotechnology 4:175-183.
    Peters L, Konig GM, Wright AD, Pukall R, Stackebrandt E, Eberl L & Riedel K (2003) Secondary metabolites of Flustra foliacea and their influence on bacteria. Applied and Environmental Microbiology 69:3469-3475.
    Peura S, Eiler A, Bertilsson S, Nykanen H, Tiirola M & Jones RI (2012) Distinct and diverse anaerobic bacterial communities in boreal lakes dominated by candidate division OD1. The ISME Journal 6:1640-1652.
    Pradella S, Hans A, Sproer C, Reichenbach H, Gerth K & Beyer S (2002) Characterisation, genome size and Genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Archives of Microbiology 178:484-492.
    Price-Whelan A, Dietrich LE & Newman DK (2006) Rethinking 'secondary' metabolism:physiological roles for phenazine antibiotics. Nature Chemical Biology 2 71-78.
    Pronzato P (2008) New therapeutic options for chemotherapy-resistant metastatic breast cancer:the epothilones. Drugs 68:139-146.
    Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H & Turner DJ (2008) A large genome center's improvements to the Illumina sequencing system. Nature Methods 5:1005-1010.
    Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, Head IM, Read LF & Sloan WT (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nature Methods 6:639-641.
    Raimbault M (1998) General and microbiological aspects of solid substrate fermentation. Electronic Journal of Biotechnology 1:3-21.
    Regnier P & Arraiano CM (2000) Degradation of mRNA in bacteria:emergence of ubiquitous features. BioEssays:News and Reviews in Molecular, Cellular and Developmental Biology 22:235-244.
    Reichenbach H (1993) Biology of the myxobacteria:Ecology and taxonomy. Myxobacteria II(Dworkin M, ed), pp.13-62. ASM Press, Washington, DC.
    Reichenbach H (1999) The ecology of the myxobacteria. Environmental Microbiology 1:15-21.
    Reichenbach H (2001) Myxobacteria, producers of novel bioactive substances. Journal of Industrial Microbiology & Biotechnology 27:149-156.
    Rice P, Longden I & Bleasby A (2000) EMBOSS:the European Molecular Biology Open Software Suite. Trends in Genetics:TIG 16:276-277.
    Ringel SM, Greenough RC, Roemer S, Connor D, Gutt AL, Blair B, Kanter G & von S (1977) Ambruticin (W7783), a new antifungal antibiotic. The Journal of Antibiotics 30:371-375.
    Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG & Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal 1:283-290.
    Rothberg JM, Hinz W, Rearick TM, et al. (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348-352.
    Sanford RA, Cole JR & Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Applied and Environmental Microbiology 68:893-900.
    Sanford RA, Wu Q, Sung Y, Thomas SH, Amos BK, Prince EK & Loffler FE (2007) Hexavalent uranium supports growth of Anaeromyxobacter dehalogenans and Geobacter spp. with lower than predicted biomass yields. Environmental Microbiology 9:2885-2893.
    Sanger F, Nicklen S & Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463-5467.
    Schloss PD, Westcott SL, Ryabin T, et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537-7541.
    Schneiker S, Perlova O, Kaiser O, et al. (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nature Biotechnology 25:1281-1289.
    Service R (1996) Tumor-killer made; how does it work. Science 214:2009.
    Shange RS, Ankumah RO, Ibekwe AM, Zabawa R & Dowd SE (2012) Distinct soil bacterial communities revealed under a diversely managed agroecosystem. PloS One 7:e40338.
    Shimkets L, Dworkin M & Reichenbach H (2006) The myxobacteria. (Dworkin M, ed) The Prokaryotes 3rd ed. Berlin:Springer,2006:31-115.
    Shimkets LJ (1990) Social and developmental biology of the myxobacteria. Microbiological Reviews 54:473-501.
    Smith DR & Dworkin M (1994) Territorial interactions between two Myxococcus Species. Journal of Bacteriology 176:1201-1205.
    Sogin ML (2009) Characterizing microbial population structures through massively parallel sequencing. In Uncultivated Microorganisms. Epstein, S.S. (ed.). Heidelberg:Springer-Verlag,. pp.19-34.
    Song ZQ, Wang FP, Zhi XY, et al. (2013) Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China. Environmental Microbiology 15:1160-1175.
    Szekely AJ & Langenheder S (2014) The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiology Ecology 87:102-112.
    Szekely AJ, Berga M & Langenheder S (2013) Mechanisms determining the fate of dispersed bacterial communities in new environments. The ISME Journal 7:61-71.
    Taketani RG, Lima AB, da Conceicao Jesus E, Teixeira WG, Tiedje JM & Tsai SM (2013) Bacterial community composition of anthropogenic biochar and Amazonian anthrosols assessed by 16S rRNA gene 454 pyrosequencing. Antonie van Leeuwenhoek 104:233-242.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M & Kumar S (2011) MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony Methods. Molecular Biology and Evolution 28:2731-2739.
    Tang L, Shah S, Chung L, Carney J, Katz L, Khosla C & Julien B (2000) Cloning and heterologous expression of the epothilone gene cluster. Science 287: 640-642.
    Tao W, Xia F & Xing C (1999) On Environmental issues of Lake Chenghai and its management strategy. Resour Environ Yangtze Basin 8:210-214 (in Chinese).
    Theroux S, Huang Y & Amaral-Zettler L (2012) Comparative molecular microbial ecology of the spring haptophyte bloom in a greenland arctic oligosaline lake. Frontiers in Microbiology 3:415.
    Thomas SH, Wagner RD, Arakaki AK, Skolnick J, Kirby JR, Shimkets LJ, Sanford RA & Loffler FE (2008) The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PloS One 3:e2103.
    Torsvik V & Ovreas L (2002) Microbial diversity and function in soil:from genes to ecoSystems. Current Opinion in Microbiology 5:240-245.
    Velicer GJ & Vos M (2009) Sociobiology of the myxobacteria. Annual Review of Microbiology 63:599-623.
    Velicer GJ (2003) Social strife in the microbial world. Trends in Microbiology 11: 330-337.
    Wan G, Chen J, Wu F, Xu S, Bai Z, Wan E, Wang C, Huang R, Yeager K & Santschi P (2005) Coupling between 210Pbex and organic matter in sediments of a nutrient-enriched lake:an example from Lake Chenghai, China. Chem Geol 224: 223-236 (in Chinese).
    Wang B, Hu W, Liu H, Zhang CY, Zhao JY, Jiang DM, Wu ZH & Li YZ (2007) Adaptation of salt-tolerant Myxococcus strains and their motility Systems to the ocean conditions. Microbial Ecology 54:43-51.
    Wang Q, Garrity GM, Tiedje JM & Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73:5261-5267.
    Wang S, Hou W, Dong H, et al. (2013) Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. PloS One 8:e62901.
    Wenzel SC & Muller R (2009) Myxobacteria-'microbial factories' for the production of bioactive secondary metabolites. Molecular Biosystems 5:567-574.
    West SA, Griffin AS, Gardner A & Diggle SP (2006) Social evolution theory for microorganisms. Nature Reviews Microbiology 4:597-607.
    Whitman WB, Coleman DC & Wiebe WJ (1998) Prokaryotes:the unseen majority. Proceedings of the National Academy of Sciences of the United States of America 95:6578-6583.
    Will C, Thurmer A, Wollherr A, Nacke H, Herold N, Schrumpf M, Gutknecht J, Wubet T, Buscot F & Daniel R (2010) Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. Applied and Environmental Microbiology 76:6751-6759.
    Woese CR & Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America 74:5088-5090.
    Wu ZH, Jiang DM, Li P & Li YZ (2005) Exploring the diversity of myxobacteria in a soil niche by myxobacteria-specific primers and probes. Environmental Microbiology 7:1602-1610.
    Xia ZJ, Wang J, Hu W, Liu H, Gao XZ, Wu ZH, Zhang PY & Li YZ (2008) Improving conjugation efficacy of Sorangium cellulosum by the addition of dual selection antibiotics. Journal of Industrial Microbiology & Biotechnology 35: 1157-1163.
    Yadav G, Gokhale RS & Mohanty D (2003) Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. Journal of Molecular Biology 328:335-363.
    Yan ZC, Wang B, Li YZ, Gong X, Zhang HQ & Gao PJ (2003) Morphologies and phylogenetic classification of cellulolytic myxobacteria. Systematic and Applied Microbiology 26:104-109.
    Yim G, Wang HH & Davies J (2007) Antibiotics as signalling molecules. Philosophical transactions of the Royal Society of London Series B, Biological sciences 362:1195-1200.
    Zeleke J, Sheng Q, Wang JG, Huang MY, Xia F, Wu JH & Quan ZX (2013) Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments. Frontiers in Microbiology 4: 243.
    Zhang YQ, Li YZ, Wang B, Wu ZH, Zhang CY, Gong X, Qiu ZJ & Zhang Y (2005) Characteristics and living patterns of marine myxobacterial isolates. Applied and Environmental Microbiology 71:3331-3336.
    Zhou XW, Li SG, Li W, Jiang DM, Han K, Wu ZH & Li YZ (2014) Myxobacterial community is a predominant and highly diverse bacterial group in soil niches. Environmental Microbiology Reports 6:45-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700