褐煤热压脱水工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐煤是煤化程度最低的煤种之一,具有高水分、低热值的特点。随着世界范围内能源资源需求的增加,以及石油、优质煤资源等能源资源的逐渐匮乏,储量丰富的褐煤资源已引起人们的关注。褐煤热压脱水工艺,水分以液态形式脱水,产品能级密度得以明显提高,且具有不易吸潮、自燃,煤质性能明显改善等优点。本文以云南小龙潭等高水、低热值褐煤为主要研究对象,对褐煤热压脱水过程机理、褐煤热压型煤稳定机制及热压脱水工艺过程等进行了研究。本论文主要包括以下内容及结果:
     褐煤原煤煤质分析结果表明,原料褐煤孔隙结构发达,氧含量较高,具有大量的含氧官能团结构,易吸湿返潮、自燃,其挥发分初析温度在222℃左右。
     褐煤热压脱水机理研究结果表明,热压过程中煤水分离的基本过程为温度引起的热力效应脱水、机械压力产生的压实固结脱水和闪蒸脱水三方面;其机制是褐煤在热力作用下其有机含氧官能团和有机结构发生分解等引起褐煤物理结构和化学结构及组成的改变,煤水体系作用力减弱,借助于褐煤本身体积收缩、释放气体的排水作用及压力的压密固结作用等实现煤水体系的彻底分离。结合热压脱水过程基本特点,根据已有固结理论对热压过程进行了模型推导,建立了包含热压压力、温度和煤质特性因素的模型方程,模型方程进一步揭示并反映了热压过程热态固结脱水的特点。
     对小龙潭褐煤无粘结热压型煤稳定机制进行了研究,在分析热压型煤稳定性的同时,从褐煤样品表观形态、总孔容与稳定性关系及物理化学性能变化角度对热压型煤的稳定性机制进行了分析。热压过程中褐煤内部及表面含氧亲水基团的减少、疏水性增强,及孔隙、总孔容的大幅降低,内部结构的规整和热压作用引起的型煤表面的炭化作用是热压型煤稳定的基本原因。实验条件下,经干燥褐煤吸水率达9%以上,而型煤产品吸水率在4%左右,二者相差达5个百分点;褐煤经热压成型后,其自燃倾向性降低,自燃倾向性等级从Ⅰ级容易自燃变为Ⅱ级自燃倾向性等级。
     论文对100kg/d规模褐煤热压脱水工艺过程进行了研究。结果表明,温度、压力和保压时间是褐煤水分含量的显著性影响因素,其中温度和压力是褐煤热压脱水过程中关键因素,二者间交互作用对褐煤水分含量影响显著;热压过程适宜的工艺参数应根据对褐煤产品水分含量的要求确定,适宜的温度压力范围分别为150-200℃和5-10MPa,保压时间1-5min;上述极值条件下,褐煤水分含量可分别降至24.8%和8.78%。对热压产品煤质分析结果表明,脱水后褐煤能级密度得到大幅提升,小龙潭褐煤干基发热量增幅最大可达37%以上;同时,元素组成中碳含量可提升9%,而氧和硫元素含量明显降低;热压过程对褐煤具有一定的“洗涤”作用,其Na、Mg、Ca等金属元素含量较原煤有明显降低;Cl、Ni、As等元素含量也有所降低;热压处理后煤样挥发分、最高内在水分的大幅降低及固定碳含量的升高,反映热压过程对褐煤煤化程度具有一定的提升作用。对热压产品的热重实验结果表明,相较原煤,煤样挥发分初析温度、着火温度及最大失重速率温度均有明显提高,而燃尽温度变化不大,说明褐煤经热压后热稳定性的提高及燃烧性能的改善。
     基于获得200℃、10MPa条件下褐煤产品的热压脱水过程,对所需基本理论能耗进行了分析计算,结果表明其理论能耗大约为1195.7kJ/kg,按褐煤原煤热值及价格折合为17.52元/t。即热压脱水过程能耗成本为17.52元/t。
     该论文有图75幅,表31个,参考文献165篇。
Lignite is one kind of low rank coal, and has the characteristics of high innerwater and low heat value. With the worldwide increase in demand for energyresources, and gradual lack of oil, high rank coal, the abundant lignite resources haveattracted ever-increasing attentions. The Hot-pressing Dehydration (HPD) technologyhas the advantages that the water in lignite can be removed in liquid form, and theproduct from HPD has higher heat value, and an improved performance for utilizationwith the stability of not easily reabsorb moisture and spontaneous combustion. XiaoLongtan lignite (XLT) Adopted as raw material, the mechanism of dewatering of HPD,and the process parameters and the mechanism of the stability of briquette from HPDwere studied. The paper includes the followings:
     Some properties of raw lignite were analyzed. The results show that XLT ligniteis rich in pore structure and oxygen-containing functional group structure, and hashigher oxygen element content, and is easy to reabsorb moisture and prone tospontaneous combustion, and the volatile initial escaping temperature is about220℃.
     The mechanisms of dewatering of lignite by HPD were explored. The basicprinciple of water removal in PHD is thermal effect, compacting consolidation, andflash evaporation. The underlying dewatering mechanism is that the changes inphysical&chemical properties owing to the organic groups decomposition caused bythermal effect, which weakening the force between coal and water system, creatingthe conditions for the separation of water from lignite; then, the moisture is removedcompletely from coal by the volume contraction of lignite and the drainage effect ofgas from organic decomposition and the effect of compacting consolidation caused bymechanical press. On the basis of the HPD process feature, the model of HPD processwas created on the theory of consolidation, in which the factors of temperature,pressure and coal property are included.
     The mechanisms of the stability of lignite briquette from HPD were studied. Thestability of lignite briquettes were analyzed, and the mechanisms of the stability wasrevealed through the studies on the apparent morphological, and the relations betweentotal pore volume and stability, and the changes in physical&chemical properties.Which the significant decreases of oxygen content and the increase of hydrophobicityof lignite, and the significant reduction of porosity and total pore volume, and thesome degree carbonizing of briquette surface are the underlying reasons. At the conditions of test, the reabsorbed moisture difference between dried lignite from dryerand dewatered lignite from HPD is5percent, respectively are9percent and4percent.The grade of spontaneous combustion of the coal briquetted changes from Ⅰgrade toⅡgrade.
     Dewatering of lignite by HPD technology in a100kg/h scale was studied. Itshows that the significant factors effecting on dewatering of lignite are temperature,pressure and pressing time, and the factors of temperature and pressure and theirinteraction are the key to the water removal; suitable conditions parameters aredepended on the demand for the water content in lignite, and can be in the ranges oftemperature150-200℃, pressure5-10MPa and pressing time1-5min. The productsproperties were analyzed, and it shows that the heat density can be significantlyincreased by above37percent; and the carbon element content has been increased by9percent, and oxygen and sulfur elements content decreased significantly in theprocess; the process has some purification on some soluble metal ions with the ion Na,Mg, Ca content significantly reduction and Cl, Ni, As some degree reduction; the coalrank can be upgrade by HPD reflecting in the notable reduction of MHC and volatilecontent, and the fixed carbon content increased significantly; and the volatile initialescaping temperature, burning temperature and the fastest burning temperature can beraised, while burning out temperature changes little, which illustrates the rise ofstability and the improvement of burning performance.
     Based on obtained product from the HPD process conditions of temperature200℃, pressure10MPa, the theory energy consumption were calculated and discussed,and it gives the1195.7kJ theory energy consumption per kilogram product, and itequals to17.52Yuan per ton(base on the price of raw lignite price). That the cost ofenergy to process1ton raw lignite is17.52Yuan.
     75figs.,31tabs.,165refs.
引文
[1]冯玉滨.煤的热解与硫析出特性试验研究[D].山东:山东大学,2005:15-28
    [2]中国科学院能源战略研究组.中国能源可持续发展战略专题研究[M].北京:科学出版社,2006:52-78
    [3]戴和武,谢可玉.褐煤利用技术[M].北京:煤炭工业出版社,2008:21-42
    [4] UBC(Upgrade Brown Coal) Process Development[R].2003
    [5]尹立群.我国褐煤资源及其利用前景[J].煤炭科学技术,2004(8):12~15.
    [6] J.K. Kaldellis, D. Zafirakis, E. Kondili. Contribution of lignite in the Greek electricitygeneration: Review and future prospects[J]. Fuel,200988(3):475-489.
    [7]赵志根,唐修义.低温氮吸附法测试煤中微孔隙及其意义[J].煤田地质与勘探,2001(5):28-30
    [8]秦跃平,傅贵煤.孔隙分形特性及其吸水性能的研究[J].煤炭学报,2000,(1):55-59
    [9]周小玲,肖宝清.煤的孔隙特性与煤中水分关系的研究[J].矿冶,1995(1):90-93,104
    [10]钟玲文,张慧,员争荣等.煤的比表面积孔体积及其对煤吸附能力的影响[J].煤田地质与勘探,2002(3):26-29
    [11]张双全.煤化学[M].徐州:中国矿业大学出版社,2009:35-38
    [12]吕向前,刘炯天.浮选精煤中水的存在形式与脱除[J].煤炭技术,2005(1):47-49
    [13]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002:215-279
    [14]司学芝,刘捷,展海军.无机化学[M],北京:化学工业出版社,2009:263-372
    [15] Murray JB, Evans DG. The brown-coal/water system part3: Thermal dewatering ofbrown coal [J]. Fuel.1972,51:290~6.
    [16] Evans D.G. The brown–coal water system Part4: Shrinkage on drying [J].fuel,1973,52:186-190.
    [17] Allardice D.J.,Evans D.G..The brown-coal/water system part2: Water sorption isotherms onbed-moist Yallourn brown coal [J].Fuel,1971,50:236-253.
    [18] Kaji R.,Muranaka Y.,Otsuka K.,et al. Water absorption by coals:effects of pore structure andsurface oxygen [J]. Fuel,1986,65(2):288-291.
    [19] Mitra S., Mukhopadhyay R.,Chandrasekaran K.S. Water dynamics in lignite coal pores [J].Physica B:Condensed Matter,2000,292(1-2):29-34
    [20] Fei Y., Artanto Y., Giroux L., et al. Comparison of some physico-chemical properties ofVictorian lignite dewatered under non-evaporative conditions[J].Fuel,2006,85(14-15):1987-1991.
    [21] Favas G., Jackson W. R. Hydrothermal dewatering of lower rank coals.2. Effects of coalcharacteristics for a range of Australian and international coals[J]. Fuel,2003,82(1):59-69.
    [22] Butter C. J., Green A. M. The Influence of Water Quality on the Reuse of Lignite-derivedWaters in the Latrobe Valley, Australia[J]. Coal Preparation,2005.25:47-66.
    [23]陈海旭.我国褐煤燃前脱灰脱水提质现状[J].中国煤炭,2009(4):98~101.
    [24]初茉,李华民.褐煤的加工与利用技术[J].煤炭工程,2005(2):1~3.
    [25]刘志群,牟娜,牛桂荣等.褐煤热压成型小型试验[J].环境保护科学,1991(2):47~52.
    [26]王娜,朱书全,单晓云等.褐煤轻度热解与成型关系的研究[J].选煤技术,2007(3):3~6.
    [27]熊友辉.高水分褐煤燃烧发电的集成干燥技术[J].锅炉技术,2006(4):15~17.
    [28]陈冰冰,池海.谈对褐煤的加工利用[J].煤炭转化,2005(11):113~114.
    [29]李德鹏,李建松,陈传福.加强对褐煤的利用[J].现代矿业,2009(2):23~25.
    [30]赵振新,朱书全,马名杰等.中国褐煤的综合优化利用[J].洁净煤技术,2008(1):28~31.
    [31]陈文敏.我国褐煤的质量管理,改质和优化生产[J].煤炭科学技术,1991(6):30~35.
    [32]沈国娟,张明旭,王龙贵.浅谈褐煤的利用途径[J].煤炭加工与综合利用,2005(6):25~27.
    [33]陈晓达.由褐煤制备粉状炭[J].内蒙古煤炭经济.1993,2:65-67
    [34]邢宝林,谌伦建,张传祥等.中低温活化条件下超级电容器用活性炭的制备与表征[J].煤炭学报.2011,7(36):1200-1205.
    [35]张旭辉,刘振强,苗文华等中国褐煤在活性焦制备及应用方面的发展前景[J].洁净煤技术.2011,1:59-61
    [36]王鲁敏,邓昌亮,于淑静.龙口褐煤净化含汞废水的研究[J].烟台大学学报.1998,2(11):153-156
    [37]万永周,肖雷,陶秀祥,刘炯天.褐煤脱水预干燥技术进展[J].煤炭工程,2008(8):91~93.
    [38] Karl Strauss, Christian Bergins, Thomas Wild. Mechanical/Thermal Dewatering-a newprocess for the utilization of lignite for power generation[J]. Fuel2006;
    [39]邵俊杰.褐煤提质技术现状及我国褐煤提质技术发展趋势初探[J].神化科技,2009(2):17~22.
    [40]伯克D.褐煤干燥新方法—利用内部余热的沸腾床干燥法[J].世界煤炭技术,1991,(4):11~15.
    [41]刘旭光,李保庆.褐煤的热处理改质研究[J].煤炭转化,2000(1):39~43.
    [42]刘旭光,李保庆.褐煤的降自燃活性研究[J].中国矿业大学学报,2000(3):266~270.
    [43]常春祥,熊友辉,蒋泰毅.高水分褐煤燃烧发电的集成干燥技术[J].选煤技术,2006(2):19~21.
    [44]王天威.褐煤改质的基础研究[J].应用能源技术,2007(9):19~20.
    [45] Dr.-Ing. Karl Strauss. Mechanical/Thermal Expression (MTE)-design of a laboratory MTEunit. Fuel.2006:11:20~23.
    [46] Netzeli D A, Mjknis FP, Wallace J J C. A study of chemical dehydration of coals andits effect on coal liquefaction yields[J]. Prepr Am Chem Soc Div Fuel chem,1995,40(3):584-589
    [47]水恒福,刘健龙,王知彩.小龙潭褐煤不同气氛下液化性能的研究[J].燃料化学学报.2009,3(37):257-261.
    [48]周夏,刘长辉.褐煤气化前的预处理技术[J].煤炭加工与综合利用,2008(5):32-36.
    [49]贺峰,李保庆.微细干粉级配制取低阶煤和褐煤高浓度水煤浆技术[J].化工进展.2010,增刊:374-377
    [50] Fleissner. Method of drying coal and the like [P].US Patent US1632829.1927.
    [51] Fleissner. Method of drying coal and like fuels [P].US Patent US1679078.1928.
    [52] Fohl J,Lugscheider W, Wallner F. Removal of moisture from brow coal1.Basic principles andthermal drying process.Braunkohle1987,39:46-47.
    [53] Fohl J,Lugscheider W, Tessmer G, et al. Removal of moisture from brow coal2. Thermaldehydration. Braunkohle1987,39:78-87.
    [54] Kamei T,One F,Komai K, et al. Dewatering and utilization of high moisture brown coal[C].Proc4thInt. drying symposium,P725-731, Kyoto,July1984.
    [55] Allardice D J, Evans DG. The brown-coal/water system: part1.The effect of temperature onthe evolution of water from brown coal[J].Fuel1971;50:201~10.
    [56] Allardice D J,Anderson B, woskoboeenko F. Developments and opportunities in thehydrothermal dewatering of low rank coals[C].5thJapan/Australian Joint Technical Meetingon Coal, Adelaide,7June1995.
    [57] Allardcie D J,Celmow LM,Favas G,et al.The characterization of different forms of waterin low rank coals and some hydro thermally dried products[J].Fuel,2003,82(6):661-667.
    [58] Evans DG. Effects of colloidal structure on physical measurements on coals. Fuel1973,52:155–6.
    [59] Tibor G. Rozgonyi. Using saturated steam to process high moisture lignite. Fuel ProcessingTechnology.1985,10:64~71.
    [60]岩田博行等.褐煤干燥特性[J].资源,1990(4):43~48.
    [61] Banks PJ, Burton DR. Press dewatering of brown coal: part1: exploratory studies.Drying Technol1989,7(3):443–75.
    [62] Banks PJ, Burton DR. properties of brown coal in press dewatering. Proc Int. Conf. on CoalScience, Syney, Oct1985,P509-512.
    [63] Strau K. Method and device for reducing the water content of water-containing brown coal.EP0784660[P].1998
    [64] Strauss Karl. Process for reducing the water content of lignite. WO9731082[P],1997.
    [65]魏广学,徐建华,陈伍凭,等.褐煤脱水提质的研究[J].Rural Energy,1994(2):16~20.
    [66]任祥军.低煤阶煤的干燥进展[J].煤炭加工与综合利用,1996(4):85~87.
    [67]钟蕴英,钱中秋.褐煤的改质研究[J].中国矿业大学学报,2002(1):1-5.
    [68]朱学栋,朱子彬,朱学余,等.煤化程度和升温速率对热分解影响的研究[J].煤炭转化,1999(2):43-47.
    [69]姜立新,李晓岚,罗茜.蒸汽脱水技术的进展[J].Metal Mine,1999(7):36~44.
    [70]贾燕.褐煤结构的实验分析[D].太原:太原理工大学,2003:72-88
    [71]刘旭光,李保庆.褐煤的热处理改质研究[J].煤炭转化,2000(1):39~43.
    [72]刘旭光,李保庆.褐煤的降自燃活性研究[J].中国矿业大学学报,2000(3):266~270.
    [73]常春祥,熊友辉,蒋泰毅.高水分褐煤燃烧发电的集成干燥技术[J].选煤技术,2006(2):19~21.
    [74]冯林永,雷霆,张家敏,等.褐煤干馏试验研究[J].云南冶金,2007(6):29~32.
    [75] LI Xianchun, SONG Hui, WANG Qi etc. Experimental study on drying and moisturere-adsorption kinetics of an Indonesian low rank coal[J]. Journal of Environmental SciencesSupplement (2009) S127–S130
    [76]赵卫东,刘建忠,周俊虎等.褐煤等温脱水热重分析.中国电机工程学报.2009.14:74-79
    [77]赵虹,郭飞,杨建国.印尼褐煤的吸附特性及脱水研究[J].煤炭学报,2008,33(7):799-802.
    [78]刘辉,吴少华,孙锐等.快速热解褐煤焦的比表面积及孔隙结构[J].中国电机工程学报,2005,25(12):86-90.
    [79]刘志群.褐煤无粘结剂型煤的防水性能试验与研究[J].环境保护科学,1996(3):34~37.
    [80]高俊荣,陶秀祥,侯彤,万永周.褐煤干燥脱水技术的研究进展[J].洁净煤技术,2008(6):73~76.
    [81]万永周,高俊荣,肖雷等.褐煤的脱水提质研究[J].煤炭工程,2010,4:
    [82] WAN Yongzhou, GAO junrong, XIAO lei, et al. The optimization of the conditions ofthermal and pressing dewatering and the effect of conditions on the burning characteristic oflignite[J]. Applied Mechanics and Materials Vols.66-68(2011) pp1450-1455.
    [83]邵俊杰.褐煤提质技术现状及我国褐煤提质技术发展趋势初探[J].神化科技,2009(2):17~22.
    [84] Majumdar A.Handbook of Industrial Drying[M], V1,2.Dekker1995.
    [85] McIntosh MJ.Mathematical model of drying in a brown coal mill system1. Formulation ofmodel[J]. Fuel1976,55:47-52.
    [86] McIntosh MJ. Mathematical model of drying in a brown coal mill system2. Testing themodel[J]. Fuel.1976,55:53-58
    [87]吴平.褐煤利用的危与机[J].中国高新技术企业,2010(2):30-31
    [88] Mayer M. Experience with flue gas drum dryers. Bergbautechnik1953,3:636.
    [89] Potter OE, Keogh AJ. Cheaper power from high moisure brown coals[J]. Jnl. Inst. Energy1979.52:143-146.
    [90] Potter OE, Beeby CJ, Fernando WJN, et al. Drying brown coal in steam–heated steam–fluidized beds[J]. Drying technology.1984,2(2):219.
    [91] Toru Sugita,et al. UBC (Upgraded Brown Coal) Process Develop-ment[J].Kobe SteelEngineering Reports,2003.
    [92] Deguchi T,Shigehisa T, Katsushima S, et al. Development of the UBC process[C].7thAustilian Coal Science Conference. Gippsland, December1996. P:479-485.
    [93] Okuma O, Sugina Y, Yanai S, et al. Dewatering and liquefaction of Victorian brown coal inBCL process[C]. Proc. Int. Conf on Coal Science.Sydney, Oct1985. P:27-30.
    [94] Hideki Kanda, Hisao Makino. Energy-efficient coal dewatering using liquefied dimethylether[J]. Fuel,2010,89(8):2104-2109
    [95] Miura K, Mae K, Ashida R, et al. Dewatering of coal through solvent extraction[J]. Fuel.2002,81:1417-1422.
    [96] Kanda H,Shirai H, Hier Y. Dewatering process for high misture coal using liquid DME asextracting solvent[C]. AIChE Annual Meeting,2003. San Francisco, CA.
    [97] Chaffee AL,Favas G, Jackson WR. Drying technologies for more efficient power generationfrom low rank coals[C]. Proc.17thPittsburgh Coal Conference, Pittsburgh,2000paper7-6.
    [98] Hashimoto N, Tokuda S. CWM Production from Upgraded Low Rank Coals. APEC CoalTrade and Investment Liberation and Facilitation Workshop,Jakarta, Aug.1997.
    [99] Evans D.G., Siemon S.R. Dewatering of brown coal before combustion [J]. Journal of theInstitute of Fuel1970,43(357),413–419.
    [100] Potas TA, Sears RE, Maas DJ, et al. Preparation of hydrothermally treated LRC/waterslurries[J]. Chem Eng Comm.1986,44:133-151.
    [101] Anderson B, Johnson TR. Hydrothermal dewatering of low rank coal for use in a directfired gas turbine[C].3rdJapan/Austrilia Jiont Technical Meeting on Coal. Brisbane, May1993.
    [102] Allardice DJ, Anderson B, woskoboenko F. Development and opportunities in thehydrothermal dewatering of low rank coals[C].5thJapan/Austrilia Jiont Technical Meetingon Coal, Adelaide,7June1995.
    [103] McIntosh M. Advanced power generation technologies for lignite including repowering ofboiler plant[C]. Australia-China workshop on Clean Power from Coal with MaximizedEfficiency, Taiyuan, China,27-30August2001.
    [104] Ch.伯叠斯,S.伯杰, K.斯特劳布.机械一热脱水加工工艺[J].国外选矿快报,1998(23):4~7
    [105] Clayton SA, Scholes ON, Hoadley AFA, et al. Dewatering of biomaterials by mechanicalthermal expression[J]. Drying Technology2006,24(7):819-824.
    [106] Bergins C, Berger S, Strauss K. Dewatering of fossil fuels and suspensions of ultrafineparticles by mechanical/thermal dewatering[J]. Chem Eng Technol1999.22(11):923-927.
    [107] Craig J. Butler, Alison M. et al. Assessment of the water quality produced from mechanicalthermal expression processing of three Latrobe Valley lignites[J]. Fuel,2006,85(10-11):1364-1370
    [108]柴诚敬.化工原理(下)[M].北京:高等教育出版社,2005:242-269
    [109] Dulhunty JA. Physical changes accompanying drying of some Australian lignites[C]. ProcRoyal Soc New South Wales1946;80:22–27.
    [110] Dulhunty JA. Some effects of compression on the physical properties of low rank coal. JProc Royal Soc New South Wales1948;82:265–271.
    [111] Dulhunty JA. High-pressure equipment for experimental research on coal metamorphism[J].Aust J Sci1954;16:236–238.
    [112] Dulhunty JA. Experiments in physical metamorphism of brown coals[J]. Fuel1960;39:155–62.
    [113] Durie R.A. The Science of Victorian Brown Coal: Structure, Properties and Consequencesfor Utilisation. Ed.. Butterworth-Heinemann Ltd.: Oxford,1991.
    [114] Guo, J. Hydrothermal-Mechanical Dewatering of Brown Coal. Ph.D.Thesis. MonashUniversity, Melbourne,2000.
    [115] Guo J, Tiu C, Hodges S, et al. Hydrothermal–mechanical upgrading of brown coal[J]. CoalPrep1999;21(1):35–52.
    [116] Guo J, Tiu C, Uhlherr PHT. Modeling of hydrothermal–mechanical expression of browncoal[J]. Can J Chem Eng2003;81:94–102.
    [117] Bergins C. Kinetics and mechanism during mechanical/thermal dewatering of lignite[J].Fuel2003;82(4):355–64.
    [118] Bergins C. Mechanical/thermal dewatering of lignite. Part2: a rheological model forconsolidation and creep process[J]. Fuel2004;83(3):267–76.
    [119] Bergins C., Hulston J., Strauss K., et al. Mechanical/thermal dewatering of lignite. Part3:Physical properties and pore structure of MTE product coals[J]. Fuel,2007,86(1-2):3-16.
    [120] Hulston, J.Favas, G.Chaffee. Physico-chemical properties of Loy Yang lignite dewatered bymechanical thermal expression[J]. Fuel,2005,84,1940-1948.
    [121]于之英,郗金玉.关于全水分煤样制备与燃煤全水测定的探讨[J].内蒙古石油化工,2005(12):47.
    [122]米娟层,刘晓华.煤的空干基水分测定结果不确定度评定[J].煤质技术,2005(2):67~68.
    [123]赵燕,温湘新.煤的水分测定中应注意的一些问题[J].洁净煤技术,2006(3):104~106.
    [124]高松.氧弹内有无水对发热量测定的影响[J].煤质技术,2003(1):51~53.
    [125]陈勇.煤炭热值测量不确定度的分析[J].煤化工,2003(2):12~13.
    [126] Butler C.J, Green A.M., Chaffee AL. Assessment of the physical and chemical properties ofMechanical Thermal Expression product water[C].12thInternational Conference on CoalScience, Cairns, Australia, Nov2003.8:30
    [127] Jose V Ibarra,Edger Munoz, and Rafael Moliner.FTIR Study of the evdution of coalstructure during the coalification process[J].Org.Geochem,1996(6-7):725-725.
    [128]朱红,李虎林,欧泽深.等.不同煤阶煤表面改性的FTIR谱研究[J].中国矿业大学学报,2001(4):366-370.
    [129]孟宪明.煤孔隙结构和煤对气体吸附特性研究[D].山东:山东科技大学.2007:80-91
    [130]王正烈,周亚平,李松林.物理化学(下册)(M).高等教育出版社,第四版,2001:108-122
    [131]张占存.煤的吸附特征及煤中孔隙的分布规律[J].煤矿安全,2006(9):1-3.
    [132]邵强,张传祥.工业型煤防水性影响因素的试验研究[J].煤炭工程,2005(5):56-58.
    [133]陆伟,王德明,戴广龙,仲晓星.煤物理吸附氧的研究[J].湖南科技大学学报,2005(4):6-10.
    [134] Sobkowiak M,Reisser E,Given P.et a1.Determination of aromatic and aliphatic CH group sin coal by FTIR:1.studies of coal extracts [J].Fuel,1984,63(9):1245-1252.
    [135]何启林,任克斌,王德明.用红外光谱技术研究煤的低温氧化规律[J].煤炭工程,2003(11):45-48.
    [136卢廷浩.土力学.北京:高等教育出版社,2010(1):57-79.
    [137]唐立夫,杨德武,孙明文.一维恒压压榨脱水的理论研究[J].化学工程.1989,17(1):67-72
    [138]唐立夫,杨德武.一维恒压压榨脱水过程中滤饼压榨系数的测定与计算[J].流体工程.1987,12:26-29
    [139] Sivaram, B and K, Swamee, J. Japanese Soc. Soil Mech. Eng17,48(1977):48-54
    [140]沈孝宇.饱水粘性土主固结理论[J].地球科学—中国地质大学学报.2005,30(4):493-497
    [141]田忠坤,朱书全.褐煤无粘结剂热压成型特性[J].辽宁工程技术大学学报,2009(3):494-497.
    [142]顾小愚,钟心.无烟煤的物理性质对其型煤抗压强度的影响[J].煤炭转化.2009,32(2):71-74.
    [143] Clayton S. A., Wheeler R. A., Hoadley A. F. A. Pore Destruction Resulting fromMechanical Thermal Expression [J]. Drying Technology,2007,25:533-546
    [144]李登新,吴家珊,宋永玮.成型条件的相互作用和型煤质量[J].煤炭分析及利用.1993,2:17-22
    [145]赵霞.浅谈煤自燃倾向性的实验室测定方法[J].煤炭工程,2005(8):84~85.
    [146]隋艳.煤自燃倾向性色谱吸氧鉴定浅谈[J].煤质技术,2007(2):5~7
    [147]高俊荣,陶秀祥,万永周,等,褐煤热压脱水成型试验[J].煤炭科学技术,2009(6):126-128.
    [148]张贻儒,赵会娟,唐珂,等.褐煤型煤主要工艺条件的研究[J].环境保护科学,1991(2):32-36.
    [149]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社.2001:196-219
    [150]贾存华.煤的发热量与灰分、水分关系探讨[J].山西焦煤科技.2005,1:4-6
    [151]陈文敏.灰分增减1%对煤热值的影响[J].煤炭科学技术.1992,3:29-30,10.
    [152]张玉贵,曹升玲,谢克昌.煤结构演化煤化度指标[J].煤炭转化.2007(4):1-4.
    [153]王娜,朱书全,杨玉立等.含氧官能团对褐煤热态提质型煤防水性的影响[J].煤炭科学技术.2010,38(3):125-128.
    [154] Hodges S, Woskoboenko F. Hydrothermal dewatering of brown coal slurries: fundamentalstudies[C]. Ninth international conference on coal research, Washington, USA1991p162–73.
    [155] Ode WH, Gibson FH. International system for classifying brown coals and lignites and itsapplication to American coals[R]: US Bureau of Mines, Report of Investigation No.5527;1960.
    [156]熊友辉,孙学信.动力用煤及燃烧特性的研究手段和方法[J].煤质技术,1998(5):27-31.
    [157]胡文斌,杨海瑞,吕俊复,等.煤着火特性的热重分析研究[J].电站系统工程,2005(2):8-12
    [158]祝文杰.利用热天平研究煤的着火特性[D].杭州:浙江大学,2004-02.
    [159] Cumming JW,Reactivity Assessment of Coal via a Weighted Mean Activation Energy[J].Fuel.1984.63:PP.1436-1440
    [160] Morgan PA, Robertson SD, Unsworth JF. Combustion Studies by thermo gravimetricAnalysis-1.Coal oxidation[J]. Fuel.1986.65:PP.1546-1551.
    [161]煤和焦炭灰中常量和微量元素测定方法.X荧光光谱法. MT/T1086-2008
    [162]杨建业.贵州普安矿区晚二叠世煤中微量元素的质量分数和赋存状态[J].燃料化学学报.2006,34(2):129-135
    [163]李培.蒙东褐煤热压脱水机理与经济性研究[D].浙江大学.2011:93
    [164] http://price.coalcn.com/Price/priceHtml/PriceHtml/091201/09120103190321612.html
    [165] Bergins C., Strauss K. Sigg J. Beneficial effects of the combination of mechanical/thermaldewatering and dry lignite fired power stations[J]. VGB Power Tech,2004,24(1-2):60-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700