湿陷性黄土地区深基坑及边坡锚杆支护受力性能应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,锚杆已成为土木工程中作为支护结构的常选构件,锚杆的使用越来越
    广泛,但锚杆的受力规律随土质和安装角不同而异。本文试图探讨锚杆应用于黄
    土地区时其受力的规律及最佳安装角,鉴于此,笔者在室内以黄土作为支护介质
    进行了锚杆受力分析的试验,试验锚杆的类型为拉力型和压力型两种,安装角(埋
    入土中的角度)为30°、45°、60°三种。由试验结果分析得知:其受力规律与
    其它支护介质中的规律相近,按理论推导得到了最佳安装角α_(opt)的计算公式,通
    过数值计算给出了其简化公式:α_(opt)≈60°-φ(其中φ为土的内摩擦角);由剪力
    沿锚杆长度的分布情况,提出了剪力沿杆长分布的“黄金分割”原则及锚固体有
    效锚固长度的建议值。
     本文还对兰州地区黄土的湿陷性进行了探讨工作,利用实际工程工作采样研
    究,发现在兰州黄河Ⅲ级阶地上的黄土湿陷性有悖于随深度增大而逐渐减小的规
    律。为究其原因,做了土样的化学成分及结构分析,得知其中的Na_2CO_3。含量较全
    国黄土的该含量高出4.3倍,这是一个新测设的数据,由于测试较少,还难以对
    其给出定论,希望能引起同行及黄土工程界的重视和探讨。
Nowadays, anchor is one of the most chosen as a member of supporting structure in
     Civil Engineering. The stress law of anchor various with different soil and different
     embedding angle. The author tries to discuss the stress law and best embedding angle of
     anchor when it is used in Loess. In order to get specific data, series of tests for stress law
     on anchor are performed within the lab, with Loess as the supporting media. Included are
     tensile and pressure anchors in different embedding angles: 300 45 0 600 . The
     findings indicate: the stress law of anchor is similar to some other supporting media. And
     theoretically, a calculating formula for best embedding angle a is deduced, which is
     simplified as a ~60O ?is the internal friction angle). Meanwhile, the golden
     mean principle for variation of shearing force along the anchor is brought forward,
     according to the experimental data.
    
     The Loess collapsibility in Lanzhou is also discussed exploratively in this paper.
     Testing to the samples form some projects shows the collapsible coefficient of high-grade
     Loess in Lanzhou doesn抰 agree with the law that collapsible coefficient should decrease
     with the depth downward. In order to find out the reasons, the soil sample are analyzed in
     chemical component and structure, which demonstrates the Na2CO~ content is 4. 3 times
     more than that of ordinary soil in China. The new datum can not be verified definitely for
     lack of sufficient tests. However, it is deserved to be taken seriously by relevant
     researchers.
引文
[1]《土层锚杆设计与施工规范》CECS22:90.中国工程建设标准化协会标准,1990,11.
    [2]《建筑基坑支护规程》 JGJ120—99.建设部.
    [3]程良奎,刘启琛.岩土锚固工程技术的应用与发展.北京:万国学术出版社,1996.
    [4]刘建航,侯学渊主编.基坑工程手册.北京:中国建筑工业出版社,1997.
    [5][英]T.H.汉纳著.锚固技术在岩土工程中的应用.北京:中国建筑工业出版社,1987.
    [6]尉希成.支挡结构设计手册.北京:中国建筑工业出版社,1995.
    [7]陈仲颐.基础工程学.北京:中国建筑工业出版社,1990.
    [8]黄强.深基坑支护结构实用内力计算手册.北京:中国建筑工业出版社,1995.
    [9]秦四清等.深基坑工程优化设计.北京:地震出版社,1998.
    [10]陈肇元,崔京浩.深基坑支护技术综述(广州地铁—深基坑支护研究报告).1997,12.
    [11]Jean-Louis Briand(1996),Tieback Walls in Sand: Numerical Simulation and Design Implications Journal of Geotechnical and Geoenvironmental Engineering ASCE(1999 2).101—110.
    [12]余志成等.深基坑支护设计与施工北京:中国建筑工业出版社,1997.
    113]中国岩土锚固协会主编.岩土锚固新技术.北京:人民交通出版社,1998.
    [14]中国岩土锚固协会主编.岩土锚固工程技术.北京:人民交通出版社,1996.
    [15]王铁宏.全国重大工程项目地基处理工程实录.北京:中国建筑工业出版社,1998.
    [16]曾宪明等.岩土深基坑喷锚网支护法原理 设计 施工指南.上海:同济大学出版社,1997.
    [17]黄福德.高边坡群锚加固中锚索体的动态受力特性.西北水电,1997,4,33—37.
    [18]韩学广.深基坑桩锚护壁体系.国际岩土锚固工程技术研讨会论文集,1996.
    [1g]林秉南,陈济生.岩石高边坡的变形与稳定.北京:中国水利水电出版社,1999.
    [20]郑明新等.黄土锚固及其应力机制的数值分析.地震灾害与环境保护,1999,3,22-28.
    [21]杨重存.黄土地区公路土桥边坡与地基处理对策.天津城市建设学院学报,1998,12,28-32.
    [22]高维隆.湿陷性黄土高边坡喷锚网支护试验及应用研究.西安公路交通大学学报,1998,10.
    [23]侯学渊,苏维治.软土土层锚杆承载机理分析.岩土工程学报,1986,:3.
    [24]顾金才,明治清,沈俊等。预应力锚索内锚固段受力特点现场试验研究.岩土锚固工程,1999[1]:38-43.
    [25]尾高英雄,张满良,岛三山树男.关于荷载分散型锚杆及周边岩土层剪切应力的研究.岩土锚固技术的应用和发展.北京:万国学术出版社,1996,216-221.
    [26]日本北海道发展局土木工程研究所.土锚摩阻力的试验研究.岩土锚固工程技术的应用和发展.北京:万国学术出版社,1996,222-227.
    [27]龙驭球.有限元概论(第二版).高等教育出版社,1991.
    [28]徐芝纶.弹性力学简明教程(第二版).高等教育出版社,1983.
    [29]L.M.卡恰诺夫著.塑性理论基础.人民教育出版社,1983.
    [30]钱福元等著.土层地下建筑结构.北京:中国建筑工业出版社,1982.
    [31][苏联]B.A.弗洛林著.土力学原理.北京:中国工业出版社,1965.
    [32] 《湿陷性黄土地区建筑规范》BJG-20-66:TJ25-78:6BJ25-90.
    [33] 钱鸿缙,王继唐 罗宇生等.湿陷性黄土地基.北京:中国建筑工业出版社,1985.
    
    
    [34] Structural Characteristic of Loess Soils for Evaluating their Constructional Properties. Proc. 6th Iht. Conf..Soil Mech. Found. Eng. 1965, 1: 64-68.
    [35] 张炜,张苏民.我国黄土工程性质研究的发展.岩土工程学报,1995,17(6):80-87.
    [36] 高国瑞.黄土显微结构分析及其在工程勘察中的应用.工程勘察,1980,(6):25-28.
    [37] Knight. K., Collapse of Structure of Sandy Subsoils on Wetting. T. University of Witwantersrand, 1960.
    [38] 高国瑞.黄土湿陷变形的结构理论.岩土工程学报,1990,12(4):1-9.
    [39] 曲天德,刘忠玉,任九生.湿陷性黄土的变形机理与本构关系.岩土工程学报,1999,21[4]:383-387.
    [40] 陈宗基.我国两北黄土的基本性质及其工程建议.岩土工程学报,1989,11[6]:9-23.
    [41] 郑建国,张苏民.黄土的湿陷起始压力和起始含水量.工程勘察,1989,(2):6-10.
    [42] Rogers C D F, Digkstra T, Smalley I J. Hydroconsolidation and subsidence of loess: Studies from China, Russia, North America and Europe. Engineering Geology, 1994, 37:83-113.
    [43] 党进谦,李靖.非饱和黄土的强度特征.岩土工程学报,1997,19[2]:56-61.
    [44] 刘祖典,李靖,郭增玉等.陕西关中黄土变形特性和变形参数的探讨.岩土工程学报,1984,6[3]:25-33.
    [45] 蒲毅彬,陈万业,廖全荣.陇东黄土湿陷过程的CT结构变化研究.岩土工程学报,2000,22[1]:49-54.
    [46] 刘明振.湿陷性黄土间歇浸水试验.岩土工程学报,1985,7[1]:47-53.
    [47] 关文章,湿陷性黄土工程性能新编.西安:西安交通大学出版社,1992.
    [48] 汪国烈.黄土湿陷性与湿陷敏感性及其共对工程的影响.中国土木工程学会暨基础工程学会非饱和土理论与实践学术讨论会论文集.北京:中国建筑工业出版社,1992,203—220.
    [49] 陈正汉,刘祖典.黄土的湿陷变形机理.岩土工程学报,1986,8[2]:1-12.
    [50] 张原丁.论黄土的湿陷敏感性.岩土工程学报,1996,18[5]:79-83.
    [51] Matsuoka H. Stress - strain relationships of sands based on the mobilized plane. Soils and Foundations. 1974, 1412]: 78-79.
    [52] Poston T, Stewart I N. Catastrophe theory and its applications. Pitman landon, 1978.
    [53] Ishihara K, Oyagi N, et al. Liguefaction-induced flow slide in the collapsive loess deposit in Soviet Tajik. Soils and Foundations. 1990, 30[4]: 73-89.
    [54] Hwang H, Wang Lanmin, Yun Zhongxia. Comparison in liquefaction potential of loess between lanzhou,China and Memphis. USA. The 9th International Conference on Soil Dynamics and Earthquake Engineering, Norway, 1999..
    [55] 孙建中,刘建民.黄土的未饱和湿陷、剩余湿陷和多次湿陷.岩土工程学报,2000,22[3]:365-367.
    [56] 涂光祉.试论黄土地基的自重湿陷敏感性.工程勘察,1980,(2):36-39.
    [57] 王兰民,刘红玫,李兰等.饱和黄土液化机理与特性的试验研究.岩土工程学报,2000,22[1]:89-94.
    [58] Wang Lanmin, Zhang Zhengzhong, Li Lan,et al. Laboratory study on loess liquefaction. Eleventh World Conference on Earthquake Engineering, Mexico, 1996.
    [59] Wang Lanmin, Wang Jun, Li Lan. Dynamic behaviors of loess under irregular seismic I 4. oadings. The Second International Conference on Earthquake Resistant Construction and Design,Gemany, 1994.
    
    
    [60] Frelund D G, Morgenstem N R, Widger R A. The Shear Strength of Unsaturated Soils. Canadian Geotechnical Journal, 1978, 15:313~321.
    [61] Gan F K, Fredlund D G, Rahardjio H. Determination of Shear Strength Parameters of Unsaturated Soil Using Direct Shear Test. Canadian Geotechnique Journal, 1988, 25: 500~510.
    [62] Frelund D G et al, Predicting the Shear Strength Function for Unsaturated Soil Using the SoilWater Characteristic Curve. In: Proc, of International Conference on Unsaturated Soil. Vol 1. Paris, 1995.
    [63] Gibson R E. Experimental Determination of the True Cihesion and the Angle of Internal Funtion in Clays. In: Proc. of the 3rd International Conference SMFE 1953.
    [64] 郭敏霞,张少宏,邢义川.非饱和原状黄土湿陷变形及空隙压力特性.岩石力学与工程学报,2000,19[6]:785—788.
    [65] 张炜,张苏民.非饱和黄土室内力学性质试验研究.工程勘察,1991,(3):6-10.
    [66] 王峻.黄土震陷试验与评价.甘肃科学学报,1999,11[1]:6-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700