纤维混凝土与老混凝土粘结性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新老混凝土粘结是混凝土工程中经常涉及到的一个问题,对二者之间粘结界面性能的研究具有十分重要的理论意义和实际应用价值。本文结合国家基础性研究重大项目(攀登计划B)<<重大土木与水利工程安全性与耐久性基础研究>>之5.2(1)子课题:“新老混凝土的粘结机理和测试方法研究”,在普通混凝土与老混凝土粘结性能研究的基础上,对纤维混凝土与老混凝土的粘结性能进行系统地试验研究,探讨了纤维混凝土与老混凝土粘结剪切、劈拉基本力学性能及粘结面抗冻、抗渗耐久性能,同时运用断裂力学方法对纤维混凝土与老混凝土粘结Ⅱ型断裂性能进行了试验研究及理论分析,并通过约束收缩试验分析了纤维混凝土与老混凝土的粘结性能。本文的主要工作如下:
     1.进行了93个纤维混凝土与老混凝土Z型粘结试件及整体试件的直接剪切试验,主要考察纤维类型、纤维掺量、界面粗糙度、界面剂类型等对纤维混凝土与老混凝土粘结剪切性能的影响。结果表明,纤维的加入能明显改善新老混凝土粘结剪切性能,在纤维掺量的一定范围内,随着纤维掺量的增加,新老混凝土粘结剪切强度不断增加;同时,纤维的加入,改善了新老混凝土粘结面的剪切变形性能,剪切破坏时极限变形也逐渐增大。在试验基础上,探讨了纤维混凝土与老混凝土粘结剪切机理,得到了新老混凝土粘结面剪应力~剪切滑移关系曲线,提出了纤维混凝土与老混凝土粘结剪切强度的计算公式。
     2.进行了111个纤维混凝土与老混凝土粘结立方体试件的劈拉试验,探讨了纤维类型、纤维掺量、界面粗糙度、界面剂类型、粘结界面方位等因素对粘结劈拉强度的影响。在钢纤维体积率的一定范围内,随着钢纤维体积率的增加,粘结劈拉强度不断增加,钢纤维体积率为1.5%(S3)时,粘结劈拉强度提高14.1%;钢纤维的加入,改善了新老混凝土粘结面的劈拉变形性能,劈拉破坏时极限变形也逐渐增大。随着聚丙烯纤维掺量的增加,粘结劈拉强度不断提高,聚丙烯纤维掺量为1.5Kg/m~3(P4)时,粘结劈拉强度提高18.1%。不同的粘结界面方位对纤维混凝土与老混凝土粘结性能有一定影响,新混凝土水平浇筑(粘结界面水平)时粘结劈拉强度较侧向浇筑(粘结界面竖直)时粘结劈拉强度要高,分析试验数据,建立了二者之间的关系表达式。在试验基础上,提出了纤维混凝土与老混凝土粘结劈拉强度计算公式。
     3.进行了219个纤维混凝土与老混凝土粘结立方体试件冻融循环后的劈拉试验,探讨了纤维混凝土与老混凝土粘结面的冻融损伤机理,分析了纤维类型、纤维掺量、界面粗糙度、界面剂类型等因素对粘结面抗冻劈拉性能的影响。结果表明,冻融循环作用下,钢纤维混凝土与聚丙烯纤维混凝土损伤不断累积,主要表现为随冻融循环次数的增加,相对动弹模逐渐下降、质量损失率增大和强度的不断降低。冻融循环对纤维混凝土与老混凝土粘结劈拉性能有较大影响。随冻融循环次数的增加,粘结劈拉强度急剧降低。纤维的加入,能有效提高新老混凝土粘结面冻融劈拉强度,当冻融循环次数一定时,在纤维掺量的一定范围内,随新混凝土中纤维掺量的增加,新老混凝土粘结劈拉强度不断增加;对不同的冻融循环次数,纤维对粘结劈拉强度的增加影响幅度不一样,冻融次数较大时,纤维对粘结劈拉强度的影响更加明显。根据对试验数据的分析,建立了冻融循环作用下纤维混凝土与老混凝土粘结劈拉强度计算公式。
     4.采用纤维混凝土与老混凝土粘结复合圆台体试件,进行了114个粘结试件的抗渗试验,主要考察纤维类型、纤维掺量、界面粗糙度、界面剂类型等因素对粘结面渗透性的影响,对粘结面的渗流特性及层面力学参数,如粘结面等效水力隙宽、渗透系数以及渗透规律进行了探讨。结果表明,老混凝土表面处理方式对纤维混凝土与老混凝土粘结面抗渗性能有一定影响;界面剂的使用有利于纤维混凝土与老混凝土粘结面抗渗性能的改善。纤维的加入能改善新老混凝土粘结面抗渗性能,随着纤维掺量在一定范围内的增加,粘结面抗渗性能不断增加,钢纤维体积率为1.5%时,钢纤维对粘结面抗渗性能的增益比达27%;聚丙烯纤维掺量为1.5Kg/m~3时,聚丙烯纤维对粘结面抗渗性能的增益比达60%。在试验基础上,提出了纤维混凝土与老混凝土粘结面平均渗透系数的计算公式。
     5.设计了适用于Ⅱ型断裂的带切口的双面直接剪切试件,进行了57个纤维混凝土与老混凝土粘结试件的Ⅱ型断裂试验及144个整体试件冻融循环条件下的Ⅱ型断裂试验,分析了纤维类型、纤维掺量、界面粗糙度、界面剂等因素对粘结面Ⅱ型断裂性能的影响及冻融循环次数对纤维混凝土Ⅱ型断裂性能的影响。结果表明,老混凝土表面处理方式对纤维混凝土与老混凝土粘结面Ⅱ型断裂性能有一定影响,随老混凝土表面粗糙度的增加,粘结面Ⅱ型断裂韧度逐渐增加;界面剂的使用能提高纤维混凝土与老混凝土粘结面Ⅱ型断裂韧度。新混凝土中加入一定量的纤维能有效改善新老混凝土粘结面的Ⅱ型断裂性能,随纤维掺量的增加,新老混凝土粘结面Ⅱ型断裂韧度逐渐增加,新混凝土中钢纤维体积率为2.0%时,粘结面Ⅱ型断裂韧度较普通混凝土与老混凝土粘结面Ⅱ型断裂韧度提高25%;新混凝土中聚丙烯纤维掺量为1.5Kg/m~3时,粘结面Ⅱ型断裂韧度较普通混凝土与老混凝土粘结Ⅱ型断裂韧度提高16.3%。冻融循环作用下纤维对混凝土Ⅱ型断裂韧度的提高影响更加明显。冻融循环对纤维混凝土Ⅱ型断裂韧度有较大影响,随冻融循环次数的增加,断裂韧度逐渐下降。在试验基础上,探讨了粘结面断裂损伤机理,提出了纤维混凝土整体试件在冻融循环作用下Ⅱ型断裂韧度计算公式及纤维混凝土与老混凝土粘结Ⅱ型断裂韧度计算公式。
     6.进行了162个纤维混凝土整体试件的自由收缩试验及162个纤维混凝土与老混凝土粘结试件的约束收缩试验,探讨了新、老混凝土收缩差异对粘结性能的影响以及纤维类型、纤维掺量等因素对粘结约束收缩的影响。结果表明,在新混凝土中加入一定量的钢纤维或聚丙烯纤维,能有效减小新老混凝土之间的收缩差异(且随纤维含量的增加,收缩差异减小效果逐渐明显),从而减小粘结界面的收缩力,提高新老混凝土粘结性能。根据纤维混凝土自由收缩应变符合双曲线函数形式的试验结果,建立了纤维混凝土自由收缩应变的统一计算模式,提出了纤维混凝土与老混凝土粘结试件约束收缩力学模型。
Bonding Fresh concrete to old concrete is a discussible question that often related to actual project of concrete engineering. The study on behavior of adherence interface has important value in terms of theory and engineering application. Referenced to the subject "Research on mechanism of adherence and measure method of young on old concrete", which is sub-subject of national momentous foundational research subject(Climbing Project B)—《The foundational study on safety and durability of huge civil and water conservancy engineering》, a systemic study of bonding fresh fiber reinforced concrete on old concrete is carried out in the thesis. A series of experiments and research on the mechanical properties of the bonding interface between fresh fiber concrete and old concrete, such as shearing and splitting tensile strength, has been conducted. And the durability of freezing-thaw resistance and impermeability on bonding interface has also been studied. The theory of fracture mechanics are adopted in the analysis, and some analysis have been carried out in shrinkage difference between fresh concrete and old concrete through restriction shrinkage test.
     The main contents of research are as follows:
     1. Using Z-shape specimens, the bonding shear property of fresh fiber reinforced concrete to old concrete was explored. 93 bonding specimens were experimented and the main influence factors were researched, such as the type of fiber, the content of fiber, roughness of interface and adhesive agent. The test results indicated that the bonding shear behavior of fresh to old concrete is improved with the using of fiber in fresh concrete. In some range of fiber content, with the increase of fiber content, the bonding shear strength of fresh to old concrete continuously increase, the shear deformation property of bonding interface is improved and the utmost deformation is increscent when the shear failure of bonding specimens occurred. Based on experiments, the relation curve of shear stress-deformation on bonding interface of fresh fiber concrete to old concrete and the calculating formulae of shear strength of fresh fiber concrete to old concrete were put forward.
     2.111 composite cubic specimens of fresh fiber concrete to old concrete were test for behavior researching of bonding splitting tensile and the main influence factors were analyzed. In some range of steel fiber volume fraction, with the increase of steel fiber content, the test results indicated that the bonding splitting tensile strength continuously increase and for steel fiber volume fraction being 1.5%, bonding splitting tensile strength of fresh steel fiber concrete to old concrete increase 14.1% compared with ordinary concrete to old concrete. On the other hand, the using of steel fiber in fresh concrete can improve behavior of deformation on splitting tensile testing. Polypropylene fiber in fresh concrete can increase bonding splitting tensile strength similar to steel fiber but for polypropylene fiber content being 1.5Kg/m~3, bonding splitting tensile strength of fresh polypropylene fiber concrete to old concrete increase 18.1% compared with ordinary concrete to old concrete. The orientation of adhesive interface has some influence on bonding strength that the bonding splitting tensile strength of level adhesive interface is higher than vertical adhesive interface. Based on experiments, the calculating formulae of splitting tensile strength of fresh fiber concrete to old concrete were put forward.
     3. Subjected to freeze-thaw cycle, splitting tensile test of 219 composite cubic specimens of fresh fiber concrete to old concrete were carried out. The freeze-thaw damage mechanism and main influence factors were analyzed. It was found that the damage of fiber concrete were continue cumulate under freeze-thaw cycle and the relative dynamic modulus and strength were reduced, but the mass losing of specimens were increase. The freeze-thaw cycle have important influence on bonding splitting tensile property of fresh fiber concrete to old concrete. With the increase of freeze-thaw cycle, the bonding splitting tensile decrease rapidly. The using of fiber in fresh concrete can increase bonding splitting tensile strength of bonding specimens subjected to freeze-thaw cycle. For certain freeze-thaw cycle, in some range, with the increase of fiber content in fresh concrete, the bonding splitting tensile strength continually increase and when the times of freeze-thaw cycle is higher, the influence of fiber is more prominent. Based on experiments, the calculating formulae of splitting tensile strength of new fiber concrete to old concrete subjected to freeze-thaw cycle were put forward.
     4. The composite impervious specimen was designed and 114 bonding specimens were presented. The main influence factors on bonding seepage properties of fresh fiber concrete to old concrete were discussed. Also the seepage properties and mechanical parameter, such as equivalent hydraulic fracture width, permeability coefficient and seepage law were explored. The test results indicated that the using of fiber in fresh concrete can improve the impermeability of fresh to old concrete. In some range, with the fiber content increase, the impermeability of bonding interface was enhanced. For steel fiber volume fraction being 1.5%, the increment ratio of steel fiber on bonding impermeability reached to 27% and for polypropylene fiber content being 1.5Kg/m~3, the increment ratio of polypropylene fiber on bonding impermeability reached to 60%. Based on experiments, the calculating formulae of average permeability coefficient of fresh fiber concrete to old concrete were put forward.
     5. The double direct shear specimen with notch was designed for the mode II fracture. 57 specimens of fresh fiber concrete to old concrete and 144 fiber concrete specimens subjected to freeze-thaw cycle were carried out mode II fracture test. The main influence factors on mode II fracture properties of fresh fiber concrete to old concrete were discussed. The test results indicated that the interfacial treatment method had some influence on mode II fracture properties of fresh fiber concrete to old concrete. With the interfacial roughness increase, the mode II fracture toughness of adhesive interface. The using of adhesive agent can improve the mode II fracture toughness of fresh fiber concrete to old concrete. Adding fiber to fresh concrete, the mode II fracture properties of fresh fiber concrete to old concrete were obviously improved. For steel fiber volume fraction being 2.0%, the mode II fracture toughness of fresh fiber concrete to old concrete increase 25% compared with ordinary concrete to old concrete, and for polypropylene fiber content being 1.5Kg/m~3, the increment was16.3%. Using of the fiber in concrete, the mode II fracture properties of concrete can be improved great. With the increase of fiber content, the mode II fracture toughness of concrete was continuously increased and this increment influence was more obvious under freeze-thaw cycle. The cycle of freeze-thaw has great influence on the mode II fracture toughness of fiber concrete and with the increase of cycle, the mode II fracture toughness was decrease. Based on experiments, the calculating formulae of the mode II fracture toughness of fiber concrete subjected to freeze-thaw cycle and adhesive interface of fresh fiber concrete to old concrete were put forward.
     6. Tests of free shrinkage of 162 specimens of fiber concrete and restriction shrinkage of 162 specimens of fresh fiber concrete to old concrete were carried out. The influence of shrinkage difference between fresh concrete and old concrete on adhesive property of fresh fiber concrete to old concrete was explored, and the influences of main factors on adhesive interface restriction shrinkage were discussed, such as the type of fiber and the content of fiber in fresh concrete. The experiment result indicated that the shrinkage difference between fresh concrete and old concrete can been effectively reduced by adding steel or polypropylene fiber to fresh concrete. These decreases of shrinkage difference can reduce shrinkage force on adhesive interface, as a result, the adhesive property of fresh fiber concrete to old concrete can been improved and these influence was more obviously with the increase of fiber content. The test results indicated that the free shrinkage strain of fiber concrete has a mode of hyperbola function and the unification calculating formulae of free shrinkage strain of fiber concrete were put forward. Based on experiments, a mechanics model about restriction shrinkage of fresh fiber concrete to old concrete has been found.
引文
[1] 迟培云,吕平,周宗辉.现代混凝土技术[M].上海:同济大学出版社,1999
    [2] 沈蒲生,梁兴文.混凝土结构设计原理[M].北京:高等教育出版社,2005
    [3] 宋中南.我国混凝土结构加固修复业技术现状与发展对策[J].混凝土,2002,(10)10-17
    [4] 李明顺.我国混凝土结构技术五十年的发展与展望[J].建筑结构,1999,29(10):3-8
    [5] 储传英.三峡工程混凝土原材料研究.北京:中国水利水电出版社,1999
    [6] Pierre C.A. Cement of yesterday and today; concrete of tomorrow. CCR30, 2002
    [7] 赵国藩,仲伟秋.高性能材料在结构工程中应用与发展[J].大连理工大学学报,2003,43(3):257-261
    [8] 龚洛书,柳春圃.混凝土的耐久性及其损害修补.北京:中国建筑工业出版社,1990
    [9] 金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学板),2002,36(4):371-403
    [10] 邸小坛,周燕.旧建筑物的检测加固与维护.北京:地震出版社,1991
    [11] Ciferni P. Shlinkage compensated mortars: An approach to concrete structural repair. Adherence of Young on Old Concrete, edited by WittmannF, H., 1994
    [12] EI-Sakhawy, N.R.,EI-Dien, H.S. Ahmed, M. E. Influence of Curing on Durability Performance of Concrete[J].Magazine of Concrete Research, Vol. 51, No. 5,Oct, 1999:309-318
    [13] 黄士元.21世纪初期我国混凝土技术发展中的几个重点问题[J].混凝土,2002,(3):3-7
    [14] 覃维祖.混凝土耐久性综述.第五届全国混凝土耐久性学术交流会论文集,2000:8-14
    [15] Sarja A. Durability design of concrete structure—Committee Report 130—CSL. Materials and Structure, Jan.-Feb.,2000
    [16] 周履,编译.21世纪的重要课题—关于混凝土耐久性的新观念.国外桥梁,1998,(4):62-66
    [17] Mehta P.K. Concrete Durability: Fifty Year' s Progress[A].Proceeding of 2nd International Conference on Concrete Durability[C].ACI SP 126-1.1991:pp 1-33
    [18] 李田,刘西拉.混凝土结构耐久性分析与设计.北京:科学技术出版社,1999
    [19] 袁群.老化病害混凝土结构质量评估及粘结加固中的基础问题研究.大连理工大学博士学位论文,2000
    [20] 李广智,张洪贵,柴红珍.水工抗冻混凝土设计指标问题的探讨.低温建筑技术,2002,(3):33-34
    [21] 高瑾,郭超江,栗湘君。水工混凝土的碳化与耐久性.混凝土,1994,(2):32-35
    [22] 徐学东,朱瑞龙,张利春,刘化民.现有铁路混凝土桥梁的耐久性问题.第五届全国混凝土耐久性学术交流会论文集,2000:47-53
    [23] 马保国,王迎飞,朱洪波,黄春泉.冬季施工中负温混凝土耐久性设计.低温建筑技术,2002,(3):12-14
    [24] 蒋元炯,韩素芳.混凝土工程病害与修补加固.北京:海洋出版社,1996
    [25] 卢木.混凝土耐久性研究现状和研究方向[J].工业建筑,1997,27(5):1-6
    [26] 罗福午.建筑结构缺陷事故的分析与防治[M].北京:清华大学出版社,1996
    [27] 万默林,韩继云.混凝土结构加固技术[M].北京:中国建筑工业出版社,1995
    [28] 卫龙武,吕志涛,朱万福.建筑物评估、加固与改造[M].南京:江苏科学技术出版社,1993
    [29] 洪乃丰.混凝土中钢筋腐蚀与结构物的耐久性[C].第五界全国混凝土耐久性学术交流会文集,2000:81-86
    [30] 周新刚.混凝土结构的耐久性与损伤防治[M].北京:中国建筑工业出版社,2000
    [31] 中国工程建设标准化协会标准(CECS25:90)混凝土结构加固技术规范[S]北京:中国计划出版社,1990
    [32] 中华人民共和国行业标准.(GB50292-99)民用建筑可靠性鉴定标准[S].北京:中国建筑工业出版社,2000
    [33] 中华人民共和国行业标准.(JGJ125-99)危险房屋鉴定标准[S].北京:中国建筑工业出版社,2000
    [34] 中国工程建设标准化协会标准.(CECS78:96)砖混结构房屋加层技术规范[S].北京:中国计划出版社,1996
    [35] 中国工程建设标准化协会标准.(CECS146:2003)碳纤维片材加固混凝土结构技术规程[S].北京:中国计划出版社,2003
    [36] 中华人民共和国行业标准.(JGJ1l6-98)建筑抗震加固技术规程[S].北京:中国建筑工业出版社,1998
    [37] 中华人民共和国国家标准.(GBJ144-90)工业厂房可靠性鉴定标准[S].北京:中国建筑工业出版社,1990
    [38] 中华人民共和国国家标准.(GB50023-95)建筑抗震鉴定标准[S].北京:中国建筑工业出版社,1995
    [39] 孙志恒,鲁一晖,岳跃真.水工混凝土建筑物的检测、评估与缺陷修补工程应用[M].北京:中国水利水电出版社,2005
    [40] 黄国兴,陈改新.水工混凝土建筑物修补技术及应用[M].北京:中国水利水电出版社,1999
    [41] 建筑结构补强加固技术编写组.建筑结构补强加固技术[M].北京:中国铁道出版社,1987
    [42] 朱伯龙,陆洲导,吴南虎.房屋结构灾害检测与加固[M].上海:同济大学出版社,1995
    [43] 周旺华.现代混凝土叠合结构[M].北京:中国建筑工业出版社,1998
    [44] 卓尚木,季直仓,卓昌志.钢筋混凝土结构事故分析与加固[M].北京:中国建筑工业出版社,1999
    [45] 朱伯龙,刘祖华.建筑改造工程学[M].上海:同济大学出版社,1997
    [46] 杨承曾.新旧混凝土结合面的强度及其工艺技术(上)[J].水运工程,1995,(6):49-45
    [47] 李嘉进.二滩大坝混凝土水平施工缝和混凝土与坝基结合面的处理[J].水电站设计,2002,(6):18-20
    [48] 周伟,常晓林,程德虎.丹江口混凝土重力坝后期加高新老混凝土结合问题研究[J].水利水电技术,2003,34(5):13-16
    [49] 王成强,王伟,何廷云.钢纤维混凝土材料在旧混凝土路面修补工程中的应用[J].工程技术,2005,(10):15-16
    [50] 陈国文.钢纤维混凝土修补技术[J].施工技术,2004,(1):31-33
    [51] 黄松堂,文敏.混凝土施工缝的质量控制[J].广西土木建筑,2002,27(3):151-152
    [52] 张晓华,张守凯.整浇钢筋混凝土结构施工缝的危害及处理措施[J].林业科技情报,2001,33(4):15-17
    [53] 赵挺生,潘先轶,方东平.留后浇带预应力混凝土结构施工短暂状况分析[J].建筑结构,2005,35(4):78-82
    [54] 叶清华,黄尚勇.现浇钢筋混凝土结构后浇带的施工方法[J].低温建筑技术,2005,(4):67-69
    [55] 赵志方.新老混凝土粘结机理和测试方法研究[D].大连:大连理工大学博士学位论文,1998
    [56] 刘健.新老混凝土粘结的力学性能研究.大连理工大学博士学位论文,2000
    [57] 韩菊红.新老混凝土粘结断裂性能研究及工程应用[D].大连:大连理工大学博士学位论文,2002
    [58] 郭进军.高温后新老混凝土粘结的力学性能研究[D].大连:大连理工大学博士学位论文,2003
    [59] 李平先.新老混凝土粘结面抗冻和抗渗性能试验研究[D].大连:大连理工大学博士学位论文,2004
    [60] 赵国藩,袁群,赵志方,等.新老混凝土粘结机理研究.国家自然科学基金项目(59778045) 总结报告,2000
    [61] 赵国藩,黄承逵,赵志方,等.新老混凝土粘结机理和测试方法研究总结报告[R].国家基础性研究重大项目(攀登计划B)<<重大土木与水利工程安全性与耐久性基础研究>>之5.2(1)课题,(1996年度总结报告),1996
    [62] 谢慧才,熊光晶,敖进滔,等.新老混凝土的粘结机理和测试方法研究[R].国家基础性研究重大项目(攀登计划B)<<重大土木与水利工程安全性与耐久性基础研究>>之5.2(2)课题,(1996年度总结报告),1996
    [63] Climaco, J.C.T.S.,Regan, P.E. Evaluation of Bond Strength between Old and New Concrete in Structure Repairs[J].Magazine of Concrete Research, Vol. 53, No. 6, December, 2001:377-390
    [64] Chen Pu-Woei, Fu Xuli, Improving the bonding between old and new concrete by adding carbon fibers to the new concrete, Cement and Concrete Research ,1995, Vol. 25, (3):491-496
    [65] Peter H. Emmons. et al. The Total System Concept-Necessary for Improving the Performance of Repaired Structures, Concrete Internation, 1995, (3):31-36
    [66] I. Uherkovich. Question Concerning the Long-time Behavior of Concrete Repairs[R], Adherence of Young on Old Concrete, edited By F.H. Wittmann, 1994
    [67] 高丹盈,赵军,朱海堂.钢纤维混凝土设计与应用[M].北京:中国建筑工业出版社,2002
    [68] 赵国藩.高等钢筋混凝土结构学[M].北京:中国电力出版社,1999
    [69] 李华,缪吕文,余志强.水泥混凝土路面修补技术[M].北京:人民交通出版社,1998
    [70] 卢亦炎.钢纤维混凝土材料及其在路面工程中的应用[J]公路,1999,(4):28-29
    [71] 蒙云.钢纤维混凝土新型路面设计与施工[M].重庆:重庆大学出版社,1995
    [72] 夏冬.钢纤维混凝土在路面修补工程中的应用[J].科技情报开发与经济,2005,15(11):279-280
    [73] 刘英姿.喷射钢纤维混凝土在隧道初期支护中的应用[J].铁道建筑,2004,(6):27-28
    [74] 陈晓东.盘道岭隧洞险段工程加固措施及效果[J]人民黄河,1994,(11):37-40
    [75] 张伟,顾红军,余晓青.钢纤维混凝土在机场道面快速修补中的应用[J].常州工学院学报,2005,(12):129-123
    [76] 张雷顺,等.中小型钢筋混凝土板桥叠合整修分析与技术研究报告.郑州工业大学,1995
    [77] E.J. Felt. Resurfacing and patching concrete pavement with bonded concrete, Proceedings of Highway Research Board, 1956:444-479
    [78] Brickley J.A, Liscio R. Repair and Protection system for parking structures. Concrete International:Design&Construction, vol. 10
    [79] 顾强生,等.混凝土建筑物水下补强加固技术研究.水利学报,1999,(9):63-67
    [80] 赵志方,赵国藩,刘健,等.新老混凝土粘结的抗拉强度试验研究[J].建筑结构学报,2001,22(2):51-56
    [81] 刘健.新老混凝土粘结的劈拉强度试验研究[J].工业建筑,2000,30(10):15-18
    [82] 郭进军,宋玉普,张雷顺.混凝土高温后进行粘结劈拉强度试验研究[J].大连理工大学学报,2003.43(2).213-217
    [83] Shigen Li, David G. Geissert, Gregory C. Frantz, etal. Freeze-thaw Bond Durability of Rapid-setting Concrete Repair Materials[J].ACI Materials Journal, 1999, Vol. 96, No. 2:242-249
    [84] David G. Geissert, etal Splitting Prism Test Method to Evaluate of Concrete-to-Concrete Bond Strength[J].ACI Materials Journal, 1999, Vol. 96, No. 2:359-366
    [85] 郭进军,王少波,张雷顺,等.新老混凝土粘结的剪切性能研究[J].建筑结构,2002,32(8):43-45
    [86] 袁群,刘健.新老混凝土粘结的剪切强度研究[J].建筑结构学报,1999,20(6):26-31
    [87] Daniel Cusson, Noel Mailvaganam. Durability of Repail Materials, Concrete International, 1996, (3):32-38
    [88] Robert A.B.,Ramon L.C.,James O.J. Shear Transfer across New and Existing Concrete Interface[J].ACI Structural Jornal,1989, Vol. 86(4):383-392
    [89] 赵志方,赵国藩,黄承逵.新老混凝土粘结抗折性能研究[J].土木工程学报,2000,33(2):68-72
    [90] Sanjay N.P.,etal. Evaluation Method for Adhesion Test Results of Bonded Mortars to Concrete Substrate by Square Optimization[J].ACI Materials Journal, 1995, Vol. 92, (4):355-360
    [91] 谢慧才,熊光晶,刘金伟,等.新老混凝土的粘结机理和测试方法研究[R].国家基础性研究重大项目(攀登计划B)<<重大土木与水利工程安全性与耐久性基础研究>>之5.2(2)课题,(1997年度总结报告),1997
    [92] 谢慧才,熊光晶,敖进滔,等.新老混凝土的粘结机理和测试方法研究[R].国家基础性研究重大项目(攀登计划B)<<重大土木与水利工程安全性与耐久性基础研究>>之5.2(2)课题,(1998年度总结报告),1998
    [93] Teng J.G.,Zhang, J.W.,Smith, S.T. Interface Stress in Reinforced Concrete Beams Bonded with a Soffit Plate:A Finite Element Study[J].Construction and Building Materials, Vol. 16, No.1, Feberuary, 2002:1-14
    [94] Kunieda, Minoru, Kurihara, Norihiko, etal. Application of Softening Diagrams to Evaluation of Bond Proerties at Concrete Interface[J].Engineering Fracture Mechanics, Vol. 65,No. 2.2000:299-315
    [95] 赵国藩,黄承逵,徐世烺,等.新老混凝土粘结机理和测试方法研究总结报告[R].国家基础性研究重大项目(攀登计划B)<<重大土木与水利工程安全性与耐久性基础研究>>之5.2(1)课题,(1997年度总结报告),1997
    [96] 赵国藩,赵志方,袁群,等.新老混凝土粘结机理和测试方法研究总结报告[R].国家基础性研究重大项目(攀登计划B)<<重大土木与水利工程安全性与耐久性基础研究>>之5.2(1)课题,(1998年度总结报告),1998
    [97] 美国内务部垦务局编,王圣培,等译.混凝土手册[M].北京:水利电力出版社,1990
    [98] 中华人民共和国国家标准.(GB50010-2002)混凝土结构设计规范[S].北京:中国建筑工业出版社,2002
    [99] 赵志方,赵国藩.采用高压岁射法处理新老混凝土粘结面试验研究[J].大连理工大学学报,1999,39(4):558-561
    [100] 熊光晶,姜浩,陈立强,等.新老混凝土修补界面层粘结质量的改善途径[J].工业建筑,2001,31(10):70-72
    [101] 韩菊红,张雷顺,袁群.新老混凝土粘结面粗糙都处理实用方法探讨[J].工业建筑,2001,31 (2):1-3
    [102] 赵志方,于跃海,赵国藩.测量新老混凝土粘结面粗糙度的方法[J].建筑结构,2000,30(1):26-29
    [103] 袁群,韩菊红.新老混凝土粘结面粗糙度的分维评价方法[J].工程力学,2000(增刊),812-816
    [104] 袁群,韩菊红,于跃海.混凝土粘结面粗糙度评价的功率谱法分维[J].工业建筑,2001,31(2):4-5
    [105] Abbott E.J.,etal. Specifying Surface Quality:A Method Based on Accurate Measurement and Comparision[J].Mechanical Engineering, 1993, Vol. 55:569-572
    [106] Timms C. Measurement of Surface Roughness[J].Metal Treatment, 1964, Vol. 13:111-118
    [107] 敖进涛,谢慧才,熊肇元.影响新老混凝土粘结界面强度的主要因素[J].工程力学(增刊),1997,(2):328-333
    [108] 高剑平,霍静恩,李硕,等。影响新旧混凝土粘结强度的因素分析[J].吉林建筑工程学院学报,2003,(3):17-21
    [109] Fiebrich M.H. Influence of the Surface Roughness on Adherence between Concrete and Guite Mortar Overlays[R].Adherence of Young on Old Concrete, edited by Wittmann F.H.,1994
    [110] 管大庆,陈章洪,石韫珠.界面处理对新老混凝土粘结性能的影响[J].混凝土与水泥制品,1994(3):23-24
    [111] A. Carles-Gibergues, F. Saucier, J. Grander & M.Pigeon. New-to-Old Concrete Bonding: Influence of Sulfates Type of New Concrete on Interface Microstructure[J],Cement and Concrete Resesrch V. 23, pp. 431-441,1993
    [112] 谢慧才,李庚英,熊光晶.新老混凝土界面粘结力形成机理[J].硅酸盐通报,2003,(3):7-10
    [113] J.S. Wall and N.G. Shrive ,Factors affecting bonf between new and old concrete, ACI Materials Journal/March-Aprial 1998 pp. 117-125
    [114] Steiner W.Products and Application of Bonding Agents for Concrete[R].Adherence of Young on Old Concrete, Edited by Wittmann F.H.,1994
    [115] John A.Wells, Robert D. Stark, Dimos Polyzois. Getting Better Bond In Concrete Ocerlays[J].Concrete Internation, 1999, (3):49-52
    [116] Bruce S. Bonding New to Old[J].Concrete Construction, 1988, (7):676-680
    [117] 刘金伟,谢慧才,熊光晶,等.新老混凝土粘结界面耐久性能的试验研究[J].混凝土,2001(2):35-37
    [118] Bijen J. Salet T. Adherence of Young Concrete to old Concrete ——Development of Tools for Engineering[R].Adherence of Young on old Concrete,edited by Wittmann F.H.,1994
    [119] 谢慧才,李庚英,熊光晶.新老混凝土的粘结模型及微观结构分析[J].混凝土,1999,(6):13-18
    [120] Fiebrich M.H. Scientific Aspect of Adhesion Phenomena in the Interface Mineral Substrate-Polymers[R].Adherence of Young on Old Concrete, edited by Wittmann F.H.,1994
    [121] Caries G.A, Saucier F.,etal. New-to-Old Concrete Bonding:Influence of Sulfates Type of New Concrete On Interface Microstructure[J].Cement and Concrete Research, 1993, Vol. 23:431-441
    [122] H.K. Hilsdorf, M. Gunter, P. Haardt. Fracture Mechanics Applications in the Analysis of concrete Repair and Protection System[R]. Adherence of Young on old Concrete,edited by Wittmann F.H, 1994
    [123] Wittmann F.H, Muller T. Adherence and Fracture Energy[R]. Adherence of Young on old Concrete ,edited by Wittmann F.H, 1994
    [124] 谢慧才,申豫斌.碳纤维混凝土对新老混凝土粘结性能的改善[J].土木工程学报,2003,36(10):15-18.
    [125] I. Uherkovich. Questions Concerning the Long-Time Behavior of Concrete Repairs[R], Adherence of Young on Old Concrete, edited by F.H. Wittmann, 1994
    [126] King J. WilsonA,If it' s still standing, it can berepaired[J],Concrete Construction Vol. 3, No. 7, Jal. 1998 pp643-650
    [127] Shaw. J.D.N, Polymers for Concrete Repair[J].Civil Engineering, 1983, June,:63-65
    [128] D.R. Plum, "The behavior of polymer materials in concrete repairs and factors influencing selection" ,The structure Engineer Vol. 68, No. 17, Sept 1990, pp. 337-345
    [129] Y.S. Yuan, M. Marosszeky, Ana]ysis of Corrded Reinforced Concrete Sections for Repair [J].Journal of Structural Engineering, 1991, July, Vol. 117, No. 7: 2018-2034
    [130] Y.S. Yuan, M. Marosszeky. Restrained Shrinkage in Repaired Reinforced Concrete Element [J].Materials & Constructions, Feb, 1994
    [1] 赵国藩.高等钢筋混凝土结构学[M].北京:中国电力出版社,1999
    [2] 沈蒲生,梁兴文.混凝土结构设计原理[M].北京:高等教育出版社,2005
    [3] 宋中南.我国混凝土结构加固修复业技术现状与发展对策[J].混凝土,2002,(10)10-17
    [4] 李明顺.我国混凝土结构技术五十年的发展与展望[J].建筑结构,1999,29(10):3-8
    [5] 龚洛书,柳春圃.混凝土的耐久性及其损害修补.北京:中国建筑工业出版社,1990
    [6] 邸小坛,周燕.旧建筑物的检测加固与维护.北京:地震出版社,1991
    [7] 大连理工大学.新老混凝土粘结机理和测试方法研究总结报告[R].大连:大连理工大学,1996-1998
    [8] 汕头大学.新老混凝土的粘结机理和测试方法研究[R].汕头:汕头大学,1996-1998
    [9] J. Bijen and T. Salet, Adherence of young concrete to old concrete development of tools for engineering, Adherence of young on old concrete, edited by FolkrerH. Wittmann, 1994
    [10] 覃维祖.混凝土耐久性综述.第五届全国混凝土耐久性学术交流会论文集,2000:8-14
    [11] 周新刚.混凝土结构的耐久性与损伤防治[M].北京:中国建筑工业出版社,2000
    [12] 罗福午.建筑结构缺陷事故的分析与防治[M].北京:清华大学出版社,1996
    [13] 中国工程建设标准化协会标准(CECS25:90)混凝土结构加固技术规范[S]北京:中国计划出版社,1990
    [14] 田稳苓,赵志方,赵国藩,等.新老砼的粘结机理和测试方法研究综述[J].河北理工学院学报,1998,20(1):84-94
    [15] 敖进涛,谢慧才,熊肇元.影响新老混凝土粘结界面强度的主要因素[J].工程力学(增刊),1997,(2):328-333
    [16] 赵志方.新老混凝土粘结机理和测试方法研究[D].大连:大连理工大学博士学位论文,1998
    [17] 刘健.新老混凝土粘结的力学性能研究.大连理工大学博士学位论文,2000
    [18] 袁群.老化病害混凝土结构质量评估及粘结加固中的基础问题研究.大连理工大学博士学位论文,2000
    [19] 韩菊红.新老混凝土粘结断裂性能研究及工程应用[D].大连:大连理工大学博士学位论文,2002
    [20] 郭进军.高温后新老混凝土粘结的力学性能研究[D].大连:大连理工大学博士学位论文,2003
    [21] 李平先.新老混凝土粘结面抗冻和抗渗性能试验研究[D].大连:大连理工大学博士学位论文,2004
    [22] 赵志方,赵国藩,刘健,等.新老混凝土粘结的抗拉强度试验研究[J].建筑结构学报,2001,22(2):51-56
    [23] 刘健.新老混凝土粘结的劈拉强度试验研究[J].工业建筑,2000,30(10):15-18
    [24] 郭进军,宋玉普,张雷顺.混凝土高温后进行粘结劈拉强度试验研究[J].大连理工大学学报,2003.43(2):213-217
    [25] Shigen Li, David G. Geissert, Gregory C. Frantz, etal. Freeze-thaw Bond Durability of Rapid-setting Concrete Repair Materials[J].ACI Materials Journal, 1999, Vol. 96, No. 2:242-249
    [26] David G. Geissert, etal Splitting Prism Test Method to Evaluate of Concrete-to-Concrete Bond Strength[J].ACI Materials Journal, 1999, Vol. 96, No. 2:359-366
    [27] 郭进军,王少波,张雷顺,等.新老混凝土粘结的剪切性能研究[J].建筑结构,2002,32(8):43-45
    [28] 袁群,刘健.新老混凝土粘结的剪切强度研究[J].建筑结构学报,1999,20(6):26-31
    [29] Daniel Cusson, Noel Mailvaganam. Durability of Repail Materials, Concrete International, 1996, (3):32-38
    [30] Robert A.B.,Ramon L.C.,James O.J. Shear Transfer across New and Existing Concrete Interface[J].ACI Structural Jornal, 1989, Vol. 86(4):383-392
    [31] 赵志方,赵国藩,黄承逵.新老混凝土粘结抗折性能研究[J].土木工程学报,2000,33(2):68-72
    [32] Sanjay N.P.,etal. Evaluation Method for Adhesion Test Results of Bonded Mortars to Concrete Substrate by Square Optimization[J].ACI Materials Journal, 1995, Vol. 92, (4):355-360
    [33] Abbott E.J.,etal. Specifying Surface Quality:A Method Based on Accurate Measurement and Comparision[J].Mechanical Engineering, 1993, Vol. 55:569-572
    [34] Timms C. Measurement of Surface Roughness[J].Metal Treatment, 1964, Vol. 13:111-118
    [35] J. S. Wall and N.G. Shrive ,Factors affecting bonf between new and old concrete, ACI Materials Journal/March-Aprial 1998 pp. 117-125
    [36] Steiner W. Products and Application of Bonding Agents for Concrete[R].Adherence of Young on Old Concrete, Edited by Wittmann F.H.,1994
    [37] John A.Wells, Robert D. Stark, Dimos Polyzois. Getting Better Bond In Concrete Ocerlays [J].Concrete Internation, 1999, (3):49-52
    [38] Bruce S. Bonding New to Old[J].Concrete Construction, 1988, (7):676-680
    [39] 李华,缪昌文,余志强.水泥混凝土路面修补技术[M].北京:人民交通出版社,1998
    [40] 卢亦炎.钢纤维混凝土材料及其在路面工程中的应用[J]公路,1999,(4):28-29
    [41] 蒙云.钢纤维混凝土新型路面设计与施工[M].重庆:重庆大学出版社,1995
    [42] 夏冬.钢纤维混凝土在路面修补工程中的应用[J].科技情报开发与经济,2005,15(11):279-280
    [43] 刘英姿.喷射钢纤维混凝土在隧道初期支护中的应用[J].铁道建筑,2004,(6):27-28
    [44] 陈晓东.盘道岭隧洞险段工程加固措施及效果[J]人民黄河,1994,(11):37-40
    [45] 张伟,顾红军,余晓青.钢纤维混凝土在机场道面快速修补中的应用[J].常州工程学院学报,2005,(12):129-123
    [46] D.N.Trikha,许贤敏译,受损的砼梁之修补与增强,国外建筑科学,1993,6(2):15~24
    [47] 高丹盈,赵军,朱海堂.钢纤维混凝土设计与应用[M].北京:中国建筑工业出版社,2002
    [48] Johan Silfwerbrand. Improving concrete bond in repaired bridge decks[J].Concrete International Sept 1990:61~66
    [49] F. Seible, C.T. Latham. Horizontal load transfer in structural concrete bridg edeck Overlays[J].Journal of Structural Engineering, 1990,116(10)
    [50] RobertA. Bass, JamesO. Jirsa. Shear transfer across new and existing concrete interfaces [J].ACI Structural Journal, 1989,86(4):383-3931
    [51] 周旺华.现代混凝土叠合结构[M].北京:中国建筑工业出版社,1998
    [52] 万默林,韩继云.混凝土结构加固技术[M].北京:中国建筑工业出版社,1995
    [53] 中华人民共和国行业标准.(JGJ116-98)建筑抗震加固技术规程[S].北京:中国建筑工业出版社,1998
    [54] 建筑结构补强加固技术编写组.建筑结构补强加固技术[M].北京:中国铁道出版社,1987
    [55] Mattock. Shear Transfer in Reinforced Concrere[J].ACI Journal, 1969(2): 36-42
    [56] 李家康,王魏.高强混凝土在压剪复合受力性能的实验研究.土木工程学报,1997(3)
    [57] 管大庆,陈章洪,石韫珠.界面处理对新老混凝土粘结性能的影响.混凝土,1994(5):16~22
    [58] 王璋水,邓宗才.合成纤维混凝土在交通工程的研究应用与前景[A].薛伟辰,姚武.先进纤维混凝土[C].上海:同济大学出版社,2004:22-29
    [59] 高丹盈,刘建秀.钢纤维混凝土基本理论[M].北京:科学技术文献出版社,1994
    [60] 谷章昭,倪梦象,樊钧,等.合成纤维混凝土的性能及其工程应用[J].建筑材料学报,1999,2(2):159-162
    [61] 中国工程建设标准化协会标准.(CECS13:89)钢纤维混凝土试验方法[S].北京:中国计划出版社,1996
    [62] J.A. Brickley, R. Liscio. Repair and Protection systems for parking structures[J]. Concrete Internation:Design & construction, Vol. 10, No. 4, Aprit, 1998:2-28
    [63] I.Adachi, K. Hashimoto, T. Nishimura. Construction joint of concre structures using shotb-Lasting technique[J].Transactions of the Japan concrete Institute, Vol. 5, 1983:61-68
    [64] 美国内务部垦务局编.王圣培,等译.混凝土手册[M].北京:水利水电出版社,1991
    [65] 沈在康编著.混凝土结构设计新规范讲评[M].北京:中国建筑工业出版社,1993
    [66] KHALOO Ali R, KIM Nakseor. Influence of steel fiber reinforced concrete under direct Shear[J].ACI Materials Journal, 1997,94(6):592-601
    [67] 谢慧才,申豫斌.碳纤维混凝土对新老混凝土粘结性能的改善[J].土木工程学报,2003,36(10):15-18
    [1] 大连理工大学.新老混凝土粘结机理和测试方法研究总结报告[R].大连:大连理工大学,1996-1998
    [2] 汕头大学.新老混凝土的粘结机理和测试方法研究[R].汕头:汕头大学,1996-1998
    [3] 田稳苓,赵志方,赵国藩,等.新老砼的粘结机理和测试方法研究综述[J].河北理工学院学报,1998,20(1):84-94
    [4] 敖进涛,谢慧才,熊肇元.影响新老混凝土粘结界面强度的主要囚素[J].工程力学(增刊),1997,(2):328-333
    [5] 赵志方.新老混凝土粘结机理和测试方法研究[D].大连:大连理工大学博士学位论文,1998
    [6] 刘健.新老混凝土粘结的力学性能研究.大连理工大学博士学位论文,2000
    [7] J.S. Wall and N.G. Shrive,Factors affecting bonf between new and old concrete, ACI Materials Journal/March-Aprial 1998 pp. 117-125
    [8] Steiner W. Products and Application of Bonding Agents for Concrete[R].Adherence of Young on Old Concrete, Edited by Wittmann F. H.,1994
    [9] John A.Wells, Robert D. Stark, Dimos Polyzois. Getting Better Bond In Concrete Ocerlays [J].Concrete Internation, 1999, (3):49-52
    [10] 管大庆,陈章洪,石韫珠.界面处理对新老混凝土粘结性能的影响.混凝土,1994(5):16~22
    [11] 谢慧才,申豫斌.碳纤维混凝土对新老混凝土粘结性能的改善[J].土木工程学报,2003,36(10):15-18
    [12] KHALOO Ali R, KIM Nakseor. Influence of steel fiber reinforced concrete under direct Shear[J].ACI Materials Journal, 1997,94(6):592-601
    [13] Daniel Cusson, Noel Mailvaganam. Durability of Repail Materials, Concrete International,1996, (3):32-38
    [14] 赵志方,赵国藩,刘健,等.新老混凝土粘结的抗拉强度试验研究[J].建筑结构学报,2001,22
    [15] 赵志方,赵国藩,黄承逵.新老混凝土粘结抗折性能研究[J].土木工程学报,2000,33(2):68-72
    [16] 袁群.老化病害混凝土结构质量评估及粘结加同中的基础问题研究.大连理工大学博士学位论文,2000
    [17] 韩菊红.新老混凝土粘结断裂性能研究及工程应刚[D].大连:大连理工大学博士学位论文,2002
    [18] 郭进军.高温后新老混凝土粘结的力学性能研究[D].大连:大连理工大学博士学位论文,2003
    [19] 李平先.新老混凝土粘结面抗冻和抗渗性能试验研究[D].大连:大连理工大学博士学位论文,2004
    [20] 周伟,常晓林,程德虎.丹江口混凝土重力坝后期加高新老混凝土结合问题研究[J].水利水电技术,2003,34(5):13-16
    [21] Climaco, J.C.T.S.,Regan, P.E. Evaluation of Bond Strength between Old and New Concrete in Structure Repairs[J].Magazine of Concrete Research, Vol. 53, No. 6, December, 2001:377-390
    [22] Chen Pu-Woei, Fu Xuli ,Improving the bonding between old and new concrete by adding carbon fibers to the new concrete, Cement and Concrete Research ,1995, Vol. 25, (3):491-496
    [23] Peter H. Emmons. et al. Tbe Total System Concept-Necessary for Improving the Performance of Repaired Structures, Concrete Internation, 1995, (3):31-36
    [24] I. Uherkovich. Question Concerning the Long-time Behavior of Concrete Repairs[R], Adherence of Young on Old Concrete, edited By F.H. Wittmann, 1994
    [25] 赵志方,赵国藩.采用高压岁射法处理新老混凝土粘结面试验研究[J].大连理工大学学报,1999,39(4):558-561
    [26] 熊光晶,姜浩,陈立强,等.新老混凝土修补界面层粘结质量的改善途径[J].工业建筑,2001,31(10):70-72
    [27] 韩菊红,张雷顺,袁群.新老混凝土粘结面粗糙都处理实用方法探讨[J].工业建筑,2001,31(2):1-3
    [28] 赵志方,于跃海,赵国藩.测量新老混凝土粘结面粗糙度的方法[J].建筑结构,2000,30(1):26-29
    [29] 高丹盈,赵军,朱海堂.钢纤维混凝土设计与应用[M].北京:中国建筑工业出版社,2002
    [30] 中国工程建设标准化协会标准(CECS25:90)混凝土结构加固技术规范[S]北京:中国计划出版社,1990
    [31] 中国工程建设标准化协会标准.(CECS13:89)钢纤维混凝土试验方法[S].北京:中国计划出版社,1996
    [32] 高丹盈,刘建秀.钢纤维混凝土基本理论[M].北京:科学技术文献出版社,1994
    [1] 宋中南.我国混凝土结构加固修复业技术现状与发展对策[J].混凝土,2002,(10)10-17
    [2] 蒋元炯,韩素芳.混凝土工程病害与修补加固.北京:海洋出版社,1996
    [3] 大连理工大学.新老混凝土粘结机理和测试方法研究年度研究报告[R].大连:大连理工大学,1996-1998
    [4] 水电部混凝土耐久性调查组.全国水工混凝土建筑物耐久性及病害处理调查报告[R].北京:水电部,1987
    [5] 李平先,张雷顺,赵国藩.新老混凝土粘结面的抗冻剪切性能试验研究[J].水利学报,2005,36(3):339-345
    [6] 汕头大学.新老混凝土的粘结机理和测试方法研究年度研究报告[R].汕头:汕头大学
    [7] Climaco, J.C.T.S.,Regan, P.E. Evaluation of Bond Strength between Old and New Concrete in Structure Repairs[J].Magazine of Concrete Research, Vol. 53, No. 6, December, 2001:377-390
    [8] Chen Pu-Woei, Fu Xuli,Improving the bonding between old and new concrete by adding carbon fibers to the new concrete, Cement and Concrete Research ,1995, Vol. 25,(3):491-496
    [9] I. Uherkovich. Question Concerning the Long-time Behavior of Concrete Repairs[R], Adherence of Young on Old Concrete, edited By F.H. Wittmann, 1994
    [10] 赵志方.新老混凝土粘结机理和测试方法研究[D].大连:大连理工大学博士学位论文,1998
    [11] 刘健.新老混凝土粘结的力学性能研究.大连理工大学博士学位论文,2000
    [12] 韩菊红.新老混凝土粘结断裂性能研究及工程应用[D].大连:大连理工大学博士学位论文,2002
    [13] 郭进军.高温后新老混凝土粘结的力学性能研究[D].大连:大连理工大学博士学位论文,2003
    [14] 李平先.新老混凝土粘结面抗冻和抗渗性能试验研究[D].大连:大连理工大学博士学位论文,2004
    [15] 中华人民共和国电力行业标准.水工混凝土试验规程(DL/T5150-2001)[S].北京:中国电力出版社,2002
    [16] 李金玉,曹建国,徐文雨,等.混凝土冻融破坏机理的研究[J].水利学报,1999.(1):41-49
    [17] 中国工程建设标准化协会标准.(CECS13:89)钢纤维混凝土试验方法[S].北京:中国计划出版社,1996
    [18] 高丹盈,刘建秀.钢纤维混凝土基本理论[M].北京:科学技术文献出版社,1994
    [19] 罗昕,卫军.冻融条件下混凝土损伤演变与强度相关性研究[J].华中科技大学学报(自然科学版),2006,34(1):98-100
    [20] 高丹盈,朱海棠,赵军,等.冻融后钢纤维混凝土力学性能的试验研究[J].郑州大学学报(工学版),2005,26(1):1-4
    [21] 熊光晶,姜浩,陈立强,等.新老混凝土修补界面过渡区微细观结构改善方法的研究[J].硅酸盐学报,2002,30(2):263-266
    [1] 李平先,张雷顺,赵国藩,等.新老混凝土粘结面渗透性能试验研究[J].水利学报,2005,36(5):602-608
    [2] 李平先.新老混凝土粘结面抗冻和抗渗性能试验研究[D].大连:大连理工大学博士学位论文,2004
    [3] 管大庆,陈章洪,石韫珠.界面处理对新老混凝土粘结性能的影响[J].混凝土与水泥制品,1994(3):23-24
    [4] 陈立军,于永平,尹新生,等.混凝土孔径尺寸对其抗渗性的影响[J].硅酸盐学报,2005,33(4):501-505
    [5] 吴中伟.高性能混凝土[M].北京:中国铁道出版社,1999,22-25
    [6] 李淑进,赵铁军,吴科如.混凝土渗透性与微观结构关系的研究[J].混凝土与水泥制品,2004,(2):6-8
    [7] Steicher P.E.,Alexander M.G. A chloride conduction test for concrete[J].Cement and Concrete Research, 1995,25(6): 31-37
    [8] 梅国兴,刘伟宝.大坝碾压混凝土抗渗、抗冻利抗裂的评估[J].水利水电技术,2003,34(4):21-24
    [9] 易成,谢和平,孙华飞,等.混凝土抗渗性能研究的现状与进展[J].混凝土,2003(2):7-11
    [10] Whitting, D. Rapid Measurement of the Chloride Permeability of Concrete[J].Public roads. Vol. 45, No. 3, Dec. 1981
    [11] Tang Luping, Lars Olof Nilsion. Rapid Determination of the Chloride Diffusivity in Concrete by Applying and Electrical Field[J].ACI Materials Jpurnal, Vol. 9, No.1, 1992:49-53
    [12] R.K. Dhir, et al. Rapid Estimation of Chloride Diffusion Coefficient in Concrete[J]. Magazine of Concrete Research, Vol. 42, No. 152,1990:177-185
    [13] 赵铁军.高性能混凝土的渗透性研究[D].北京:清华大学博士学位论文,1997
    [14] GBJ 82-85.普通混凝土长期性能和耐久性能试验方法[S].北京:中国建筑工业出版社,2002
    [15] GB/T50081-2002普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2002
    [16] 中华人民共和国电力行业标准.DL/T 5150-2001.水工混凝土试验规程[S].北京:中国电力出版社,2002
    [17] 中国工程建设标准化协会标准.(CECS13:89)钢纤维混凝土试验方法[S].北京:中国计划出版社,1996
    [18] 高丹盈,刘建秀.钢纤维混凝土基本理论[M].北京:科学技术文献出版社,1994
    [19] 速宝玉,詹美礼,赵坚.光滑裂隙水流模型实验及其机理初探[J].水利学报,1994,(5):19-24
    [20] Lomize G M. Flow in Fractured Rocks[M].Russian, Gosemergoizdat, Moscow, 1951
    [21] Romm E S. Flow in Fractured Rocks[M].Russian, Moscow: Nedra Publishing House, 1966
    [22] Louis C. A Study of Ground Water Flow in Jointed Rock and Its Influence on the Stability of Rock Mass[A].Edited by Muler L., London: Rock iech, 1969
    [23] 王媛,速宝玉,徐志英.粗糙裂隙渗流及其受应力作用的计算机模拟[J].河海大学学报,1997,25(6):80-85.
    [24] 王媛,速宝玉,徐志英.裂隙岩体渗流模型综述[J]水科学进展.1996,7(3):272-282
    [25] 王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J]水科学进展.2002,13(1):61-68
    [26] 詹美礼,速宝玉.接触型裂隙水力等效张开度研究[J]岩土力学.1997,18(1):40-46
    [27] 沈洪俊.碾压混凝土层面渗流特性的试验研究[J].河海大学学报,1996,24(5):53-59
    [28] 任旭华,李浩军,夏颂佑,沈洪俊.碾压混凝土坝的渗流特性和渗流控制[J].水力发电,2000,(3):22-25
    [29] 任旭华,夏颂佑,张世强.碾压混凝土重力坝的渗流特性[J].河海大学学报,1997,25(2):15-20
    [30] 朱岳明,黄文雄.碾压混凝土及碾压混凝土坝的渗流特性研究[J].水利水电技术,1995,(12):49-57
    [31] 窦铁生,张有天.碾压混凝土渗透系数的确定方法[J].水利学报,2002,(7):125-127
    [32] 姜雪洁,王众臣,王书祥.改性聚丙烯纤维混凝土抗渗性能的试验研究[J].建筑技术,2006,37(1):45-47
    [1] A Carpinteri&A R Ingraffea编,杨煜惠等译.混凝土断裂力学[M].长沙:湖南大学出版社,1988
    [2] Kaplan M F. Crack propagation and the fracture of concrete[J].Joumal of ACI,1961(58):591-610
    [3] 潘家铮.断裂力学在水工结构设计中的应用[J].水利学报,1980,(1)
    [4] 涂传林,陆忠明,等.大骨料全级配水工混凝土的断裂韧性[J].水利学报,1990,(5)
    [5] 吴智敏,赵国藩,徐世娘.大尺寸混凝土试件的断裂韧度[J].水利学报,1997,(6)
    [6] 易成,谢和平,孙华飞.钢纤维混凝土疲劳断裂性能与工程应用[M].北京:科学出版社,2003
    [7] 丘崇光.岩石混凝土断裂力学[M].武汉:武汉工业大学出版社,1991
    [8] 尹双增.断裂判据与在混凝土工程中的应用[M].北京:科学出版社,1991
    [9] 大连理工大学.新老混凝土粘结机理和测试方法研究总结报告[R].大连:大连理工大学,1996-1998
    [10] 韩菊红.新老混凝土粘结断裂性能研究及工程应用[D].大连:大连理工大学博士学位论文,2002
    [11] Bazant Z P, P A Pfeiffer. Shear Fracture Tests of Concrete [J].Materials and Structures,1986,19 (llO): 111-121
    [12] Bazant Z P. Tests of Shear Fracture and Strain softening [J].Applied Mechanics Reviews,1986,39 (5): 675-703
    [13] 郝彩哲,李慧剑,贾志宁,等.混凝土剪切断裂的尺寸效应试验研究[J].燕山大学学报,2005,29(5):459-463
    [14] 中国工程建设标准化协会标准.(CECS13:89)钢纤维混凝土试验方法[S].北京:中国计划出版社,1996
    [15] 于骁中.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1991
    [16] 张林,徐进,陈新,等.碾压混凝土断裂试验研究[J].水利学报,2001(5):45-49
    [17] 罗昕,卫军.冻融条件下混凝土损伤演变与强度相关性研究[J].华中科技大学学报(自然科学版),2006,34(1):98-100
    [1] 张巍,杨全兵.混凝土收缩研究综述[J].低温建筑技术,2003,(5):4-6
    [2] 梅明荣,葛世平,陈军,等.混凝土结构收缩应力问题研究[J]河海大学学报,2002,30(1):74-78
    [3] 彭振斌,陈迎明,刘安邦.混凝土收缩机理及其诊治原理[J]混凝土,2003,(3):30-31
    [4] EMMONS P.H, VAYSBURD A.M, MCDONALD J.E. A rational approach to durable concrete repairs [J].Conc Int, 1993(9):40-44
    [5] 袁迎曙.钢筋混凝土结构局部补强的收缩应力分析[J].土木工程学报,1992,29(1):33-40
    [6] 周履,陈永春.收缩徐变[M].北京:中国铁道出版社,1994
    [7] 谢慧才,申豫斌.碳纤维混凝土对新老混凝土粘结性能的改善[J].土木工程学报,2003,36(10):15-18.
    [8] SD105-82,水工混凝土试验规程[S].北京:水利电力出版社,1987
    [9] 刘健,赵国藩.新老混凝土粘结收缩性能研究[J].大连理工大学学报,2001,41(3):339-402
    [10] 中国工程建设标准化协会标准.(CECS13:89)钢纤维混凝土试验方法[S].北京:中国计划出版社,1996
    [11] 杨小兵.混凝土收缩徐变预测模型研究[D].武汉:武汉大学硕士学位论文,2004
    [12] 龚洛书,惠满印,杨蓓,等.混凝土收缩与徐变的试验研究[R].建筑科学研究报告,中国建筑科学研究院,1987
    [13] 龚洛书,惠满印,杨蓓.混凝土收缩与徐变的实用数学表达式[J].建筑结构学报,1988,(5):37-42
    [14] 张佚伦,詹树林,钱晓倩,等.聚丙烯纤维混凝土早期收缩性能试验研究[J].新型建筑材料,2006,(1):25-27
    [15] 戴建国,刘明,黄承逵.聚丙烯纤维混凝土和砂浆的塑性收缩试验研究[J].沈阳建筑工程学院学报,2000,16(3):195-198
    [16] Wang Kejin, Shah Surendra P, Phuaksuk Pariya. Plastic shrinkage cracking in concrete materials-Influence of fly ash and fibers[J].ACl Materials Journal,2001,98(6): 458-464
    [17] 黄国兴,惠荣炎.混凝土的收缩[M].北京:铁道出版社,1990
    [18] 高丹盈,刘建秀.钢纤维混凝土基本理论[M].北京:科学技术文献出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700