用户名: 密码: 验证码:
生物质流化床燃烧粘结特性及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质含有高含量的碱金属元素和营养元素。在流化床中的燃烧过程中,大部分的碱金属元素会固留在生物质灰中。生物质灰中的碱金属元素容易与床料中富含的SiO2发生反应生成低熔点的物质,低熔点物质的生成使流化床床层发生粘结现象。粘结发生时,床内流态化会被破坏,随着粘结块的进一步形成与增加,可能引起整个流化床的流态化停滞,导致锅炉被迫停炉,从而造成严重的经济损失。本论文围绕生物质流态化燃烧粘结现象展开深入的研究,期望发现解决这一瓶颈的科学依据,研究生物质灰与典型床料(石英、河砂)发生粘结的反应机理,建立流化床颗粒粘结数学模型,寻求预测生物质流化床粘结发生的方法,探索抑制生物质流化床内燃烧粘结的新技术,为流化床燃烧技术在生物质燃料直接燃烧领域的应用奠定理论基础。
     探索利用热重差示扫描量热分析法(TG/DSC)研究麦秆灰以及麦秆灰与石英混合物的高温熔融特性。通过引入模型化合物分析得出:麦秆灰以及麦秆灰与石英混合物在620~700℃的温度范围内存在KCl和CaCl2混合物的共熔反应,熔融的KC;和CaCl2在800℃~900℃的温度区间开始转移到气相中。在空气气氛中,麦秆灰中的K2CO3与SiO2发生化学反应,生成硅酸钾,在901℃~1039℃的温度区间麦秆灰中的硅酸钾发生熔融。麦秆灰与石英混合物相对于单独的麦秆灰,KCl和CaCl2的熔融峰的温度区间无明显区别,而硅酸盐的初始熔融温度明显降低。硅酸钾发生了熔融是麦秆灰与石英混合物出现粘结现象的主要原因。
     利用热重差示扫描量热分析法、偏光显微镜、扫描电镜-能谱分析技术和多相平衡计算等多种分析手段研究麦秆灰和河砂混合物的高温粘结机理得出:麦秆灰与河砂的混合物在850℃出现轻微的粘结,900℃时粘结明显,粘结物主要成分为硅酸盐,其主要成份为K20-SiO2-Na2O-Al2O3-CaOo粘结物中钾元素和钙元素的聚集是造成粘结的重要原因。麦秆灰与河砂混合物的粘结现象,不能归结为麦秆灰的熔融使得河砂颗粒粘结在一起,而是化学反应和熔融行为综合作用的结果。高温下麦秆灰与河砂发生反应产生低熔点的硅酸盐是造成麦杆灰与河砂混合物粘结的直接原因。
     以生物质流化床内燃烧粘结发生的力平衡模型为基础,建立了描述生物质流化床内燃烧流化失败过程的数学模型,并利用FactS age多相平衡模型计算床层温度下生物质灰和床料混合物中液态相的比例和成分,结合Urbain的硅酸盐粘度计算模型,得到生物质流化床燃烧粘结失流过程的数学模型。从粘结力和破坏力的物理意义出发,得到粘结力和破坏力随着运行时间、床层温度、床料粒径、生物质灰以及床料成分的变化规律。利用力学平衡模型最终得到失流时间关于床层温度、床料粒径、生物质灰以及床料成分的函数表达式。结果表明:模型计算结果与实验结果具有较好的一致性。
     应用FactSage软件中Equilib模块计算在一定温度范围内生物质灰和不同床料多相平衡时物相变化、液态相质量分数和液态相成分,并应用偏光显微镜-能谱分析实验对计算结果进行验证,建立以多相平衡计算模型为基础,偏光显微镜-能谱分析实验为验证的系统预测方法,预测不同床料下生物质流化床燃烧粘结趋势。多相平衡计算模型计算结果表明:相对于河砂,粘土、高岭土、石煤灰都能够有效的抑制生物质流化床燃烧粘结现象。应用多相平衡计算模型计算得到了麦秆灰和不同床料多相平衡时液态相成分和比例,计算结果与偏光显微镜-能谱分析结果基本一致。
     在5kW鼓泡床实验装置上进行了不同床料下麦秆燃烧粘结特性实验。结果表明:相对于石英,高岭土、流化床燃煤炉渣、煤矸石灰渣、高炉渣都能有效的抑制生物质流化床燃烧粘结现象的发生。流化床燃煤炉渣和煤矸石灰渣作为床料,能够明显抑制生物质流化床内的燃烧粘结现象。高含量的铝元素、较高含量的硫元素、高含量的碱土金属元素和较低含量的碱金属元素有利于粘结物的熔点的提高,进而阻止了床层大面积的粘结。
High content of potassium in biomass ash leads to agglomeration in the fluidized bed during combustion, which eventually propagates to partial or total defluidization of the reactor, and then subsequently unscheduled shut down of the boiler. In this thesis, intensive research on the agglomeration phenomenon is conducted with the expectation to find out the scientific basis to solve such problem. The reaction mechanism of agglomeration caused by biomass ash and typical bed materials is analyzed. A mathematical model is established to describe the agglomeration process in bio-fuel fired fluidized bed combustor. A method forecasting the agglomeration is proposed to explore new technology of counteracting agglomeration in bio-fuel fluidized bed.
     Melting behavior of wheat stalk ash and its mixture with quartz at high temperature was investigated with thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Model compounds were introduced for analysis, finding that there is eutectic reaction between KC1and CaCl2in wheat stalk ash and its mixture with quartz at the temperature from620℃to700℃. The molten KCl and CaCl2transfer to gas phase when the temperature ranges from800℃to900℃. At the air atmosphere, K2CO3in wheat stalk ash can react with SiO2, forming potassium silicate, the part of which in the wheat stalk melts at the temperature from901℃to1039℃. Compared with the wheat stalk ash, there is no obvious difference for the range of melting temperatures of CaCl2and KCl in the mixture of wheat stalk ash and quartz, but the initial melt temperature of silicate decreases markedly. The Melting of potassium silicate is the main reason for the agglomeration of the mixture of wheat straw ash and quartz.
     Melting behavior of wheat stalk ash and its mixture with quartz at high temperature was investigated with TG/DSC, polarized light microscopy, scanning electron microscopy and energy dispersive X-ray (SEM-EDX)and Multi-phase equilibrium calculation. No agglomeration is detected below850℃. At the temperature ranging from900℃tolOOO℃, however, obvious agglomeration is observed and the agglomerates solidify further as the temperature increases. The presence of potassium and calcium causes a sticky sand surface that induces agglomeration. The main components of the agglomerate surface are K2O-SiO2-Na2O-Al2O3-CaO. The agglomeration is not caused by the melting behavior of wheat stalk ash itself but due to the comprehensive results of chemical reaction and the melting behavior at high temperatures. The formation of molten silicates will directly lead to the agglomeration of the mixture of wheat straw ash and river sands.
     Based on the balance mechanism of the adhesive force caused by liquid bonding between two particles and the breaking force induced by bubbles in the fluidized bed, a mathematical model is established to describe the agglomeration process in bio-fuel fired fluidized bed combustor, which considers the modified Urbain model and chemical equilibrium calculation using FactSage modeling. This model accounts for the evolvement of the adhesive and breaking forces, and clearly demonstrates that the different compositions of ash, the increasing matter of liquid phase and the fluidization velocity cause defluidization in fluidized bed. In this model, it is hypothesized that the bonding stress between two particles is proportional to the mass fraction of liquid phase and inversely proportional to the diameter of particles. Viscosity of liquid phase is put forward for the first time. The defluidization time calculated by this model shows good agreement with that from the experimental data.
     Multiphase equilibrium calculation is performed by the FactSage to identify the melting behavior of biomass ash blended with different bed materials. The proportion and the composition of liquid phase and solid phase at different temperatures were predicted by the Equilib module of the FactSage. The calculation results are verified by polarized light microscopyand energy dispersive X-ray. A prediction method based on multiphase equilibrium calculation is set up and tested by polarized light microscopyand energy dispersive X-ray experiments. The calculation results of multiphase equilibrium show that compared with river sands, the bed materials, the clay, kaolin and stone coal ash can counteract agglomeration, which is consistent with the experimental results.
     The characteristics of bed agglomeration during combustion of wheat stalk pellet in a bench scale bubbling fluidized bed with four kinds of bed materials are investigated with the data from scanning electron microscopy(SEM) and energy dispersive X-ray(EDX) and multiphase equilibrium calculation. The bed materials include kaolin, coal gangue ash, fluidized bed coal slag and blast furnace slag. The results indicate that compared with the commonly used silica sands, all of the four kinds of bed materials can reduce the agglomeration of biomass ash. Especially, coal gangue ash and fluidized bed coal slag can effectively counteract the agglomeration. The high content of aluminum, sulfur and alkaline, and low content of alkali are conducive to improve the melting point of coating layer covered by the surface of the bed material pellets to prevent them from growing. Therefore, further bed agglomeration and defluisization can be prevented.
引文
[1]袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出版社,2005.
    [2]阴秀丽,吴创之,徐冰燕等人.有利于农业持续发展的农村能源一生物质能[J].太阳能学报,2000,21(1):40-44.
    [3]国家发展改革委,农业部,财政部编制.《“十二五”农作物秸秆综合利用实施方案》2011.
    [4]McKendry P. Energy production from biomass (Part 2):conversion technologies. Bioresource Technol,2002,83(1):47-54.
    [5]刘荣厚,牛卫生,张大雷.生物质热化学转换技术[M].北京:化学工业出版社,2005.
    [6]别如山,杨文,宋兴飞.采用流化床或低倍率循环流化床燃烧生物质发电的建议[J].工业锅炉,2010,120:1-3.
    [7]别如山,鲍亦令,杨励丹,等.燃生物质流化床锅炉[J].节能技术,1997,2:5-7.
    [8]别如山,李炳熙,陆慧林,等.燃生物废料流化床锅炉[J].热能动力工程,2000,15(88)344-348.
    [9]http://www.etp.ac.cn/xwdt/ttxw/201109/t20110929_3356367.html
    [10]Olanders B, Steenari BM. Characterization pf ashes from wood and straw[J]. Biomass Bioenergy, 1995,8:105-15.
    [11]Liao Cuiping, Wu Chuangzhi, Yanyongjie, Huang Haitao. Chemical Elemental Characteristics of Biomass Fuels in China[J]. Biomass and Bioenergy, 2004,27(2):119-130.
    [12]Stanislav V Vassilev, David Baxter, Lars K Andersen, Christina G Vassileva. An Overview of The Chemical Composition of Biomass[J]. Fuel, 2010,89(5):913-933.
    [13]Z Sun, B Jin M Zhang, R Liu, Y Zhang. Experimental Studies on Cotton Stalk Combustion in A Fluidized Bed[J]. Energy, 2008,33(8):1224-1232.
    [14]Bostrom D, Eriksson G, Boman C, Ohman M. Ash Transformations in Fluidized-bed Combustion of Rapeseed Meal[J]. Energy & Fuels,2009,23:2700-2706.
    [15]Ohman M, Nordin A, Skrifvars B-J, Backman R, Hupa M. Bed agglomeration Characteristics during fluidized bed combustion of biomass fuels [J]. Energy Fuels, 2000,14 (1):169-178.
    [16]田宜水.生物质燃烧技术发展现状、环境评价与展望[J].2004年中国生物质能技术与可持续发展研讨会论文集,2004.
    [17]Armestoa L, Bahilloa A, Veijonenb K, et al. Combustion behaviour of rice husk in a bubbling fluidised bed [J]. Biomass and Bioenergy, 2002,23:171-9.
    [18]刘皓,黄琳,林志杰等.稻壳流化床锅炉的设计、运行的若干问题[J].工业锅炉,1996,(45):5-7.
    [19]陈冠益,方梦祥,骆仲泱等.燃用稻壳流化床锅炉的试验研究35t/h锅炉的设计[J].动力工程,1997,17(2):47-55.
    [20]Liao C, Wu C, Yan Y, et al. Chemical elemental characteristics of biomass fuels in China [J]. Biomass and Bioenergy, 2004, 27:119-30.
    [21]阎维平,陈吟颖.生物质混合物与煤共热解的协同特性[J].中国电机工程学报,2007,27(2):80-86.
    [22]Tran K, lisa K, Hagstrm M, et al. On the application of surface ionization detector for the study of alkali capture by kaolin in a fixed bed reactor [J]. Fuel, 2004, 83:807-812.
    [23]Lin W, DamJohansen K, Frandsen F. Agglomeration in Bio-fuel fired fluidized bed combustors [J]. Chemical Engineering Journal,2003,96:171-185.
    [24]Manzoori A R, Kagarwal P. Agglomeration and defluidization under simulated circulating fluidized-bed combustion conditions [J]. Fuel,1992,73:563-568.
    [25]ERG Denler, AE Ghaly. Agglomeration of silica sand in a fluidized bed gasifier operating on wheat straw [J]. Biomass and Bioenergy, 1993,4:135-147.
    [26]杨励丹,李海军,鲍亦令等.生物质在流化床中燃烧时的烧结现象[J].新能源,1997,19f8):13-17.
    [27]Brus E, Ohman M, Nordin A. Mechanisms of Bed Agglomeration during Fluidized-Bed Combustion of Biomass Fuels [J]. Energy & Fuels, 2005,19(3):825-832.
    [28]宋宏伟,郭民臣,王欣.生物质燃烧过程中的积灰结渣特性[J].节能与环保,2003,9:29-31.
    [29]Olofsson, Goran; Ye, Zhicheng; Bjerle, Ingemar; Andersson, Bed agglomeration problems in fluidized-bed biomass combustion[J]. Industrial & Engineering Chmeistry Research. 2002, 41,12:2888-2894.
    [30]Lin W, Dam-Johansen K. Sintering in biofuel and coal-biofuel fired FBC, Final report to EC Joule III, Department of Chemical Engineering, Technical University of Denmark, 1997.
    [31]Llorente M J F N, Cuadrado R E, Laplaza J M M, et al. Combustion in bubbling fluidised bed with bed material of limestone to reduce the biomass ash agglomeration and sintering [J]. Fuel,2006,85:2081-92.
    [32]Lin W, Song W. Power production from biomass in Denmarkl [J]. Journal chemistry and technology, 2005,33(6):650-655.
    [33]Nielsena H P, Baxterb L L, Sclippab B G, et al. Deposition of potassium salts on heat transfer surfaces in straw-fired boilers:a pilot-scale study [J]. Fuel, 2000,79(2):131-139.
    [34]Aho M, Silvennoinen J. Preventing chlorine deposition on heat transfer surfaces with aluminium-silicon rich biomass residue and additive [J]. Fuel,2004,83:1299-1305.
    [35]Demirbas A. Combustion characteristics of different biomass fuels [J]. Progress in Energy and Combustion Science,2004,30:219-230.
    [36]Sander B, Henriksen N, Larsen OH, Skriver A, Ramsgaard-Nielsen C, Jensen JN, et al. Emissions, Corrosion and alkali chemistry in straw-fired combined heat and power plants[C]. First world conference on biomass for energy and industry, June 2000, Sevilla, Spain.
    [37]Baxter LL, Miles TR, Miles TR, et al. The behavior of inorganic material in biomass-fired power boilers:field and laboratory experiences[J]. Fuel Process Technol, 1998, 54(1-3):47-78.
    [38]SalourD, Jenkins BM, Vafaei M, et al. Control of in-bed agglomera-tion by fuel blending in apilot scale straw and wood fueled AFBC[J]. Biomass Bioenergy, 1993,4(2):117-33.
    [39]Visser HJM, Van Lith SC, Kiel JHA. Biomass ash-bed material interactions leadingtoagglomerationinFBC[C]. Proceedings of the 17th international conference on fluidized bed combustion. New York, USA, ASME, 2003.150.
    [40]Lin W, Dam-JohansenK. Sulphur capture by alkali content of straw during co-firing with coal in FBC[C]. Prospects for coal science in the 21st century, Taiyuan, China, 1999. 1421-4.
    [41]Baviera SA, Camara Municipal Espinho, Cooperativa Ensino Univ Lusiada. SEM-EDS and image analysis in the characterisation of coatings and adhesive material in the quartz-bed[C]. 5th European Conference on Industrial Furnaces and Boilers. Porto, Portugal,2000.661.
    [42]Visser HJM. The irfluence of fuel composition on agglomeration behaviour influidised-bed combustion[R]. ECN (Energy research Centre of the Netherlands) report ECN-C-04-054, 2004.
    [43]Jingai Shao, Dong Ho Lee, Rong Yan. Agglomeration Characteristics of Sludge Combustion in a Bench-Scale Fluidized Bed Combustor[J]. Energy&Fuels, 2007, 21 (5):2663-2668.
    [44]Chirone, Riccardo, Miccio, et al. Mechanism and prediction of bed agglomeration during fluidized bed combustion of a biomass fuel:Effect of the reactor scale[J]. Chemical Engineering Journal,2006,123(3):71-80.
    [45]Scala, Fabrizio, Chirone. An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels[J]. Biomass and Bioenergy,2008,32(3):252-266.
    [46]Sigrid De Geyter, Marcus Ohman, Dan Bostr?m. Effects of Non-Quartz Minerals in Natural Bed Sand on Agglomeration Characteristics during Fluidized Bed Combustion of Biomass Fuels[J], Energy Fuels, 2006,20 (6):2737-2742.
    [47]Elisabet Brus, Marcus Ohman, Aadersnordin, et al. Bed agglomeration characteristics of biomass fuels using blast-furnace slag as bed material [J].Energy & Fuels, 2004,18:1187-1193.
    [48]Marcus Ohman, Linda Pommer, Aadersnordin, Bed agglomeration characteristics and mechanisms during gasification and combustion of biomass fuels[J]. Energy& Fuels, 2005,19:1742-1748.
    [49]米铁,陈汉平,吴正舜,等.生物质灰化学特性的研究[J].太阳能学报,2004,25(2):236-241.
    [50]滕海鹏,李诗媛,吕清刚.小麦秸秆流态化燃烧粘结特性实验研究[J].工程热物理学报,2010,31(3):511-514.
    [51]滕海鹏,李诗媛,吕清刚,赵冰,贺军.生物质流态化燃烧粘结失流特性分析[J].中国电机工程学报,2010,31:138-143.
    [52]别如山,杨励丹,周定.焚烧有机废液添加剂对流化床床料烧结的影响[J],化工学报,2002,3(12):1253-1259.
    [53]李诗媛,矫维红,吕清刚.不同床料流化床生物质燃烧粘结机理研究[J],工程热物理学报,2010,30(5):869-872.
    [54]Mohammad R Golriz, Morgan Eriksson, Marcus Ohman, Anders Nordin, Rainer Backman. Influence of Fluidization Velocity on Bed Defluidization in Fluidized Bed Combustors[C]. 18th International Conference on Fluidized Bed Combustion, Toronto, Canada, 2005. 551-556.
    [55]滕海鹏.生物质流态化燃烧粘结失流特性研究[D].北京:中国科学院工程热物理研究所,2011.
    [56]Nijenhuis J, Korbee R, Lensselink J, Kiel J H A, van Ommen J R. A Method for Agglomeration Detection and Control in Full-Scale Biomass Fired Fluidized Beds[J]. Chemical Engineering Science. 2007,62(1-2):644-654.
    [57]Basu P. A study of agglomeration of coal-ash influidized-beds. The Canadian Journal of Chemical Engineering.1982, 60(6):791-795.
    [58]Shimizu, Tadaaki, Jun Han, Sunyong Choi. Fluidized-Bed Combustion Characteristics of Cedar Pellets by Using an Alternative Bed Material. Energy and Fuels, 2006, 20(6): 2737-2742.
    [59]Weigang Lin, Krusholm G, Dam-Johansen K, Musahl E, Bank L. Agglomeration phenomena influidized bed combusti on of straw, Proceedings of the 14th international conference on fluidized bed combustion. ASME.1997,831-838.
    [60]Liss B, Blake TR, Squires AM, Bryson R. Incipiefluidezation of sinterable solids. Fluidization IV.1984,249-256.
    [61]Moseley JL, O'brien TJ. A model for agglomeration inflaidized -bed[J]. Chemical Engineering Science,1993,48(17):3043-3050.
    [62]Yinghe He. A criterion for particle agglomeration by collision[J]. Powder Technology, 1999, 103:189-193.
    [63]Tao Zhou, ZhongLi Hong. Force balance modeling for agglomerating fluidization of cohesive particles[J]. Powder Technology, 2000,111:60-65.
    [64]Bottinga Y, Weill D F. Viscosity of magmatic silicate liquids-Model for calculation[J]. American Journal of Science,1972,272(5):438-475.
    [65]Shaw HR. Viscosity of magmatic silicate liquids-Empiriacl method of prediction[J]. American Journal of Science,1972,9:870-893.
    [66]Georges Urbain. Viscosity estimation of slags[J]. Steel Research, 1987,58(3):111-116.
    [67]G Urbain, F Cambier, M Deletter. Viscosity of Silicate melts[J]. Transactions and Journal of the British Ceramic Society, 1981,80:139-141.
    [68]Alex Kondratiev, Evgueni Jak. Predicting coal ash slag flow characteristics (viscosity model for the A1203-CaO-FeO-SiO2 system)[J]. Fuel, 2001,80:1989-2000.
    [69]Marek Pronobis. Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations[J]. Biomass and Bioenergy, 2005,28 (4):375-383.
    [70]阎维平,陈吟颖.生物质燃料结渣特性分析与判别[J].华北电力大学学报,2007,34(1):49~54.
    [71]肖军,段菁春,王华等.低温热解生物质与煤共燃的结渣、积灰和磨损特性分析[J].能源工程,2003,3:9~13.
    [72]Raask E.Sintering characteristic sofcoal ashes by simultaneous dilatometry electrical conductance measurements [J]. J Ther Anal,1979,16:91-102.
    [73]Conn RE, Austin LG. Studies of sintering of coal ash relevant to pulverized coal utility boilers:1. Examination of the Raask shrinkage electrical resistance method[J]. Fuel,1984, 63(12):1664-70.
    [74]Huffman GP, Huggins FE, Dunmyre GR. Investigation of the high-tempera-true behavior of coal ash in reducing and oxidizing atmospheres [J]. Fuel, 1981,60(7):585-97.
    [75]Skrifvars BJ, Ohman M, Nordin A, et al. Predicting bed agglomeration tendencies for biomass fuels fired in FBC boilers:A comparison of three different prediction methods[J]. Energy and Fuels, 1999,13 (2):359-363.
    [76]He Y. Characterisation of spouting behaviour of coal ash with thermomechanical analysis[J]. Fuel Processing Technology, 1999,60(1):69-79.
    [77]Vander DriftA, OlsenA. Conversion of biomass, prediction and solution methods for ash agglomeration and related problems[R]. Report ECN-C-99-090, 1999.
    [78]Zevenhoven-Onderwater M, BackmanR, Skrifvars B-J. The ash chemistry in fluidised bed gasification of biomass fuels. Part II: Ash behaviour prediction versus bench scale agglomeration tests[J].Fuel,2001,80(10):1503-1512.
    [79]Skrifvars B-J, Ohman M, Nordin A. Predicting bed agglomeration tendencies for biomass fuels fired in FBC boilers:A comparison of three different prediction methods[J]. Energy and Fuels,1999,13(2):359-363.
    [80]Fernandez Llorente MJ, Carrasco Garcia JE. Comparing methods for predicting the sintering of biomass ash in combustion[J]. Fuel, 2005,84:1893-1900.
    [81]Grubor BD, Oka SN, Ilic MS, et al. Biomass FBC combustion—bed agglomeration problems [C], Proceedings of the13th international conference on fluidized bed combustion, Heinschel, KJ,1995.1:515-22.
    [82]Zintl F, Ohman T. Alkali-induced particle agglomeration and bed-defluidization on CFB-combustion of biomass test of common and alternative bed materials [C], Biomass for energy and industry. Proceedings of the international conference, wiirzburg,Germany, 1998. 1581-4.
    [83]Ergiidenler A, Ghaly AE. Agglomeration of silica sand in fluidized bed gasifier operating on wheat straw[J]. Biomass Bioenergy, 1993,4(2):135-47.
    [84]Wang XS, Rhodes MJ. Using pulsed flow to overcome defluidization[J]. ChemEngSci, 2005, 60(18):5177-81.
    [85]Korbee R, Lensselink J, van Ommen JR, Nijenhuis J, van Gemert M, Haasnoot K. Early Agglomeration recognition system—EARS:from bench-scale testing to industrial prototype[R]. ECN (Energy Research Centre of the Netherlands) Report ECN-C-04-052 (2004).
    [86]Vamvuka D, Zografos D, Alevizos G. Control methods for mitigating biomass ash-related problems in fluidized beds[J], Bioresource Technology,2008,99(9):3534-3544.
    [87]Arvelakis S, Vourliotis P, Kakaras E, Koukios EG. Effect of leaching on the ash behavior of wheat straw and olive residue during fluidized bed combustion[J]. Biomass Bioenergy, 2001, 20(6):459-70.
    [88]Turn Scott Q, Kinoshita Charles M, Ishimura Darren M. Removal of Inorganic Constituents of Biomass Feedstocks by Mechanical Dewatering and Leaching[J]. Biomass and Bioenergy, 1997,12(4):241-252.
    [89]Jenkins B M, Williams R B, Bakker R R, et al. Combustion o Leached Rice Straw fr Power Generation[C].4th Biomass Conference of the Americas on Growth Opportunity in Green Energy and Value-Added Products, Oakland, 1999,1357-1363.
    [90]Bakker R R. Biomass Fuel Leachng for the Control of Fouling Slagging and Agglomeration in Biomass Power Generation[D]. University of California, 2000.
    [91]Dayton D C, Jenkins B M, Turn S Q, et al. Release of Inorganic Constituents from Leached Biomass During Thermal Conversion[J]. Energy & Fuels, 1999,13(4):860-870.
    [92]Davidsson KO, Korsgren JG, Pettersson JBC,et al. The effects of fuel washing Techniques on alkali release from biomass[J]. Fuel, 2002,81(2):137-42.
    [93]Vuthaluru HB, Zhang DK. Effect of coal blending on particle agglomeration and defluidisation during spouted-bed combustion of low-rank coals[J]. Fuel ProcessTechnol, 2001,70(1):41-51.
    [94]宁新宇,李诗媛,吕清刚,等.生物质与石煤在流化床中混烧特性和粘结机理[J].中国电机工程学报,2008,28(29):106-110.
    [95]Lundholm, Karin; Nordin, Anders; Ohman, Marcus; Bostrom, Dan. Reduced bed agglomeration by co-combustion biomass with peat fuels in a fluidized bed[J]. Energy and Fuels,2005,19 (6):2273-2278.
    [96]Kurkela E, Moilanen A, Kangasmaa K. Gasfication of biofuel comprises maintaining circulation through reactor containing fluidized particle sand gasifying at a temperature higher than melting or sintering point of ashes produced from fuel[P]. Patent WO0011115-A,2000.
    [97]Ohman M, Nord in A, Lundholm K, et al. Ash Transformations during combustion of meat-,bonemeal, andRDF in a (bench-scale) fluidized bed combustor[J]. Energy & Fuels, 2003,17:1153-9.
    [98]Kosminski A, Ross DP, Agnew JB. Reactions between sodium and kaolin During gasification of a low-rank coal[J]. FuelProcessTechnol,2006,87(12):1051-62.
    [99]Vamvuka D, Zografos D, Alevizos, G. Control methods for mitigating biomass ash-related problems in fluidized beds [J].Bioresource Technology, 2008,99(9):3534-3544.
    [100]E Natarajan, M Ohmana, M Gabrab, et al. Experimental determination of bed agglomeration tendencies of some common agricultural residues in fluidized bed combustion and gasification[J]. biomass and bioenergy, 1998,15(2):163-169.
    [101]刘仁平,金保升,仲兆平.循环流化床燃烧生物质的结渣问题研究[J].锅炉技术,2007,38(5):73-786.
    [102]刘仁平,金保升,仲兆平,等.循环流化床燃烧棉秆两种床料的特性[J].东南大学学报(自然科学版),2007,37(3):441-445.
    [103]Ghaly AE, Ergudenler A, Laufer E. Agglomeration characteristics of alumina sand-straw ash mixtures at elevated temperatures. Biomass Bioenergy 1993;5(6):467-80.
    [104]Saxena SC, Rao NS, Kasi AN. Fluidized bed incineration of peanut-hull pellets. Proceedings of the 12th international conference on fluidized bed combustion. New York, USA,1993.1189-99.
    [105]Ergudenler A, Ghaly AE. Agglomeration of alumina sand in a fluidized bed straw gasifier at elevated temperatures. Bioresource Technol,1993;43(3):467-80.
    [106]Werther J, Saenger M, Hartge E-U, et al. Combustion of agricultural residues[J]. Prog Energy Combust Sci,2000,26(1):1-27.
    [107]Vuthaluru HB, Zhang DK. Remediation of ash problems in fluidised-bed combustors. Fuel, 2001;80(4):583-98.
    [108]陈静泓,李传儒.热分析及其应用[M].北京:科学出版社,1985:326-328.
    [109]Malte Bartels, Weigang Lin, John Nijenhuis..Agglomeration in fluidized beds at high temperatures:Mechanisms, detection and prevention[J]. Progress in Energy and Combustion Science,2008,34:633-666.
    [110]王爽,姜秀民,王宁,等.海藻生物质灰熔融特性分析[J].中国电机工程学报,2008,28(5):96-100.
    [111]Lone A Hansen, Flemming J Frandsen, Kim Dam Johansen, et al. Quantification of fusion in ashes from solid fuel combustion [J]. Thermochinica Acta,1999,326:105-117.
    [112]http://www.factsage.cn/.
    [113]Bj?rkman E, Str?mberg B. Release of chlorine from biomass at pyrolysis and gasification conditions[J]. Energy and Fuels, 1997,11:1026-1032.
    [114]Stelios Arvelakis, Peter Arendt Jensen, Kim Dam-Johansen. Simultaneous Thermal Analysis (STA) on Ash from High Alkali Biomass[J]. Energy and Fuels, 2004, 18:1066-1076.
    [115]Grubor B D, Oka S N, Llic M S, et al. Biomass FBC combustion bed agglomeration problem[C]. Fluisized Bed Combustion, ASME,1995, 1(1):515-522.
    [116]Qin Jian guang, Yu Chun jiang, NieHu. Analysis of deviation in biomass ash composition[C]. Proceedings of the CSEE.2009, 29(8):97-102.
    [117]Rhinehart RR, Attar AA, Ash fusion temperature:A thermodynamically-based model[J]. Petroleum Division,1987,8:97-10.
    [118]Kondratiev A, Jak E, Predicting coal ash slag flow characteristics [J]. Fuel.2001, 80:1989-2000.
    [119]Qiu JR, Li F, Zheng CG, Mineral transformation during combustion of coal blends[J]. Energy Research. 1999,23:453-463.
    [120]Jak E, DegterovS, Zhao B., et al. Coupled experimental and thermodynamic modelling studies for metallurgical smelting and coal combustion systems[J]. Metal. Trans. 2000, 31: 621-630.
    [121]?hman M, Nordin A. The role of kaolin in prevention of bed agglomeration during fluidized bed combustion of biomass fuels. Energy Fuels, 2000,4:618-24.
    [122]Vuthaluru HB, Zhang DK. Effect of Ca and Mg-bearing minerals on particle agglomeration defluidisation during fluidised-bed combustion of a South Australian lignite[J]. Fuel Process Technol, 2001,69(1):13-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700