反应性共混合成芳香/脂肪共聚酯及其生物降解性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要采用芳香族聚酯与脂肪族聚酯固体熔融反应性共混合成可降解芳香/脂肪共聚酯。通过聚(对苯二甲酸丁二醇酯)(PBT)与D,L-低聚乳酸(OLA)在280℃反应0.5 h以上时,进行熔融酯交换合成得到了聚(对苯二甲酸丁二醇酯-co-低聚乳酸)(BLA)共聚酯。BLA共聚酯的~1H NMR谱图分析表明对苯二甲酸丁二醇酯(BT)链段与乳酸(LA)链段之间存在酯交换反应。通过BLA共聚酯链段的序列结构计算,热学性能分析,表明BLA共聚酯具有一定的无规结构。BLA共聚酯具有唯一的熔融温度(T_m),结晶温度(T_c),热分解温度(T_d)。随着OLA投入量的增加,共聚酯中芳香序列长度减少,T_m,T_c和T_d都会相应的降低。PBT/OLA进料摩尔比为5.9/94.1合成的共聚酯可溶于氯仿,而纯的PBT只能溶于氯仿/苯酚的混合溶液。凝胶渗透色谱分析(GPC)测得PBT/OLA进料摩尔比为5.9/94.1(mol/mol)的共聚酯的重均分子量为11200 g/mol。
     但由于BLA共聚酯力学性能较差,因此采用先将乳酸与聚乙二醇反应性共混后,再直接与PBT熔融酯交换反应合成得到了(对苯二甲酸丁二醇酯-co-聚乙二醇-co-低聚乳酸)三元共聚酯(PBTEOLA)。通过~1H NMR谱图分析证实对苯二甲酸丁二醇酯(BT)链段、聚乙二醇(EO)和乳酸(LA)链段之间存在着酯交换反应。PBTEOLA共聚酯也具有一定的无规结构。当聚(对苯二甲酸丁二醇酯)与聚乙二醇和D,L-低聚乳酸的共混物在260℃反应1.5 h时,所得PBTEOLA共聚酯具有唯一的熔融温度(T_m),结晶温度(T_c),热分解温度(T_d)。随着OLA在PEG/OLA的中的比例或者PEG/OLA的比例的增加,共聚酯的熔融温度(T_m),结晶温度(T_c)降低,同时溶解性增加。反应所得的共聚酯能溶于氯仿中,通过体积排除色谱(SEC)法测得共聚酯重均分子量能达到66600 g/mol。机械性能测试表明PBTEOLA共聚酯的杨氏模量高达50-100 MPa,断裂伸长率达32-137%。最后通过氯化钠成孔法将三元共聚酯(PBTEOLA)制备成组织工程支架后,进行细胞培养实验,发现PBTEOLA共聚酯具有较好的生物相容性。
A serie of new biodegradable Aromatic-Aliphatic copolyesters materials with satisfactory thermal properties were synthesized by Melting Bulk Reactive Blending between/among Aromatic and Aliphatic polyesters. High molecular mass poly(1,4-butylene terephthalate-co-DL-lactide) (BLA) copolymers was synthesized by the Poly(1,4-butylene terephthalate) (PBT) tranesterificated with D,L-Oligo(lactic acid) (OLA) in the melt leading. The analysis from ~1H NMR reveals that transesterification is unavoidable between butylene terephthalate (BT) and lactide (LA) segments during synthesis. The BLA copolymers were confirmed to be segmented copolyesters with certain random properites as show by the sequence structure of BLA copolyester chains and by their thermal behavior. The BLA copolyesters show only one melting temperature (T_m), crystallization temperature (T_c), and thermal decomposition temperature (T_d) when the reaction between PBT and OLA takes place at 280℃for more than 0.5 h. With OLA composition increase, the T_m, T_c and T_d decrease due to fewer aromatic sequences. The copolyester with a PBT/OLA feeding molar ratio of 5.9/94.1 is soluble in chloroform, while pristine PBT is only soluble in mixed chloroform/phenol solvent. The weight-average molecular weight of the copolyester (5.9/94.1 mol/mol PBT/OLA), determined by the Gel permeation chromatography, was to be 11200 g/mol.
     Because of the poor mechanical property of BLA, a reactive blend of poly(ethylene glycol) (PEG) and D,L-oligo(lactic acid) (OLA) is obtained at high temperature to produce partial PEG/OLA multiblock copolymer without purification prior to preparation of copolyesters. The reactive blend of PEG/OLA multiblock copolymer easily further reacts with poly(l,4-butylene terephthalate) (PBT) in the melt leading to the formation of high molar mass poly(l,4-butylene terephthalate-co-ethylene oxide-co-D,L-lactide) (PBTEOLA) copolymers. The analysis of ~1H NMR combined with solubility test reveal that the transesterification between butylene terephthalate (BT), ethyleneoxide (EO) and lactide (LA) segments is unavoidable during synthesis. The copolyesters are segmented copolyesters with certain random properties, as confirmed by their thermal behavior. The copolyesters show only one melting temperature (T_m) on the second heating run and one crystallization temperature (T_c) on the cooling cycle from differential scanning calorimetry (DSC) measurement, and one thermal decomposition temperature (T_d) from thermogravimetry (TG) measurement when the reaction between PBT and PEG/OLA takes place at 260℃for 1.5 h. With increase of OLA feeding composition in PEG/OLA blend or increase of content of PEG/OLA blend, the T_m and T_c of copolyesters decrease, and solubility increases. The obtained copolyesters are soluble in chloroform. And the weight-averaged molecular weight of the copolyester was estimated to be as high as 66600 g/mol by the Gel permeation chromatography. Mechanical tests indicate that the copolyesters exhibit high Young's modulus of 50-100 MPa and good elongation at break of 32-137%. A bracket of tissue engineer with poly(1,4-butylene terephthalate-co-ethylene oxide-co-DL-lactide) (PBTEOLA) copolymers was produced by using NaCl hole forming technique. Encouraging results on biocompatibility were received by initial studies of cell growth on the bracket.
引文
1.王周玉.可生物降解高分子材料的分类及应用.[J].四川工业学院学报,2003,145(3);145-147
    2.王学军,许振良。可生物降解高分子材料研究进展.[J].上海化工,2005,30(1);30-32
    3.侯庆普.生物降解高分子材料的研究新进展.[J].现代化工,2000,20(12);20-24
    4.王琳霞.生物降解高分子材料.[J].塑料科技,2002,23(147);37-41
    5.翁端.环境高分子材料发展与展望-第三届国际环境高分子材料大会综述.[J].高分子材料导报,1998,12(1);1-4
    6.宋贤良.以纤维素为基础的功能高分子材料.[J].高分子通报,2002,11(2);47-52
    7.黄发荣.全生物降解高分子材料的发展现状.[J].化学世界,1999,12(11);570-574
    8.张倩.生物降解高分子材料聚丙交酯的合成.[J].塑料工业,2002,30(2);10-13
    9.Oliveira N S,Oliveira J,Gomes T,etal.Gas sorption in poly(lactic acid)and packaging materials.[J].Fluid Phase Equilibria,2004,222(21);317-324.
    10.唐赛珍,杨惠娣.降解塑料近期发展动向、前景及存在问题.[J].现代塑料加工应用,1994,6(1);5-10
    11.Fukuzaki H,Yoshida M.,Asano M.,etal.Synthesis of biodegradable copoly(L-lactic acid/aromatic hydroxy acids)with relatively low molecular weight.[J].Eur.Polym,1990,26(12);1273-1277.
    12.王钧.完全生物降解性高分子材料.聚乳酸的合成及应用.[J].粮食与饲料工业,2002,10(6);46-47
    13.黄根龙.降解塑料研究现状和发展趋势.[J].上海化工,1996,31(2);32-34
    14.黄强.淀粉类生物降解高分子材料研究进展.[J].粮食与饲料工业,2000,10(9);51-53
    15.张钦,赵裕蓉,可完全生物降解塑料概况化工新型材料.[J].1999,27(6);3-8
    16.李云飞,窦志..聚乙烯醇-淀粉生物降解地膜材料的研究.[J].塑料工业,1990,4(3);44-47
    17.张海光,郝爱友,韩林贤.一种新型热塑性淀粉衍生物制备方法.[J].化学研究与应用,2001,13(4);457-458
    18.谢凯等,全国高分子学术论文报告会论文集,合肥,a316,1997,10
    19.Shen Z.Q.etal.Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(ε-caprolactone)nanocomposites.[J].Applied Polymer Science;Part A;Polymer Chemistry,1994,32(8);597-603
    20.薛明强等,全国高分子学术论文报告会论文集,合肥,a201,1997,1
    21.YUAN M L etal.Ring-opening polymerization of curly epsilon-caprolactone initiated by cyclopentadienyl sodium[J].Journal of Applied Polymer.[J].Applied Polymer Science,1998,67(7);1273
    22.Zhu Z X,etal,study of the miscibility of poly(ethylene oxide)-block-poly(DL-lactide)copolymers with poly(DL-lactide).[J].Polymer Science;Part A;PolymerChemistry,1997,35(7); 709
    23.Matsuda,Takash etal.Synthesis and in vitro Degradations of Low Molecular Weight Copolyesters Composed of L-Lactic Acid and Aromatic Hydroxy Acids.[J].Makromol.Chem,1990,191(13),2077-2082.
    24.Myosh R.etal.,sorption in poly(lactic acid)and packaging materials,[J].Polymer Degradation and Stability.1996,27(8);255-262
    25.Coleman D.Thermoplastic poly(ester-imide)s derived from anhydride-terminated polyester prepolymer and diisocyanate.[J].Polym..Sci.1954,14(16);15-26
    26.Gilding D K,Reed A M.Biodegradable.polymers for use in surgery - poly(ethylene,oxide)poly(ethylene terephthalate)(PEO/PET)copolymers.[J].Polymer 1979,20(11);1454-1458
    27.Reed A M,Gilding D K.Biodegradable polymers for use in surgery-poly(ethylene terephthalate)(PEO/PET)copolymers.[J].Polymer 1981,21(4);499-504.
    28.Fakirov S,Gogeva T.Poly(ether/ester)s Based on Poly(butylene terephthalate)and Poly(ethylene glycol,1).[J].Makromol.Chem.1990,191;603-614.
    29.Fakirov S,Gogeva T.Poly(ether/ester)s Based on Poly(butylene terephthalate)and Poly(ethylene glycol,2)[J].Makromol.Chem.1990,191;615-624.
    30.Fakirov S,Gogeva T.Poly(ether/ester)s Based on Poly(tetramethylene terephthalate)and poly(ethylene glycol,4),[J].Makromol.Chem.1990,191;2355-2365.
    31.Malda J,Woodfield T B F,Van Der Vloodt F,Wilson C,Martens D E,Tramper J,Van C A,Blitterswijk,Riesle J.The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs.[J].Biomaterials,2005,1(26);63-72
    32.Muller R J,Witt U,etal.New Biodegradable Polyester-Copolymers from Commodity.Chemicals with Favorable Use Properties,[J].Polym.Degrad.Stab.1998,59(8);203-208
    33.Muller R,Kleeberg I,Deckwer W D.Biodegradation of polyesters containing aromatic constituents,[J].Biotechnology,2001,86(15);87-95
    34.KimS W,Lim J C,Kim D J,Seo K H.Synthesis and characteristics of biodegradable copolyesters from the transesterification of poly(butylene adipate-co-succinate)and poly(ethylene terephthalate).[J].Applied Polymer Science,2004,92(5);3266-3274
    35.Shi X Q,Aimi K,Ito H.Characterization on mixed-crystal structure of poly(butylene terephthalate/succinate/adipate)biodegradable copolymer fibers[J].polymer,2005,46(3);751-760
    36.Darwin P R,Abdelilah A.Synthesis,characterization,and properties of poly(ethylene terephthalate)/poly(1,4-butylene succinate)block copolymers.[J].Polymer,2003,44(5);1321-1330
    37.Wojciech,Jacek.Preparation and characterization of copolyesters of poly(tetramethylene succinate)and poly(butylene terephthalate).[J].polymery.2006,51(15);341-350
    38.Slim S,Martine T.Synthesis of Aliphatic-Aromatic Copolyesters by a High Temperature Bulk Reaction Between Poly(ethylene terephthalate)and Cyclodi(ethylene succinate).[J].Macromol.chem.phys.2004,205(12);2391-2397
    39.Acar I,Kasgoz A,Ozgumus S,Orbay M.Modification of Waste Poly(Ethylene Terephthalate)(PET)by Using Poly(L-Lactic Acid)(PLA)and Hydrolytic Stability.[J].Polymer-Plastics Technol.Engng.2006,45(3);351-359.
    40.郭宝华,丁慧鸽,徐晓琳.生物可降解共聚物聚丁二酸/对苯二甲酸丁二醇酯(PBTS)的序列结构及结晶性研究.[J].高等学校学报,2003,24(12);2312-2316
    41.张勇,冯增国,刘凤香.聚对苯二甲酸丁二醇酯-co-聚丁二酸丁二醇酯-b聚乙二醇嵌段的合成及表征.[J].化学学报,2002,60(12);2225-2231
    42.Tokiwa Y,Suzki T.Hydrolysis of copolyesters containing,aromatic and aliphatic ester blocks by lipase.[J].Appl.Polym.Sci.1981,26(4);441-448
    43.Witt U,Mull Er,et al.Magnetic Resonance Spectroscopy for Evaluation of Biodegradability[J].Macromol.Chem.Phys.1996,197(16);1525-1535.
    44.Hutmacher D W.Scaffolds in tissue engineering bone and cartilage.[J].Biomaterials,2000,21(5);2529-2543
    45.Li Y,Ma T,Yang S T,etal.Thermal compression and characterization of three-dimensional nonwoven PET matrices as tissue engineering scaffolds.[J].Biomaterials,2001,22(8);609-618
    46.Freed L E,Vunjak-Novakovic G,Biron R J,etal.Biodegradable polymer scaffolds for tissue engineering.[J].BiTechnology,1994,12(7);689-693
    47.Mooney D J,Mazzoni C L,Breuer C,etal.Stablized polyglycolic acid fiber-based tubes for tissue engineering.[J].Biomaterials 1996,17(2);115-124
    48.Mikos A G,Sarakinos G,Leite S M,etal.Laminated three-dimensional biodegradable foams for use in tissue engineering.[J].Biomaterials 1993,14(5);323-330
    49.Mikos A G,Thorsen A J,Czerwonka L A,etal.Preparation and characterization of poly(L-lactic acid)foams.[J].Polymer 1994,35(5);1068-1077
    50.Thomson R C,Yaszemski M J,Mikos A G,etal.Hydroapatite fiber reinforced poly(α-hydroxy ester)foams for bone regeneration.[J]Biomaterials,1998,19(21);1935-1943
    51.Ishaug-Riley S L,Crane-Kruger G M,Mikos A G,etal.Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers.[J].Biomaterials,1998,19(18);1405-1412
    52.Widmer M S,Gupta P K,Lu L,etal.Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.[J].Biomaterials 1998,19(21);1945-1955
    53.Liao C J,Chen C F,Chen J H,etal.Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method.[J].Journal of Biomedical Materials Research,2002,59(4);676-681
    54.Whang K,Thomas C H,Healy K E,etal.A novel method to fabricate bioabsorbable scaffolds[J].Polymer 1995,36(13);837-842
    55.Nam Y S,Park T G..Biodegradable polymeric microcellular foams by modified thermally induced phase separation methods.[J].Biomaterials,1999,20(19);1783-1790
    56.Hu Y H,Grainger D W,Winn S R,etal.Fabrication of poly(-hydroxy acid)foam scaffolds using,multiple solvent systems.[J].Journal of Biomedical Materials Research,2002,59(12);563-572
    57.高长有,胡小红,管建均.热致相分离技术制备聚氨酯多孔膜的条件控制.[J].高分子学报,2001,3(8);351-355
    58.Zhang R Y,Ma P X,Porous poly(Image -lactic acid)/apatite composites created by biomimetic process[J].Journal of Biomedical Materials Research,1999,45(4);285-293
    59.Mooney D J,Baldwin D F,Suh N P,etal.Novel approach to fabricate porous sponges of Poly(D,L-lactic-co-glycolic acid)without the ues of organic solvents.[J].Biomaterials,1996,17(14);1417-1422
    60.Sheridan M H,Shea L D,Mooney D J,etal.Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery.[J].Journal of Controlled Release,2000,64(1-3);91-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700