先天性巨结肠RET基因和PHOX2B基因多态性和肠神经元发育不良病理特点及与EC关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分先天性巨结肠RET基因和PHOX2B基因多态性研究
     研究背景
     先天性巨结肠(Hirschsprung's disease,HD),是小儿外科常见疾病,在高加索人,非洲黑人、亚洲黄种人的发病率分别为万分之1.5、2.1、2.8,亚洲人种发病率最高。HD是一种神经嵴源性疾病,当胚胎发育过程中神经嵴细胞迁徙、分化发生停顿或发生细胞凋亡,均会导致远端肠管的神经支配异常而导致HD。近年来通过遗传连锁分析和基因敲除等技术,发现有以下基因的突变与HD的发病有关:编码有关酪氨酸激酶通路基因(包括RET原癌基因,GDNF基因,GFRα-1基因等),编码血管内皮素信号通路的基因(包括EDNRB基因,EDN3基因和ECE-1基因),编码转录因子的基因(如SOX10基因和PHOX2B基因)等。其中RET基因表达对肠神经元细胞的发育十分关键,在HD的发病中最为重要。
     但对HD进行大量RET基因突变研究发现,仅有20%左右的散发性和50%左右家族性HD存在突变,而且缺乏类似肿瘤相关的热点突变,另外HD相关RET突变有不完全外显(incomplete penetrance),呈突变效应性别相关性。更为重要的是,在家族性病例,遗传连锁分析定位遗传位点在10q11.2,却仍缺乏RET编码区突变。随着SNPs疾病相关性研究的进展,对HD的RET基因研究重点逐渐转移到多态性的研究上。尚未证实单个SNPs导致HD相关RET功能改变,但可能有精确的SNPs组合(单倍型)决定调节意义。在高加索人种,发现有数个RET编码区SNPs与散发性HD相关:A45A(c135G>(?);exon 2)和L769L(c2307T>(?);exon 13)。对RET基因启动子的研究发现,在RET编码序列上游的启动子的两种多态性-5G>A和-A>C与HD相关。目前对RET基因的研究,均局限于编码区的突变及SNPs研究,虽然也有少量非编码区(内含子和启动子)的研究,但缺乏相应的功能研究。
     PHOX2B基因表达研究证明,PHOX2B编码的同源域蛋白与多种非肾上腺素能神经元的发育有关,因此推断PHOX2B基因的改变可能与自主神经发育异常性疾病相关。在小鼠胚胎学研究发现,一旦成肠细胞进入到前肠间叶,即有PHOX2B蛋白表达,并贯穿肠神经元发育的始终。PHOX2B基因突变纯合子小鼠全胃肠道缺乏神经元,与HD病变相似,同时,该突变的小鼠无RET蛋白表达,因此推测PHOX2B基因可能与HD有关。Garcia-Barcelo通过对91例单纯HD研究,发现PHOX2B 1364 A>G多态性与HD有关。目前对PHOX2B基因与临床疾病的关系研究尚处在起步阶段,PHOX2B基因与HD的研究也仅有个别报道,PHOX2B基因是否参与HD的发病机制仍有待进一步的研究。
     根据Hapmap组织统计数据,不同种族人群的SNPs分布频率有明显差异,RET基因和PHOX2B基因SNPs也是如此,这可能是不同种族人群HD发病率有明显差别的原因之一。本课题拟通过对浙江汉族人群HD患者和正常人群的对照研究,分析RET基因和PHOX2B基因SNPs与HD发病之间的关系,不同类型HD与基因SNPs关系,进一步推断主要的HD相关单倍型,并对照其他种族人群已有数据,分析浙江汉族人群的SNPs分布特点。同时应用免疫组化法,检测RET基因启动子多态性与RET蛋白表达之间的关系。
     材料和方法
     1.病例收集及标准
     (1)病例组:全部病例均为本院的浙江籍先天性巨结肠患儿,共123例。根据2005年第四届国际巨结肠与相关神经嵴源性疾病会议的巨结肠诊断标准,重新阅片确定。
     (2)分组及标准:将巨结肠分为短段型与长段型两种。
     短段型HD:病变仅局限于乙状结肠远端,乙状结肠直肠交界及直肠。
     长段型HD:病变范围包括乙状结肠近端,升结肠及累及范围更广者。
     (3)正常对照组:全部正常对照组均来自本院正常体检小儿,排除消化道和神经嵴相关畸形,共194例。
     全部病例及对照组抽取外周血2ml,3.8%枸橼酸钠抗凝。
     本研究经浙江大学医学院附属儿童医院伦理委员会批准,全部患儿及对照组均获得家长知情同意。
     2.PCR反应及测序
     对全部样本进行DNA提取后,根据选取的SNPs,合成引物,PCR扩增,经2%琼脂糖电泳证实PCR产物后,将PCR产物进一步纯化、测序。
     3.免疫组化
     根据RET启动子多态性,分别选取相应患儿病理组织切片,观察神经元,确定含正常神经元蜡块,再行C-Ret免疫组化染色,将该切片镜下所有神经元按免疫组化反应等级均予计数。
     4.统计方法
     (1)用Hardy-Weinberg平衡定律来检验样本人群中基因频率与基因型频率是否平衡。
     (2)基因和疾病的相关性分析:使用x2方检验(Chi squared),相关性以比值比(odds ratios,ORs)及其95%可信区间(confidence intervals,CIs)表示,以P值<0.05确定为统计学差异有显著性。
     (3)单倍型频率用PHASE软件计算。
     (4)免疫组化结果用非参数统计中的两样本等级和检验(Mann-Whitney Test)。
     结果
     1.各位点基因型与HD风险
     RET基因-5G>A,-1A>C,c135G>A,c2307T>G四个位点的少见基因型AA,CC,AA,GG在HD组频率明显高于对照组(P<0.05)。
     PHOX2B基因1364A>G两组间未发现有基因型差异。
     2.各位点等位基因频率与HD风险
     RET基因-5A,-1C,c135A,c2307G在HD组等位基因频率明显高于对照组(P<0.05)。
     PHOX2B基因1364A>G等位基因分布未发现显著性事件。
     3.各位点等位基因频率与HD类型关系
     RET基因各位点均未发现等位基因频率在不同类型间的差异。
     4.单倍型与HD
     RET基因启动子单倍型-5A/-1C占HD组82.5%,较对照组差异有显著性(P<0.05)。
     RET基因四位点(-5,-1,c135,c2307)单倍型ACAG占HD组75.2%,较对照组差异有显著性(P<0.05)。
     5.不同种族人群之间各等位基因频率
     RET基因-5A、c135A和c2307G等位基因频率明显高于高加索和非洲人种(P<0.05)
     6.RET基因启动子多态性与RET蛋白表达关系
     RET基因启动子基因型-5AA/-1CC较其他基因型RET蛋白表达降低(P<0.05)。
     启动子单倍型-5A/-1C纯合子较-5A/-1C杂和子RET蛋白表达降低(P<0.05)。
     结论
     1.RET基因-5G>A,-1A>C,c135G>A,c2307T>G四个位点多态性与浙江汉族人群HD明显相关,但与HD类型无明显相关。
     2.RET基因-5G>A,-1A>C,c135G>A,c2307T>G四个位点单倍型ACAG是浙江汉族人群的HD相关核心单倍型。
     3.浙江汉族人群的RET基因-5、c135和c2307位点的少见等位基因频率较其他人种有明显增高。
     4.RET启动子多态性对启动子功能有影响,与RET蛋白表达相关。
     5.未发现PHOX2B基因多态性与浙江汉族人群HD相关。
     第二部分肠神经元发育不良病理特点及与EC关系研究
     研究背景
     近年来逐渐认识到一类临床表现与HD十分相似,但病理改变与HD明显不同的疾病,称之为巨结肠同源病(allied disorders of Hirschsprung's disease;ADHD),主要包括肠神经元发育不良(Intestinal neuronal dysplasia;IND)、神经节细胞减少症(Hypoganglionosis)、神经节细胞未成熟症(Immaturity of ganglion cells)等。1994年Holschneider和Meier-Ruge将HD和ADHD两者统称为肠神经元异常(Neuronal intestinal malformations;NIM),并进行了详细的病理分类。在ADHD中以IND最为常见,其病理特点主要有以下4项:①粘膜下和肌间神经丛增生,形成巨大神经节(giant ganglia),粘膜下丛节细胞数目≥7个(正常为3~5个),肌间丛面积≥正常的3倍,常伴有神经元不成熟现象;②粘膜固有层和环肌副交感神经纤维乙酰胆碱酯酶(Acetylcholinesterase,Ache)活性增高:③粘膜固有层和粘膜肌层分散的平滑肌纤维之间有孤立的神经节细胞;④肌间神经丛交感神经发育不全或无发育。
     混合型IND的临床表现几乎与HD一样,单纯型IND的发病主要集中在年幼儿童,而在新生儿期较少表现。临床表现为渐进性的便秘,腹胀或有顽固性/发作性的吸收异常。部分患儿经保守治疗或随年龄增长能逐渐好转,部分患儿则呈进行性加重,需手术治疗。
     针对HD的辅助检查中,包括钡剂灌肠、直肠肛管测压,IND常缺乏特征性的改变而无法准确应用。目前国内对1ND的认识仍不足,一般根据临床表现或结合钡剂灌肠检查就予诊断并进一步手术治疗,随着经肛门手术的广泛开展和手术年龄提前至新生儿和婴幼儿期,单凭临床表现和钡灌肠可误将部分单纯型IND诊断为HD而手术治疗。
     虽然IND作为一种明确的病理改变已经得到广泛认同,对IND是否作为一种独立的疾病一直存在争议,分歧的焦点在于IND是一种原发性疾病还是继发性改变,两者都有相应的证据支持。IND的诊断标准仍存在争议,Meier-Ruge提出了改良的粘膜活检来诊断IND,但行多处肠壁的全层病检,HE染色或Ache染色,对神经元发育不良较难判断的,加行神经元相关免疫组化检测的方法较为公认。
     对IND的手术指征和切除标准仍不确定,大部分的单纯型IND可以根据病情适当的保守治疗(如改变饮食结构,应用缓泻剂等)和临床观察,随生长发育部分患儿不手术也可以自行好转甚至自愈,在一定条件下(如肠造瘘),IND病变可以自行再发育为成熟的神经元细胞而恢复功能。但对严重腹胀,小肠结肠炎患儿仍需及时手术治疗,局限型IND,可以将病变肠段全部切除,以达到较好的手术效果;而对广泛性病变,仍缺乏切除范围的明确标准,可先行回肠造瘘术,营养情况改善后再行进一步根治术,有报道切除小部分病变结肠到全部结肠(甚至部分小肠)。
     临床常见部分患儿巨结肠术后恢复良好,而部分患儿术后一段时间内仍有反复EC,甚至需要再次肠造瘘。术后EC是否与伴发IND病变有关?本课题拟通过对IND与HD的临床和病理资料的统计,研究术后EC和神经元形态、分布的关系。虽然对IND的光镜下病理特点有较多报道,但发育不良神经元的超微结构特点仍缺乏研究,这也是本课题的研究目的。同时,并通过对IND的NSE、Cathepsin-D和S-100的免疫组化染色,分析对IND的镜下免疫组化特点和有效的诊断手段。
     材料和方法
     1.IND的神经元分布与EC特点
     (1)研究对象及临床资料收集:收集2001年~2004年本院诊断的巨结肠手术治疗的患儿,共347例。进行随访(≥6月),评价患儿术后排便,腹胀情况,术后EC发生情况(以随访时间≥6月,发生≥2次EC为反复EC);是否有再次手术。
     (2)组织切片阅片、分类:根据患儿的病理号,调取所有患儿病理切片,每个病理号一般有4~6张切片,分别标记为A、B、C、D、E、F等,对应取材部位从大体标本痉挛段—移行段—扩张段—切缘,其中首尾编号分别对应痉挛段和切缘。重新阅片后,参照Holschneider提出的有关神经元异常的病理诊断标准进行分类。
     2.免疫组化染色
     根据组织切片结果,调取20例IND病变组织蜡块,同时取5例HD患儿神经元正常肠段组织和2例美克尔憩室肠切除边缘组织,分别进行NSE、Cathepsin-D和S-100免疫组化检测。
     3.透射电镜检查
     (1)研究对象及取材:巨结肠术中切除肠段立即取材,切取小块肠壁组织,在2.5%戊二醛液体覆盖下,进一步切割组织尽可能小,估计保留肌间组织和两侧部分肌层。样本置2.5%戊二醛4℃保存,根据病理结果,将所需样本分类:神经元正常肠段和IND病变肠段。
     (2)戊二醛—锇酸双重固定,脱水,浸透,包埋,固化,预切片定位,超薄切片,电镜观察、拍片、记录。
     4.数据处理
     统计所有HD、IND和HD/IND病变患儿临床资料,病理结果,采用x~2检验行统计学分析,P<0.05认为差异有统计学意义。
     结果
     1.IND的神经元分布与EC特点
     (1)临床随访结果:获有效随访(≥6月)324例。根据组织类型,对其中HD210例,IND38例,HD伴IND(HD/IND)45例共293例患儿作为本课题研究对象。术后反复EC共41例,再次手术8例。
     (2)病理观察结果:IND和HD/IND的异常神经元分布与典型HD不同,在扩张段和切缘都有较高比例的异常神经元分布(P<0.01)。
     (3)IND与EC关系:IND和IND/HD组的术后反复EC发生率高于典型HD组(P<0.01)。切缘IND病变组术后反复EC发生率明显高于切缘神经元正常组(P<0.01)。经肛门手术与经腹手术的术后反复EC发生率分别为18.1%和8.7%(P<0.05)。
     (4)再次手术与病理类型:有8例患儿术后因仍有反复腹胀、便秘或严重的EC再次行手术治疗,5例为切缘有IND(其中4例HD/IND,1例IND),有3例为HD第一次术后切缘仍无神经元细胞。
     2.IND的免疫组化特点
     NSE免疫组化结果:粘膜下神经丛和肌间神经丛均有显色,神经丛胶质细胞、神经元细胞和神经纤维均呈阳性反应。IND病变肠段粘膜下及肌间均有巨神经丛,丛内各成分细胞均呈阳性反应,神经丛内有大量大小不等细胞,为胶质细胞与发育不良神经元,其中可见部分细胞胞体较大。
     Cathepsin-D免疫组化结果:神经丛内仅神经元细胞胞浆呈阳性反应,神经纤维和胶质细胞均呈阴性反应。IND病变可见巨神经丛内有大量神经元细胞,形态较正常小,胞浆少,染色较深,细胞核较正常小,染色深,核仁有或不明显。
     S-100免疫组化结果:神经丛内神经纤维和胶质细胞呈阳性反应,神经元细胞反应呈阴性。IND病变可见巨神经丛内布满大小不一的缺损区,缺损区中央可见发育不良细胞核,神经纤维增生不明显。
     3.IND透射电镜下特点
     正常神经元细胞直径约20~30gm,细胞形态较不规则,胞浆丰富,胞浆内可见清晰的线粒体、光面内质网和粗面内质网,伴有大量的神经内分泌囊泡结构,囊泡内可见递质颗粒。细胞核直径约7~8μm,细胞核较为规则,核膜完整。核仁明显,核内染色质疏松,分布均匀。
     IND病变神经元细胞直径约10~15μm,细胞形态较为规则,胞浆较正常神经元明显减少,胞浆内可见清晰的线粒体、光面内质网和粗面内质网,但神经内分泌囊泡结构很少或没有。细胞核直径约4~5μm,圆或椭圆,核膜完整,往往局部有不规则突起,核仁有或没有,核染色质分布不均,有边聚现象。
     结论
     1.IND的病变神经元分布与肉眼病变肠段分布有不平衡性,术后EC发生率高,切缘仍有IND病变以及经肛门手术是术后反复EC的危险因素,IND的切除范围仍有不确定性。
     2.NSE、Cathepsin-D和S-100三种免疫组化具有互补性,可以分别显示IND的神经丛结构,神经丛内神经元结构数量,神经丛神经纤维增生情况,从而能够对IND进行准确的判断。
     3.电镜下,IND病变神经元结构与正常不同,胞浆内神经内分泌囊泡的减少或缺乏,伴有核染色质边聚现象。
Part Ⅰ The Study of the Polymorphisms of RET gene and PHOX2B gene on Hirschsprung's Disease
    Introduction
    Hirschsprung's disease (HD), or congenital aganglionosis, is a neurocristopathy characterized by the absence of ganglion cells in submucosal and myenteric plexuses along a variable length of the gastrointestinal tract. The incidence varies among different ethnic groups, with 1.5,2.1, and 2.8 per 10,000 live births in Caucasians, Africans, and Asians, respectively. HD appeared to be a multifactorial malformation, several genes involved in HD genetic aetiology including RET, GDNF, GFRα-1, EDNRB, EDN3, ECE-1, SOX10 and PHOX2B. The RET gene plays a crucial role in neural crest cell development in the bowel wall and has been identified as the most important one of HD associated genes.
    Linkage analyses of multiplex HD families revealed that the RET gene locus at 10q11.2 is the major gene locus for Hirschsprung's disease, however, RET mutations in codon region were detected in only 20% of sporadic and 50% of familial cases of HD, with low, sex dependent penetrance and lack of genotype-phenotype correlation. This support that the existence of more
    RET variants or other modified genes in HD.
    To date, several RET polymorphisms were found associated with the HD in Caucasians, but no study of RET promoter has been published on the genetics of HD in the Chinese mainland population and no study of functional analysis of RET promoter's haplotypes polymorphism.
    PHOX2B is a transcription factor involved in the development of the noradrenergic nervous system, so it may associated with malformations of neural-crest origin such CCHS and HD. Only one study showed that the SNP of PHOX2B 1364 A>G( intron 2) was associated with increased risk of HD but no more studies about the relationship between PHOX2B and HD.
    Materials and Methods
    Patients and controls
    This study consisted of 123 HD patients of Zhejiang Han ethnic Chinese. All patients were histologically confirmed with the criteria of the fourth International Symposium on Hirschsprung's disease and related neurocristopathies. Matched control were unselected, unrelated of Zhejiang Han ethnic Chinese without HD or other congenital malformation.
    Polymorphism Analysis
    Genomic DNA was extracted from blood samples, genotypes were analyzed using PCR and direct sequencing,
    Immunohistochemical stainning
    According to the genotypes of RET promoter, forty tissue of normal ganglion segment of HD cases embedded in paraffin were cut with 5-μm-thick sections and immunohistochemical stained with C-Ret. The number of neuronal cells were examined.
    Statistical Analysis
    Chi square tests were performed to determine whether each SNP was in Hardy-Weinberg equilibrium within each group.
    The associations between SNPs and risk of HD were estimated by ORs and their 95% CIs, tested by x~2 tests. Data were considered significant at a level of P<0.05.
    Mann-Whitney Test was used for analysis the data of immunohistochemical staining.
    Haplotypes and their frequencies were estimated by means of the PHASE software.
    Results
    Association between genotypes and the risk of HD
    Increased risk of HD was observed in homozygous genotypes of the RET allele -5AA, -1CC, cl35AA or c2307GG when compared with the other genotypes(P<0.05). No increased risk of HD was found in PHOX2B 1364A>G.
    Association between frequency of allele and the risk of HD
    Increased risk of HD was observed in allele of RET -5A, -1C, cl35A, c2307G when compared with the other allele(P<0.05). In PHOX2B allele 1364A>G, no increased risk of HD was found.
    Association between frequency of allele and the types of HD.
    No associated risk was found between frequency of allele and the types of HD.
    Association between haplotypes frequencies and the risk of HD
    The haplotype -5A/-1C of RET promoter was the most frequently one in HD (82.5%). The difference in promoter haplotype frequencies was highly significant between the HD and controls(P<0.001). The haplotype ACAG of four RET SNPs account for 75.2% of the HD, and the difference between the two distribution was highly significant(P<0.001).
    Frequency of allele in different ethnic people
    The frequencies of HD-associated allele of RET -5A, c135A, c2307G in Chinese was higher than in the Caucasians or Africans significantly(.P<0.05).
    Functional analysis of RET promoter SNPs
    The decreased express of RET was observed in promoter phenotype -5AA/-1CC or in homozygous of haplotype -5A/-1C than in others(P<0.05).
    Conclusions
    The RET SNPs -5G>A, -1A>C, c135G>A, c2307T>G is associated with HD and the haplotype ACAG is the core one in Zhejiang Han ethnic Chinese. It is no relationships
    between frequency of allele and the types of HD.
    The frequencies allele of RET -5A, cl35A, c2307G in controls is higher than in Caucasians or Africans.
    The different RET promoter haplotypes or genotypes associated with express of RET
    It is no relationships between SNPs PHOX2B1364A>G and HD in Zhejiang Han ethnic Chinese.
    
    
    
    
    
    
    Part Ⅱ The Study of Pathological and Enterocolitis Features of Intestinal Neuronal Dysplasia
    Introduction
    In past few years, a group of disease named Allied Disorders of Hirschsprung's Disease (ADHD) were found, which show the clinical features similar to Hirschsprung's disease (HD). ADHD consist of Intestinal Neuronal Dysplasia (IND), Hypoganglionosis and Immaturity of ganglion cells. IND is the most frequently kind of all ADHD. The pathological features include presence of giant ganglia of the submucosal plexuses and myenteric plexuses, giant ganglia containing more than seven nerve cells, increase of Ache activity in nerve fibres of the lamina propria, ectopic ganglion cells in the colonic circular muscle and lamina propria, deficiency of sympathetic innervation in the muscle. Depending on the length of the neuronal dysplasia intestine, IND B may have a localized or disseminated form, it may occur in an isolated pure form or in combination with HD.
    IND as a cause for severe chronic constipation remains controversial. The congenital origin of IND B is supposed; nevertheless, IND were found secondary to intestinal obstruction or
    inflammatory disease. The precise etiology remains unknown, and, to date, no specific diagnostic test exists other than morphology. The criteria for diagnosis is still uncertain, the most approbatory technique is laparoscopic full-thickness intestinal biopsy or resected surgical specimens with HE stain or Ache stain, additional immunohistochemical staining is used to identify the dysplasia nerve cells.
    IND has no unified concept of treatment. There is an opinion that majority of patients with IND can be treated successfully with conservative treatment such as diet, laxatives and prokinetic drugs, however, in some severe cases a transient enterostomy or a segmental resection is unavoidable.
    The postoperative bowel function is well in most of megacolon, but part of them is complicated with recurrent postoperative enterocolitis (EC). But now there are still few studies about the relationship between morphological findings and postoperative EC. The features of IND under optic microscopy is well known, but there is still no picture of dysplasia neurons under electron microscopy.
    Materials and Methods
    Clinical features of IND
    The data of clinical features of 293 cases with HD, IND and HD/IND were collect. The postoperative bowel function were followed. The histopathologic features of all cases were rechecked according to Holschneider's criteria.
    Immunohistochemical stainning
    Twenty cases of IND tissue embedded in paraffin and 7 with normal neurons were cut with 5-μm-thick sections and immunohistochemical stained with NSE、Cathepsin-D and S-100. The morphology of plexuses, neurons and neuroglia cells were examined.
    Transmission electron microscopy examining
    Fresh tissue of IND and normal colon were shaped and followed a series of process. The morphological of dysplasia and normal neurons were examined by TEM.
    Statistical analysis.
    All data were analyzed by x~2 test. Data were considered significant at a level of P<0.05.
    Results
    Neurons distribution and EC features of IND
    In the distension segment of colon, the frequencies of dysganglion is 11.9%, 75.6% and 81.6% in HD, HD/IND and IND respectively (P<0.01).
    Incidences of EC in cases with the residual IND margins and with the normal margins were 38.2% and 8.7% respectively (P<0.01).
    Eight cases underwent another procedure because of severe persistent constipation or EC after operation, including 5 cases with IND of the proximal segment (4 HD/IND, 1 IND), 3 cases with the proximal segment aganglion.
    Histopathologic features of IND with immunohistochemical staining
    With immunohistochemical stained with NSE, the whole plexuses are positive. Giant ganglia with a amount of cells in different size (dysplasia neurons and neuroglia cells) were showed in IND sections.
    With immunohistochemical stained with Cathepsin-D, only the cytoplasm of neurons is positive. In IND sections, the picture of dysplasia neurons can be distinguished from the normal easily with a smaller cell and cytoblast diameter, a distinct increase of number, less and stain thickened cytoplasm, nucleolus exit or not.
    With immunohistochemical stained with S-100, the nerve fibres and neuroglia cells are positive. In IND sections, we can see the giant ganglia present with a number of stain-deficiency area in different size.
    Morphological features of IND under TEM
    In normal neurons, the membrane of cells and nucleus is intact, the cell organs such as mitochondria and endoplasmic reticulum and ribosome are clear, the nucleolus are distinct, the chromatin is loosen, the cytoplasm is filled with neuroendocrine vesicle. In dysplasia neurons, whereas, neuroendocrine vesicle in cytoplasm is deficient, chromatin is collected near the nuclear
    membrane, cell shape shrunk, smaller cytoblast and less cytoplasm.
    Conclusions
    Neurons distribution of IND is inconsistent with macropathology. Recurrent postoperative EC is more likely occur in patients with IND, especially in margins with residual IND. However, the extension of excision about IND is uncertain and need to be further studied.
    IND can be diagnosed easily with immunohistochemical stained with NSE、 Cathepsin-D and S-100 showing different part of plexuses.
    Dysplasia neurons is different from the normal. Neuroendocrine vesicle in cytoplasm is deficient, chromatin is collected near the nuclear membrane.
引文
[1] Torfs C. Epidemiological study of Hirschsprung disease in a multiracial California population. The Third International Meeting: Hirschsprung disease and related neurocristopathies. 1998
    
    [2] Badner JA, Sieber WK, Garver KL, Chakravarti A. A genetic study of Hirschsprung disease. Am J Hum Genet 1990,46:568-580.
    [3] Iwashita T, Kruger GM, Pardal R, Kiel MJ, Morrison SJ. Hirschsprung disease is linked to defects in neural crest stem cell function. Science, 2003, 301:972-976.
    [4] Martucciello G, Ceccherini I, Lerone M, Jasonni V. Pathogenesis of Hirschsprung's disease. J Pediatr Surg, 2000,35:1017-1025.
    [5] Eketjall S, Ibanez CF. Functional characterization of mutations in the GDNF gene of patients with Hirschsprung disease. Hum Mol Genet, 2002, 11:325-329.
    [6] Borghini S, Bocciardi R, Bonardi G, Matera I, Santamaria G, Ravazzolo R, Ceccherini I. Hirschsprung associated GDNF mutations do not prevent RET activation. Eur J Hum Genet, 2002,10:183-187.
    [7] Carrasquillo MM, McCallion AS, Puffenberger EG, Kashuk CS, Nouri N, Chakravarti A. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat Genet, 2002,32:237-244.
    [8] Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell, 1985,42:581-588.
    [9] Ishizaka Y, Itoh F, Tahira T, Ikeda I, Sugimura T, Tucker J, Fertitta A, Carrano AV, Nagao M. Human ret proto-oncogene mapped to chromosome 10q11.2. Oncogene, 1989,4:1519-1521.
    [10] Takahashi M, Cooper GM. ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol Cell Biol, 1987,7:1378-1385.
    
    [11] Airaksinen MS, Titievsky A, Saarma M. GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci, 1999, 13:313-325.
    
    
    
    [12] Baloh RH, Enomoto H, Johnson EM Jr, Milbrandt J. The GDNF family Hgands and receptors-implications for neural development. Curr Opin Neurobiol, 2000, 10:103-110.
    
    [13] Mulligan LM, Marsh DJ, Robinson BG, Schuffenecker I, Zedenius J, Lips CJ, Gagel RF, Takai SI, Noll WW, Fink M. Genotype-phenotype correlation in multiple endocrine neoplasia type 2: report of the International RET Mutation Consortium. J Intern Med, 1995,238:343-346.
    
    [14] Komminoth P, Muletta-Feurer S, Saremaslani P, Kunz EK, Matias-Guiu X, Hiort O, Schroder S, Seelentag WK, Roth J, Heitz PU. Molecular diagnosis of mutliple endocrine neoplasia (MEN) in paraffin-embedded specimens. Endocr Pathol, 1995,6:267-278.
    
    [15] Landsvater RM, Jansen RPM, Hofstra RMW, Buys CHCM, Lips CJM, van Amstel HKP. Mutation analysis of the RET proto-oncogenein Dutch families with MEN 2A, MEN 2B and FMTC: two novel mu-tations and one de novo mutation for MEN 2A. Hum Genet, 1996,97:11-14.
    
    [16] Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, Fusco A, Vecchio G, Matoskova B, Kraus MH. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science, 1995,267:381-383.
    
    [17] Rossel M, Schuffenecker I, Schlumberger M, Bonnardel C, Modigliani E, Gardet P, Navarro J, Luo Y, Romeo G, Lenoir G Detection of a germline mutation at codon 918 of the RET proto-oncogene in French MEN 2B families. Hum Genet, 1995,95:403-406.
    
    [18] Takahashi M, Asai N, Iwashita T, Murakami H, Ito S. Mechanisms of development of multiple endocrine neoplasia type 2 and Hirschsprung's disease by ret mutations. Recent Results Cancer Res, 1998,154:229-36.
    
    [19] Lyonnet S, Bolino A, Pelet A, Abel L, Nihoul-Fekete C, Briard ML, Mok-Siu V, Kaariainen H, Martucciello G, Lerone M. A gene for Hirschsprung disease maps to the proximal long arm of chromosome 10. Nat Genet,1993,4:346-350.
    
    [20] Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature, 1994,367:380-383.
    [21] Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, Holder S, Nihoul-Fekete C, Ponder BA, Munnich A. Mutations of the RET proto-oncogene in Hirschsprung's disease. Nature, 1994, 367: 378-380.
    [22] Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, Pasini B, Bocciardi R, Lerone M, Kaariainen H. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature, 1994,367: 377-378.
    [23] Parisi MA, Kapur RP. Genetics of Hirschsprung disease. Curr Opin Pediatr, 2000, 12:610-617.
    
    [24] Attie T, Pelet A, Edery P, Eng C, Mulligan LM, Amiel J, Boutrand L, Beldjord C, Nihoul-Fekete C, Munnich A. Diversity of RET proto-oncogene mutations in familial and sporadic Hirschsprung disease. Hum Mol Genet, 1995,4: 1381-1386.
    [25] Gabriel SB, Salomon R, Pelet A, Angrist M, Amiel J, Fornage M, Attie-Bitach T, Olson JM, Hofstra R, Buys C, Steffann J, Munnich A, Lyonnet S, Chakravarti A. Segregation at three loci explains familial and population risk in Hirschsprung disease. Nat Genet, 2002,31:89-93.
    [26] Bolk S, Pelet A, Hofstra RM, Angrist M, Salomon R, Croaker D, Buys CH, Lyonnet S, Chakravarti A. A human model for multigenic inheritance: phenotypic expression in Hirschsprung disease requires both the RET gene and a new 9q31 locus.Proc Natl Acad Sci USA, 2000,97:268-273
    [27] Gabriel SB, Salomon R, Pelet A, Angrist M, Amiel J, Fornage M, Attie-Bitach T, Olson JM, Hofstra R, Buys C, Steffann J, Munnich A, Lyonnet S, Chakravarti A. Segregation at three loci explains familial and population risk in Hirschsprung disease. Nat Genet,2002, 31:89-93.
    [28] Carrasquillo MM, McCallion AS, Puffenberger EG, Kashuk CS, Nouri N, Chakravarti A. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat Genet, 2002, 32: 237-244.
    [29] Fitze G, Cramer J, Ziegler A, Schierz M, Schreiber M, Kuhliseh E, Roesner D, Schackert HK. Association between c135G/A genotype and RET proto-oncogene germline mutations and phenotype of Hirsehsprung's disease. Lancet,2002, 359: 1200-1205.
    [30] Fitze G, Appelt H, Konig IR, Gorgens H, Stein U, Walther W, Gossen M, Schreiber M, Ziegler A, Roesner D, Schackert HK. Functional haplotypes of the RET proto-oncogene promoter are associated with Hirschsprung disease (HSCR). Hum Mol Genet, 2003, 12: 3207-3214.
    [31] Gareia-Barcelo M, Ganster RW, Lui VC, Leon TY, So MT, Lau AM, Fu M, Sham MH, Knight J, Zannini MS, Sham PC, Tam PK. TTF-1 and RET promoter SNPs: regulation of RET transcription in Hirschsprung's disease. Hum Mol Genet, 2005, 14: 191-204.
    [32] Sancandi M, Griseri P, Pesce B, Patrone G, Puppo F, Lerone M, Martucciello G, Romeo G, Ravazzolo R, Devoto M, Ceccherini I. Single nucleotide polymorphic alleles in the 5' region of the RET proto-oncogene define a risk haplotype in Hirschsprung's disease, J Med Genet, 2003, 40: 714-718.
    [33] Borrego S, Saez ME, Ruiz A, Gimm O, Lopez-Aionso M, Antinolo G, Eng C. Specific polymorphisms in the RET proto-oncogene are over-represented in patients with Hirsehsprung disease and may represent loci modifying phenotypic expression, J Med Genet, 1999, 36: 771-774.
    [34] Fitze G, Schreiber M, Kuhlisch E, Schackert HK, Roesner D. Association of RET protooncogene codon 45 polymorphism with Hirschsprung's disease. Am J Hum Genet, 1999, 65: 1469-1473.
    [35] 王国斌,杜寒松,张颖,陶凯雄,牛彦锋,魏明发,汤绍涛.中国人汉族人群RET基因多态性与先天性巨结肠的遗传易感性研究.中华小儿外科学,2005,26:627-630.
    [36] Amiel J, Laudier B, Attie-Bitach T, Trang H, de Pontual L, Gener B, Troehet D, Etchevers H, Ray P, Simmoneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nature Genet, 2003,33: 459-460.
    [37] American Thoracic Society. Idiopathic congenital central hypoventilation syndrome: diagnosis and management. Am J Respir Crit Care Med, 1999, 160:368-373.
    [38] Croaker GD, Shi E, Simpson E, Cartmill T, Cass DT.Congenital central hypoventilation syndrome and Hirschsprung's disease. Arch Dis Child, 1998, 78:316-322.
    [39] Benailly HK, Lapierre JM, Laudier B, Amiel J, Attie T, De Blois MC, Vekemans M, Romana SP. PMX2B, a new candidate gene for Hirschsprung's disease. Clin. Genet, 2003, 64:204-209.
    [40] Sasaki A, Kanai M, Kijima K, Akaba K, Hashimoto M, Hasegawa H, Otaki S, Koizumi T, Kusuda S, Ogawa Y, Tuchiya K, Yamamoto W, Nakamura T, Hayasaka K. Molecular analysis of congenital central hypoventilation syndrome. Hum. Genet, 2003, 114: 22-26.
    [41] Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Silvestri JM, Curran ME, Marazita ML. Idiopathic congenital central hypoventilation syndrome: analysis of genes pertinent to early autonomic nervous system embryologic development and identification of mutations in PHOX2b. Am J Med Genet, 2003, 123A: 267-278.
    [42] Trochet D, Bourdeaut F, Janoueix-Lerosey I, Deville A, de PL, Schleiermacher G, Coze C, Philip N, Frebourg T, Munnich A, Lyonnet S, Delattre O, Amiel J. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet, 2004,74:761-764.
    [43] Mosse YP, Laudenslager M, Khazi D, Carlisle AJ, Winter CL, Rappaport E, Maris JM. Germline PHOX2B mutation in hereditary neuroblastoma. Am. J. Hum. Genet, 2004, 75: 727-730.
    [44] Perri P, Bachetti T, Longo L, Matera I, Serf M, Tonini GP. PHOX2B mutations and genetic predisposition to neuroblastoma. Oncogene, 2005,24:3050-3053.
    
    
    [45] Toyota T, Yoshitsugu K, Ebihara M, Yamada K, Ohba H, Fukasawa M, Minabe Y, Nakamura K, Sekine Y, Takei N, Suzuki K, Itokawa M, Meerabux JMA, Iwayama-Shigeno Y, Tomaru Y, Shimizu H, Hattori E, Mori N, Yoshikawa T. Association between schizophrenia with ocular misalignment and polyalanine length variation in PMX2B. Hum Molec Genet, 2004, 13: 551-561.
    [46] Dubreuil V, Hirsch M-R, Pattyn A, Brunet JF, Goridis C. The Phox2b transcription factor coordinately regulates neuronal cell cycle exit and identity. Development, 2000, 127: 5191-5201.
    [47] Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature, 1999, 399: 366-370.
    [48] Anderson RB, Stewart AL, Young HM. Phenotypes of neural-crest-derived cells in vagal and sacral pathways. Cell Tissue Res, 2006, 323: 11-25.
    [49] Garcia-Barcelo M, Sham MH, Lui VC, Chen BL, Ott J, Tam PK. Association study of PHOX2B as a candidate gene for Hirschsprung's disease. Gut, 2003, 52: 563-567.
    [50] Martucciello G, Pini Prato A, Puri P, Holschneider AM, Meier-Ruge W, Jasonni V, Tovar JA, Grosfeld JL. Controversies concerning diagnostic guidelines for anomalies of the enteric nervous system: a report from the fourth International Symposium on Hirschsprung's disease and related neurocristopathies, J Pediatr Surg, 2005, 40: 1527-1531
    [51] Martucciello G, Favre A, Takahashi M, Jasonni V. Immunohistochemical localization of RET protein in Hirschsprung's disease. J Pediatr Surg, 1995, 30(3): 433-436.
    [52] 张霞,王霞,梅盛平,董大翠,张艳.先天性巨结肠与巨结肠同源病的Ret蛋白免疫组织化学研究.中华儿科杂志,2005,43(12):911-915.
    [53] Watanabe Y, Ito T, Harada T, Takahashi M, Kobayashi S, Ozaki T, Nimura Y. Expression of ret proto-oncogene products in the hypoganglionic segment of the small intestine of congenital aganglionosis rats. J Pediatr Surg, 1995, 30(5): 641-645.
    [54] Ander ES. The new genomics: global views of biology. Science, 1996, 274: 536-539.
    [55] Pinnisi E. A closer look at SNPs suggests ditffculties. Science, 1998, 281: 1787-1789.
    [56] Nebert DW. Pharmacogenetics and pharmacogenomics: Why is this relevant to the clinical geneticist. Clin Genet, 1999, 56:247-58.
    [57] Cargill M, Altshuler D, Ireland J.Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genetics, 1999,22: 231-238.
    [58] Stumpf MP, Goldstein DB. Demography, recombination hotspot intensity, and the block structure of linkage disequilibrium. Curr. Biol, 2003, 13(1): 1-8.
    [59] Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G, Ueda H, Cordell HJ, Eaves IA, Dudbridge F, Twells RC, Payne F, Hughes W, Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E, Tuomilehto J, Gough SC, Clayton DG, Todd JA. Haplotype tagging for the identification of common disease genes. Nat. Genet, 2001, 29:233-237.
    [60] Olivier M. A haplotype map of the human genome. Physiol. Genomics, 2003, 13(l):3-9.
    [61] Griffin TJ, Smith LM. Single-nucleotide polymorphism analysis by MALDI-TOF mass spectrometry. Trends Biotechnol, 2000, 18(2):77-84.
    [62] Matyas G, Giunta C, Steinmann B, Hossle JP, Hellwig R. Quantification of single nucleotide polymorphisms: a novel method that combines primer extension assay and capillary electrophoresis. Hum. Mutat, 2002, 19(l):58-68.
    [63] Burzynski GM, Nolte IM, Osinga J, Ceccherini I, Twigt B, Maas S, Brooks A, Verheij J, Plaza Menacho I, Buys CH, Hofstra RM. Localizing a putative mutation as the major contributor to the development of sporadic Hirschsprung disease to the RET genomic sequence between the promoter region and exon 2. Eur J Hum Genet, 2004,12(8):604-612.
    [1] Holschneider AM, Meier-Ruge W, Ure BM. Hirschsprung's disease and allied disorders—a review. Eur J Pediatr Surg, 1994, 4: 260-266.
    [2] Meier-Ruge WA, Bruder E. Pathology of chronic constipation in pediatric and adult coloproctoiogy. Pathobiology, 2005, 72: 1-106.
    [3] 王夫.先天性巨结肠同源病.李正,王慧贞,吉士俊主编:“实用小儿外科学”827~830页,人民卫生出版社2001.
    [4] Schmittenbecher PP, Sacher P, Cholewa D, Haberlik A, Menardi G, Moczulski J, Rumlova E, Schuppert W, Ure B. Hirschsprung's disease and intestinal neuronal dysplasia—a frequent association with implications for the postoperative course. Pediatr Surg Int, 1999, 15: 553-558.
    [5] Meyrat BJ, Laurini RN. Plasticity of the enteric nervous system in patients with intestinal neuronal dysplasia associated with Hirschsprung's disease: a report of three patients. Pediatr Surg Int, 2003, 19: 715-720.
    [6] Petchasuwan C, Pintong J. Immunohistochemistry for intestinal ganglion cells and nerve fibers: aid in the diagnosis of Hirschsprung's disease. J Med Assoc Thai, 2000, 83: 1402-1409.
    [7] Martucciello G, Pini Prato A, Puri P, Holschneider AM, Meier-Ruge W, Jasonni V, Tovar JA, Grosfeld JL. Controversies concerning diagnostic guidelines for anomalies of the enteric nervous system: a report from the fourth International Symposium on Hirschsprung's disease and related neurocristopathies, J Pediatr Surg, 2005, 40: 1527-1531.
    [8] Moore SW, Rode H, Millar A J, Albertyn R, Cywes S. Familial aspects of Hirschsprung's disease. Eur J Pediatr Surg, 1991, 1: 97-101.
    [9] Kobayashi H, Mahomed A, Puri P. Intestinal neuronal dysplasia in twins. J Pediatr Gastroenterol Nutr, 1996, 22: 398-401.
    [10] Yamataka A, Hatano M, Kobayashi H, Wang K, Miyahara K, Sueyoshi N, Miyano T. Intestinal neuronal dysplasia-like pathology in Ncx/Hoxl lL.l gene-deficient mice. J Pediatr Surg, 2001, 36:1293-1296.
    [11] Puri P, Shinkai T. Pathogenesis of Hirschsprung's disease and its variants: recent progress. Semin Pediatr Surg, 2004, 13:18-24.
    [12] Jeng YM, Mao TL, Hsu WM, Huang SF, Hsu HC. Congenital interstitial cell of cajal hyperplasia with neuronal intestinal dysplasia. Am J Surg Pathol, 2000,24:1568-1572.
    [13] Newman CJ, Laurini RN, Lesbros Y, Reinberg O, Meyrat BJ. Interstitial cells of Cajal are normally distributed in both ganglionated and aganglionic bowel in Hirschsprung's disease. Pediatr Surg Int, 2003,19:662-668.
    [14] Demirbilek S, Ozardali HI, Aydm G Mast-cells distribution and colonic mucin composition in Hirschsprung's disease and intestinal neuronal dysplasia. Pediatr Surg Int, 2001,17:136-139.
    [15] Galvez Y, Skaba R, Vajtrova R, Frantlova A, Herget J. Evidence of secondary neuronal intestinal dysplasia in a rat model of chronic intestinal obstruction. J Invest Surg, 2004,17:31-39.
    [16] Kobayashi H, Yamataka A, Lane GJ, Miyano T. Inflammatory changes secondary to postoperative complications of Hirschsprung's disease as a cause of histopathologic changes typical of intestinal neuronal dysplasia. J Pediatr Surg, 2004, 39:152-156.
    [17] Munakata K, Fukuzawa M, Nemoto N. Histologic criteria for the diagnosis of allied diseases of Hirschsprung's disease in adults. Eur J Pediatr Surg, 2002, 12:186-191.
    [18] Schimpl G, Uray E, Ratschek M, Hollwarth ME. Constipation and intestinal neuronal dysplasia type B: a clinical follow-up study. J Pediatr Gastroenterol Nutr, 2004, 38:308-311.
    [19] Meier-Ruge WA, Ammann K, Bruder E, Holschneider AM, Scharli AF, Schmittenbecher PP, Stoss F. Updated results on intestinal neuronal dysplasia (IND B). Eur J Pediatr Surg, 2004,14:384-391.
    [20] Gillick J, Tazawa H, Puri P. Intestinal neuronal dysplasia: results of treatment in 33 patients. J Pediatr Surg, 2001, 36:777-779.
    [21 ] Gath R, Goessling A, Keller KM, Koletzko S, Coerdt W, Muntefering H, Wirth S, Hofstra RM, Mulligan L, Eng C, von Deimling A. Analysis of the RET, GDNF, EDN3, and EDNRB genes in patients with intestinal neuronal dysplasia and Hirschsprung disease. Gut, 2001,48:671-675.
    [22] Jin-Fa Tou, Min-Ju Li, Tao Guan, Ji-Cheng Li, Xiong-Kai Zhu, Zhi-Gang Feng. Mutation of RET proto-oncogene in hirschspring's disease and intestinal neuronal dysplasia. World J Gastroenterol, 2006,12:1136-1139.
    [23] Martucciello G, Torre M, Pini Prato A, Lerone M, Campus R, Leggio S, Jasonni V. Associated anomalies in intestinal neuronal dysplasia. J Pediatr Surg, 2002,37:219-223.
    [24] Koletzko S, Jesch I, Faus-Kebetaler T, Briner J, Meier-Ruge W, Muntefering H, Coerdt W, Wessel L, Keller KM, Nutzenadel W, Schmittenbecher P, Holschneider A, Sacher P. Rectal biopsy for diagnosis of intestinal neuronal dysplasia in children: a prospective multicentre study on interobserver variation and clinical outcome. Gut, 1999,44: 853-861.
    [25] Coerd W, Michel JS, Rippin G, Kletzki S, Gerein V, Muntefering H, Arnemann J. Quantitative morphometric analysis of submucous plexus in age-related control groups. Virchows Arch, 2004, 444:239-246.
    [26] Tatekawa Y, Kanehiro H, Kanokogi H, Nakajima Y, Nishijima E, Muraji T, Imai Y, Tsugawa C, Toyosaka A, Nakano H. The evaluation of meconium disease by distribution of cathepsin D in intestinal gangion cells. Pediatr Surg Int, 2000, 16: 53-55.
    [27] Schmittenbecher PP, Gluck M, Wiebecke B, Meier-Ruge W. Clinical long-term follow-up results in intestinal neuronal dysplasia (IND). Eur J Pediatr Surg, 2000, 10:17-22.
    [28] Schulten D, Holschneider AM, Meier-Ruge W. Proximal segment histology of resected bowel in Hirschsprung's disease predicts postoperative bowel function. Eur J Pediatr Surg, 2000, 10:378-381.
    [29] 29汤绍涛,刘春萍,阮庆兰,等.先天性巨结肠并发小肠结肠炎肠道免疫功能的变化.中华小儿外科杂志.1999,1:8-20.
    [30] 李龙,Lui V,Sham M H,等.Cdx1和Cdx2基因表达异常与先天性结肠性肠炎的关系.中华小儿外科杂志,2003,5:406-408.
    [31] 施诚仁.先天性巨结肠并发症小肠结肠炎病因学研究.临床外科杂志,2004,5:265-266.
    [32] 施诚仁,王俊,余世耀,张忠德,陈其民,吴晔明。外科治疗肠神经元异常疾病疗效观察。上海第二医科大学学报.2003,1:58-60.
    [33] Pena A. Intestinal neuronal dysplasia. Myth or reality literature review. Pediatr Surg Int, 1995, 10: 441.
    [34] Mazziotti MV, Langer JC. Laparoscopic full-thickness intestinal biopsies in children. J Pediatr Gastroenterol Nutr, 2001, 33: 54-57.
    [35] Costa M, Brookes SJ. The enteric nervous system. Am J of Gastroenterol, 1994, 89(8): 129-137.
    [36] Ueda N, Shah SV. Apoptosis. J Lab Clin Med. 1994, 124(2): 169-177.
    [1] Holschneider AM. Hirschsprung's Disease. Hippokrates Verlag, Stuttgart. 1982
    [2] Torfs C. Epidemiological study of Hirschsprung disease in a multiracial California population. The Third International Meeting: Hirschsprung disease and related neurocristopathies. 1998
    [3] Badner JA, Sieber WK, Garver KL, Chakravarti A. A genetic study of Hirschsprung disease. Am J Hum Genet 1990, 46: 568-580.
    [4] Martucciello G, Ceccherini I, Lerone M, Jasonni V. Pathogenesis of Hirschsprung's disease. J Pediatr Surg, 2000, 35: 1017-1025.
    [5] Eketjall S, Ibanez CF. Functional characterization of mutations in the GDNF gene of patients with Hirschsprung disease. Hum Mol Genet, 2002, 11: 325-329.
    [6] Borghini S, Bocciardi R, Bonardi G, Matera I, Santamaria G, Ravazzolo R, Ceccherini I. Hirschsprung associated GDNF mutations do not prevent RET activation. Eur J Hum Genet, 2002, 10: 183-187.
    [7] Carrasquillo MM, McCallion AS, Puffenberger EG, Kashuk CS, Nouri N, Chakravarti A. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat Genet, 2002,32:237-244.
    [8] Manie S, Santoro M, Fusco A, Billaud M. The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet, 2001,17:580-589.
    [9] Iwashita T, Kruger GM, Pardal R, Kiel MJ, Morrison SJ. Hirschsprung disease is linked to defects in neural crest stem cell function. Science, 2003, 301:972-976.
    [10] Angrist M, Kauffman E, Slaugenhaupt SA, Matise TC, Puffenberger EG, Washington SS, Lipson A, Cass DT, Reyna T, Weeks DE. A gene for Hirschsprung disease megacolon in the pericentromeric region of human chromosome 10. Nat Genet, 1993, 3:351-356.
    [11] Lyonnet S, Bolino A, Pelet A, Abel L, Nihoul-Fekete C, Briard ML, Mok-Siu V, Kaariainen H, Martucciello G, Lerone M. A gene for Hirschsprung disease maps to the proximal long arm of chromosome 10. Nat Genet,1993,4:346-350.
    [12] Costa M,Brookes SJ. The enteric nervous system. Am J of Gastroenterol . 1994,89(8):129-137.
    [13] Heuckeroth RO, Lampe PA, Johnson EM, Milbrandt J. Neurturin and GDNF promote proliferation and survival of enteric neuron and glial progenitors in vitro. Dev Biol, 1998,200:116-129.
    [14] Rothman TP, Chen J, Howard MJ, Costantini F, Schuchardt A, Pachnis V, Gershon MD. Increased expression of laminin-1 and collagen (IV) subunits in the aganglionic bowel of 1s/ls, but not c-ret -/- mice. Dev Biol ,1996,178:498-513.
    [15] Fujimoto T, Hata J, Yokoyama S, Mitomi T. A study of the extracellular matrix protein as the migration pathway of neural crest cells in the gut: analysis in human embryos with special reference to the pathogenesis of Hirschsprung's disease J Pediatr Surg, 1989,24:550-556.
    [16] Meijers JH, Tibboel D, van der Kamp AW, van Haperen-Heuts IC, Molenaar JC. A model for aganglionosis in the chick embryo. J Pediatr Surg, 1989,24:557-561.
    [17] Pomeranz HD, Gershon MD. Colonization of the avian hindgut by cells derived from the sacral neural crest. Dev Biol, 1990,137:378-394.
    [18] Purl P, Ohsbiro k, Wester T. Hirschsprung's disease: a search for etiology. Semin Pediatr Surg, 1998, 7: 140-147.
    [19] Bums AJ, Douarin NM. The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the enteric nervous system. Development, 1998, 125: 4335-4347.
    [20] Voas GC. Quantitative assessment of the stage of neuronal maturation in the developing human fetal gut—a new dimension in the pathogenesis of developmental anomalies of the myenteric plexus, J Pediatr Surg, 1989, 24: 920-925.
    [21] 刘贵麟,王留文,李力军,等.人胚胎消化道神经节细胞发育后研究.中华小儿外科杂与,1996,7:324-326.
    [22] Fekete E, Resch BA, Benedeczky I. Histochemical and ultrastruetural features of the developing enteric nervous system of the human foetal small intestine. Histol Histopathol, 1995, 10: 127-134.
    [23] Tomita R, Morita K, Tanjoh K, Munakata K. A role of peptidergic nerves in the internal anal sphincter of Hirschsprung's disease. Surg, 1999, 125: 60-66.
    [24] Kusafuka T, Puri P. Altered RET gene mRNA expression in Hirschsprung's disease. J Pediatr Surg, 1997, 32: 600-604.
    [25] Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell, 1985, 42: 581-588.
    [26] Takahashi M, Cooper GM. ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol Cell Biol, 1987, 7: 1378-1385.
    [27] Takahashi M. Structure and expression of the ret transforming gene. IARC Sci Publ,1988, 92: 189-197.
    [28] Ishizaka Y, Itoh F, Tahira T, Ikeda I, Sugimura T, Tucker J, Fertitta A, Carrano AV, Nagao M. Human ret proto-oncogene mapped to chromosome 10q11.2. Oncogene, 1989, 4: 1519-1521.
    [29] Ikeda I, Ishizaka Y, Tahira T, Suzuki T, Onda M, Sugimura T, Nagao M. Specific expression of the ret proto-oncogene in human neuroblastoma cell lines. Oncogene, 1990,5: 1291-1296.
    [30] Hahn M, Bishop J. Expression pattern of Drosophila ret suggests a common ancestral origin between the metamorphosis precursors in insect endoderm and the vertebrate enteric neurons. Proc Natl Acad Sci USA, 2001,98:1053-1058.
    [31] Graaff E, Srinivas S, Kilkenny C, D'Agati V, Mankoo BS, Costantini F, Pachnis V. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev, 2001,15:2433-2444.
    [32] Anders J, Kjar S, Ibanez CF. Molecular modeling of the extracellular domain of the RET receptor tyrosine kinase reveals multiple cadherin-like domains and a calcium-binding site J Biol Chem, 2001,276:35808-17.
    [33] van Weering DH, Moen TC, Braakman I, Baas PD, Bos JL. Expression of the receptor tyrosine kinase Ret on the plasma membrane is dependent on calcium. J Biol Chem, 1998, 273:12077-12081.
    [34] Takahashi M, Asai N, Iwashita T, Isomura T, Miyazaki K, Matsuyama M. Characterization of the ret proto-oncogene products expressed in mouse L cells. Oncogene, 1993,8:2925-2929.
    [35] Nozaki C, Asai N, Murakami H, Iwashita T, Iwata Y, Horibe K, Klein RD, Rosenthal A, Takahashi M. Calcium-dependent Ret activation by GDNF and neurturin. Oncogene, 1998, 16:293-299.
    [36] Airaksinen MS, Titievsky A, Saarma M. GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci, 1999,13:313-325.
    [37] Baloh RH, Enomoto H, Johnson EM Jr, Milbrandt J. The GDNF family Hgands and receptors-implications for neural development. Curr Opin Neurobiol, 2000, 10:103-110.
    [38] Jing S, Wen D, Yu Y, Hoist PL, Luo Y, Fang M, Tamir R, Antonio L, Hu Z, Cupples R, Louis JC, Hu S, Altrock BW, Fox GM. GDNF-induced activation of the ret protein tyrosine kinase mediated by GDNFR-alpha, a novel receptor for GDNF. Cell, 1996,85:1113-1124.
    [39] Liu X, Vega QC , Decker RA, Pandey A, Worby CA, Dixon JE. Oncogenic RET receptors display different autophosphorylation sites and substrate binding specificities. J Biol Chem, 1996,271:5309-5312.
    
    [40] Jhiang SM. The RET proto-oncogene in human cancers. Oncogene, 2000, 19:5590-5597.
    
    
    [41 ] Hansford JR, Mulligan LM. Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis. J Med Genet, 2000,37:817-827.
    [42] Van Weering DH, Bos JL. Signal transduction by the receptor tyrosine kinase Ret. Recent Results Cancer Res, 1998,154:271 -281.
    [43] Melillo RM, Santoro M, Ong SH, Billaud M, Fusco A, Hadari YR, Schlessinger J, Lax I. Docking protein FRS2 links the protein tyrosine kinase RET and its oncogenic forms with the mitogen-activated protein kinase signaling cascade. Mol Cell Biol, 2001, 21:4177-4187.
    [44] Melillo RM, Carlomagno F, De Vita G, Formisano P, Vecchio G, Fusco A, Billaud M, Santoro M. The insulin receptor substrate (IRS)-1 recruits phosphatidylinositol 3-kinase to Ret: evidence for a competition between Shc and IRS-1 for the binding to Ret. Oncogene, 2001,20:209-218.
    [45] Pachnis V, Mankoo B, Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development, 1993, 119:1005-1017.
    [46] Attie-Bitach T, Abitbol M, Gerard M, Delezoide AL, Auge J, Pelet A, Amiel J, Pachnis V, Munnich A, Lyonnet S, Vekemans M. Expression of the RET proto-oncogene in human embryos. Am JMed Genet, 1998, 80:481-486.
    [47] Taraviras S, Pachnis V. Development of the mammalian enteric nervous system. Curr Opin Genet Dev. 1999,9:321-327.
    [48] Taraviras S, Marcos-Gutierrez CV, Durbec P, Jani H, Grigoriou M, Sukumaran M, Wang LC, Hynes M, Raisman G, Pachnis V. Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development, 1999, 126:2785-2797.
    [49] Chalazonitis A, Rothman TP, Chen J, Gershon MD. Age-dependent differences in the effects of GDNF and NT-3 on the development of neurons and glia from neural crest-derived precursors immunoselected from the fetal rat gut: expression of GFRalpha-1 in vitro and in vivo. Dev Biol, 1998,204: 385-406.
    [50] Gardner E, Papi L, Easton DF, Cummings T, Jackson CE, Kaplan M, Love DR, Mole SE, Moore JK, Mulligan LM. Genetic linkage studies map the multiple endocrine neoplasia type 2 loci to a small interval on chromosome 10q11.2. Hum Mol Genet, 1993, 2:241-246.
    [51] Mole SE, Mulligan LM, Healey CS, Ponder BAJ, Tunnacliffe A. Localisation of the gene for multiple endocrine neoplasia type 2A to a 480 kb region in chromosome band 10q11.2. Hum Mol Genet, 1993,2:247-252.
    [52] Mulligan LM, Marsh DJ, Robinson BG, Schuffenecker I, Zedenius J, Lips CJ, Gagel RF, Takai SI, Noll WW, Fink M. Genotype-phenotype correlation in multiple endocrine neoplasia type 2: report of the International RET Mutation Consortium. J Intern Med, 1995,238:343-346.
    [53] Mulligan LM, Eng C, Healey CS, Clayton D, Kwok JB, Gardner E, Ponder MA, Frilling A, Jackson CE, Lehnert H. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat Genet, 1994,6:70-74.
    [54] Schuffenecker I, Billaud M, Calender A, Chambe B, Ginet N, Calmettes C, Modigliani E, Lenoir GM. RET proto-oncogene mutations in French MEN 2A and FMTC families. Hum Mol Genet, 1994,3:1939-1943.
    [55] Komminoth P, Muletta-Feurer S, Saremaslani P, Kunz EK, Matias-Guiu X, Hiort O, Schroder S, Seelentag WK, Roth J, Heitz PU. Molecular diagnosis of mutliple endocrine neoplasia (MEN) in paraffin-embedded specimens. Endocr Pathol, 1995,6:267-278.
    [56] Landsvater RM, Jansen RPM, Hofstra RMW, Buys CHCM, Lips CJM, van Amstel HKP. Mutation analysis of the RET proto-oncogenein Dutch families with MEN 2A, MEN 2B and FMTC: two novel mu-tations and one de novo mutation for MEN 2A. Hum Genet, 1996,97:11-14.
    [57] Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, Fusco A, Vecchio G, Matoskova B, Kraus MH. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science, 1995,267:381-383.
    [58] Asai N, Iwashita T, Matsuyama M, Takahashi M. Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol, 1995,15:1613-1619.
    [59] Borrello MG, Smith DP, Pasini B, Bongarzone I, Greco A, Lorenzo MJ, Arighi E, Miranda C, Eng C, Alberti L. RET activation by germline MEN2A and MEN2B mutations. Oncogene, 1995,11:2419-2427.
    [60] Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, Pasini B, Hoppener JW, van Amstel HK, Romeo G. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature, 1994,367:375-376.
    [61] Eng C, Smith DP, Mulligan LM, Nagai MA, Healey CS, Ponder MA, Gardner E, Scheumann GF, Jackson CE, Tunnacliffe A. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum Mol Genet ,1994,3:237-241.
    [62] Carlson KM, Dou S, Chi D, Scavarda N, Toshima K, Jackson CE, Wells SA Jr, Goodfellow PJ, Donis-Keller H. Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci USA, 1994,91:1579-1583.
    [63] Rossel M, Schuffenecker I, Schlumberger M, Bonnardel C, Modigliani E, Gardet P, Navarro J, Luo Y, Romeo G, Lenoir G Detection of a germline mutation at codon 918 of the RET proto-oncogene in French MEN 2B families. Hum Genet, 1995,95:403-406.
    [64] Takahashi M, Asai N, Iwashita T, Murakami H, Ito S. Mechanisms of development of multiple endocrine neoplasia type 2 and Hirschsprung's disease by ret mutations. Recent Results Cancer Res, 1998,154:229-36.
    
    [65] Eng C, Smith DP, Mulligan LM, Healey CS, Zvelebil MJ, Stonehouse TJ, Ponder MA, Jackson CE, Waterfield MD, Ponder BA. A novel point mutation in the tyrosine kinase domain of the RET proto-oncogene in sporadic medullary thyroid carcinoma and in a family with FMTC. Oncogene ,1995,10:509-513.
    [66] Bolino A, Schuffenecker I, Luo Y, Seri M, Silengo M, Tocco T, Chabrier G, Houdent C, Murat A, Schlumberger M. RET mutations in exons 13 and 14 of FMTC patients. Oncogene, 1995,10:2415-2419.
    [67] Lyonnet S, Bolino A, Pelet A, Abel L, Nihoul-Fekete C, Briard ML, Mok-Siu V, Kaariainen H, Martucciello G, Lerone M. A gene for Hirschsprung disease maps to the proximal long arm of chromosome 10. Nat Genet,1993,4:346-350.
    [68] Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature, 1994, 367:380-383.
    [69] Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, Holder S, Nihoul-Fekete C, Ponder BA, Munnich A. Mutations of the RET proto-oncogene in Hirschsprung's disease. Nature, 1994, 367: 378-380.
    [70] Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, Pasini B, Bocciardi R, Lerone M, Kaariainen H. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature, 1994, 367: 377-378.
    [71] Parisi MA, Kapur RP. Genetics of Hirschsprung disease. Curr Opin Pediatr, 2000, 12:610-617.
    [72] Attie T, Pelet A, Edery P, Eng C, Mulligan LM, Amiel J, Boutrand L, Beldjord C, Nihoul-Fekete C, Munnich A. Diversity of RET proto-oncogene mutations in familial and sporadic Hirschsprung disease. Hum Mol Genet, 1995, 4: 1381-1386.
    [73] Iwashita T, Kurokawa K, Qiao S, Murakami H, Asai N, Kawai K, Hashimoto M, Watanabe T, Ichihara M, Takahashi M. Functional analysis of RET with Hirschsprung mutations affecting its kinase domain. Gastroenterology, 2001,121:124-133.
    [74] Pelet A, Geneste O, Edery P, Pasini A, Chappuis S, Atti T, Munnich A, Lenoir G, Lyonnet S, Billaud M. Various mechanisms cause RET-mediated signaling defects in Hirschsprung's disease. J Clin Invest , 1998,101:1415-23.
    [75] Pelet A, Geneste O, Edery P, Pasini A, Chappuis S, Atti T, Munnich A, Lenoir G, Lyonnet S, Billaud M. Various mechanisms cause RET-mediated signaling defects in Hirschsprung's disease. J Clin Invest, 1998,101:1415-1423.
    [76] Carlomagno F, De Vita G, Berlingieri MT, de Franciscis V, Melillo RM, Colantuoni V, Kraus MH, Di Fiore PP, Fusco A, Santoro M. Molecular heterogeneity of RET loss of function in Hirschsprung's disease. EMBO J, 1996,15:2717-2725.
    [77] Mulligan LM, Eng C, Attie T, Lyonnet S, Marsh DJ, Hyland VJ, Robinson BG, Frilling A, Verellen-Dumoulin C, Safar A, et al. Diverse phenotypes associated with exon 10 mutations of the RET proto-oncogene. Hum Mol Genet, 1994,3:2163-7.
    [78] Takahashi M, Iwashita T, Santoro M, Lyonnet S, Lenoir GM, Billaud M. Co-segregation of MEN2 and Hirschsprung's disease: the same mutation of RET with both gain and loss-of-function? Hum Mutat, 1999, 13:331-6.
    [79] Lorenzo MJ, Gish GD, Houghton C, Stonehouse TJ, Pawson T, Ponder BA, Smith DP. RET alternate splicing influences the interaction of activated RET with the SH2 and PTB domains of Shc, and the SH2 domain of Grb2. Oncogene ,1997, 14:763-771.
    
    [80] Hayashi Y, Iwashita T, Murakamai H, Kato Y, Kawai K, Kurokawa K, Tohnai I, Ueda M, Takahashi M. Activation of BMK1 via tyrosine 1062 in RET by GDNF and MEN2A mutation. Biochem Biophys Res Commun, 2001,281:682-689.
    [81] Geneste O, Bidaud C, De Vita G, Hofstra RM, Tartare-Deckert S, Buys CH, Lenoir GM, Santoro M, Billaud M. Two distinct mutations of the RET receptor causing Hirschsprung's disease impair the binding of signalling effectors to a multifunctional docking site. Hum Mol Genet, 1999,8:1989-1999.
    [82] Bordeaux MC, Forcet C, Granger' L, Corset V, Bidaud C, Billaud M, Bredesen DE, Edery P, Mehlen P. The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J, 2000, 19:4056-4063.
    
    [83] Bolk S, Pelet A, Hofstra RM, Angrist M, Salomon R, Croaker D, Buys CH, Lyonnet S, Chakravarti A. A human model for multigenic inheritance: phenotypic expression in Hirschsprung disease requires both the RET gene and a new 9q31 locus.Proc Natl Acad Sci U S A, 2000,97:268-273.
    
    [84] Gabriel SB, Salomon R, Pelet A, Angrist M, Amiel J, Fornage M, Attie-Bitach T, Olson JM, Hofstra R, Buys C, Steffann J, Munnich A, Lyonnet S, Chakravarti A. Segregation at three loci explains familial and population risk in Hirschsprung disease. Nat Genet,2002, 31:89-93.
    
    
    [85] Carrasquillo MM, McCallion AS, Puffenberger EG, Kashuk CS, Nouri N, Chakravarti A. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease.Nat Genet ,2002,32:237-244.
    
    [86] Fitze G, Cramer J, Ziegler A, Schierz M, Schreiber M, Kuhlisch E, Roesner D, Schackert HK. Association between cl35G/A genotype and RET proto-oncogene germline mutations and phenotype of Hirschsprung's disease. Lancet,2002,359:1200-1205.
    
    [87] Fitze G, Appelt H, Konig IR, Gorgens H, Stein U, Walther W, Gossen M, Schreiber M, Ziegler A, Roesner D, Schackert HK. Functional haplotypes of the RET proto-oncogene promoter are associated with Hirschsprung disease (HSCR). Hum Mol Genet, 2003,12:3207-3214.
    
    [88] Garcia-Barcelo M, Ganster RW, Lui VC, Leon TY, So MT, Lau AM, Fu M, Sham MH, Knight J, Zannini MS, Sham PC, Tarn PK.TTF-1 and RET promoter SNPs: regulation of RET transcription in Hirschsprung's disease. Hum Mol Genet, 2005,14:191-204.
    
    [89] Sancandi M, Griseri P, Pesce B, Patrone G, Puppo F, Lerone M, Martucciello G, Romeo G, Ravazzolo R, Devoto M, Ceccherini I. Single nucleotide polymorphic alleles in the 5' region of the RET proto-oncogene define a risk haplotype in Hirschsprung's disease. J Med Genet, 2003,40:714-718.
    
    [90] 90 Gabriel SB, Salomon R, Pelet A, Angrist M, Amiel J, Fornage M, Attie-Bitach T, Olson JM, Hofstra R, Buys C, Steffann J, Munnich A, Lyonnet S, Chakravarti A. Segregation at three loci explains familial and population risk in Hirschsprung disease. Nat Genet, 2002, 31: 89-93.
    [91] Borrego S, Wright FA, Fernandez RM, Williams N, Lopez-Alonso M, Davuluri R, Antinolo G, Eng C. A founding locus within the RET proto-oncogene may account for a large proportion of apparently sporadic Hirschsprung disease and a subset of cases of sporadic medullary thyroid carcinoma. Am J Hum Genet, 2003, 72: 88-100.
    [92] Borrego S, Saez ME, Ruiz A, Gimm O, Lopez-Alonso M, Antinolo G, Eng C. Specific polymorphisms in the RET proto-oncogene are over-represented in patients with Hirschsprung disease and may represent loci modifying phenotypic expression. J Med Genet, 1999, 36: 771-774.
    [93] Fitze G, Schreiber M, Kuhlisch E, Schackert HK, Roesner D. Association of PET protooncogene codon 45 polymorphism with Hirschsprung's disease. Am J Hum Genet, 1999, 65: 1469-1473.
    [94] Borrego S, Ruiz A, Saez ME, Gimm O, Gao X, Lopez-Alonso M, Hernandez A, Wright FA, Antinolo G, Eng C. PET genotypes comprising specific haplotypes of polymorphic variants predispose to isolated Hirschsprung disease. J Med Genet 2000; 37: 572-578.
    [95] Fitze G, Cramer J, Serra A, Schreiber M, Roesner D, Schackert HK. Within-gene interaction between c.135 G/A genotypes and PET proto-oncogene germline mutations in HSCR families. Eur J Pediatr Surg, 2003, 13: 152-157.
    [96] 王国斌,杜寒松,张颖,陶凯雄,牛彦锋,魏明发,汤绍涛.中国人汉族人群RET基因多态性与先天性巨结肠的遗传易感性研究.中华小儿外科学,2005,26:627-630.
    [97] Emison ES, McCallion AS, Kashuk CS, Bush RT, Grice E, Lin S, Portnoy ME, Cutler DJ, Green ED, Chakravarti A. A common sex-dependent mutation in a PET enhancer underlies Hirschsprung disease risk. Nature, 2005, 434: 857-863.
    [1] Holschneider AM. Hirschsprung's Disease. Hippokrates Verlag, Stuttgart. 1982.
    [2] Torfs C. Epidemiological study of Hirschsprung disease in a multiracial California population. The Third International Meeting: Hirschsprung disease and related neurocristopathies. 1998
    [3] Holschneider AM, Meier-Ruge W, Ure BM. Hirschsprung's disease and allied disorders—a review. Eur J Pediatr Surg, 1994, 4: 260-266.
    [4] Meier-Ruge WA, Bruder E. Pathology of chronic constipation in pediatric and adult coloproctology. Pathobiology, 2005, 72: 1-106.
    [5] Purl P, Wester T. Intestinal neuronal dysplasia. Semin Pediatr Surg, 1988, 7: 181-6.
    [6] 王夫。先天性巨结肠同源病。李正,王慧贞,吉士俊主编:“实用小儿外科学”827~830页,人民卫生出版社2001。
    [7] Schmittenbecher PP, Sacher P, Cholewa D, Haberlik A, Menardi G, Moczulski J, Rumlova E, Schuppert W, Ure B. Hirschsprung's disease and intestinal neuronal dysplasia—a frequent association with implications for the postoperative course. Pediatr Surg Int, 1999, 15: 553-558.
    [8] 钭金法,钱云忠,熊启星,李民驹,章希圣,汤宏峰,顾伟忠,项志英,卢红莲,冯志刚,朱雄凯。324例肠神经元发育异常病理特点与术后并发症分析。中华外科杂志,2006,44:463-466。
    [9] Meyrat BJ, Laurini RN. Plasticity of the enteric nervous system in patients with intestinal neuronal dysplasia associated with Hirschsprung's disease: a report of three patients. Pediatr Surg Int, 2003, 19: 715-720.
    [10] Estevao-Costa J, Fragoso AC, Campos M, Soares-Oliveira M, Carvalho JL. An approach to minimize postoperative enterocolitis in Hirschsprung's disease. J Pediatr Surg, 2006, 41: 1704-1707.
    [11] Petchasuwan C, Pintong J. Immunohistochemistry for intestinal ganglion cells and nerve fibers: aid in the diagnosis of Hirschsprung's disease. J Med Assoc Thai, 2000, 83: 1402-1409.
    [12] Koletzko S, Jesch I, Faus-Kebetaler T, Briner J, Meier-Ruge W, Muntefering H, Coerdt W, Wessel L, Keller KM, Nutzenadel W, Schmittenbecher P, Holschneider A, Sacher P. Rectal biopsy for diagnosis of intestinal neuronal dysplasia in children: a prospective muiticentre study on interobserver variation and clinical outcome. Gut, 1999, 44: 853-861.
    [13] Coerd W, Michel JS, Rippin G, Kletzki S, Gerein V, Muntefering H, Amemann J. Quantitative morphometric analysis of submucous plexus in age-related control groups. Virchows Arch, 2004, 444: 239-246.
    [14] Martucciello G, Pini Prato A, Puri P, Holschneider AM, Meier-Ruge W, Jasonni V, Tovar JA, Grosfeld JL. Controversies concerning diagnostic guidelines for anomalies of the enteric nervous system: a report from the fourth International Symposium on Hirschsprung's disease and related neurocristopathies. J Pediatr Surg, 2005, 40: 1527-1531
    [15] Mazziotti MV, Langer JC. Laparoscopic full-thickness intestinal biopsies in children. J Pediatr Gastroenterol Nutr, 2001, 33: 54-57.
    [16] Tatekawa Y, Kanehiro H, Kanokogi H, Nakajima Y, Nishijima E, Muraji T, Imai Y, Tsugawa C, Toyosaka A, Nakano H. The evaluation of meconium disease by distribution of cathepsin D in intestinal gangion cells. Pediatr Surg Int, 2000, 16: 53-55.
    [17] Rolle U, Piotrowska AP, Puff P. Abnormal vasculature in intestinal neuronal dysplasia. Pediatr Surg Int, 2003, 19: 345-348.
    [18] 18施诚仁,王俊,余世耀,张忠德,陈其民,吴晔明。外科治疗肠神经元异常疾病疗效观察。上海筹二医科大学学报,2003,1:58-60。
    [19] Martucciello G, Favre A, Torre M, Pini Prato A, Jasonni V. A new rapid acetylcholinesterase histochemical method for the intraoperative diagnosis of Hirschsprung's disease and intestinal neuronal dysplasia. Eur J Pediatr Surg, 2001, 11: 300-304.
    [20] Schimpl G, Uray E, Ratschek M, Hollwarth ME. Constipation and intestinal neuronal dysplasia type B: a clinical follow-up study. J Pediatr Gastroenterol Nutr, 2004, 38: 308-311.
    [21] Meier-Ruge WA, Ammann K, Bruder E, Holschneider AM, Scharli AF, Schmittenbecher PP, Stoss F. Updated results on intestinal neuronal dysplasia (IND B). Eur J Pediatr Surg, 2004, 14: 384-391.
    [22] Gillick J, Tazawa H, Puri P. Intestinal neuronal dysplasia: results of treatment in 33 patients. J Pediatr Surg, 2001, 36: 777-779.
    [23] Schmittenbecher PP, Gluck M, Wiebecke B, Meier-Ruge W. Clinical long-term follow-up results in intestinal neuronal dysplasia (IND). Eur J Pediatr Surg, 2000, 10: 17-22.
    [24] Schulten D, Holschneider AM, Meier-Ruge W. Proximal segment histology of resected bowel in Hirschsprung's disease predicts postoperative bowel function. Eur J Pediatr Surg, 2000, 10: 378-381.
    [25] Pena A. Intestinal neuronal dysplasia. Myth or reality literature review. Pediatr Surg Int, 1995, 10: 441.
    [26] Barone V, Weber D, Luo Y, Brancolini V, Devoto M, Romeo G. Exclusion of linkage between RET and neuronal intestinal dysplasia type B. Am J Med Genet, 1996, 62: 195-198.
    [27] Gath R, Goessling A, Keller KM, Koletzko S, Coerdt W, Muntefering H, Wirth S, Hofstra RM, Mulligan L, Eng C, von Deimling A. Analysis of the RET, GDNF, EDN3, and EDNRB genes in patients with intestinal neuronal dysplasia and Hirschsprung disease. Gut, 2001, 48: 671-675.
    [28] Yamataka A, Hatano M, Kobayashi H, Wang K, Miyahara K, Sueyoshi N, Miyano T. Intestinal neuronal dysplasia-like pathology in Ncx/Hox11L.1 gene-deficient mice. J Pediatr Surg, 2001, 36: 1293-1296.
    [29] Puri P, Shinkai T. Pathogenesis of Hirschsprung's disease and its variants: recent progress. Serain Pediatr Surg, 2004, 13: 18-24.
    [30] Yanai T, Kobayashi H, Yamataka A, Lane GJ, Miyano T, Hayakawa T, Satoh K, Kase Y, Hatano M. Acetylcholine-related bowel dysmotility in homozygous mutant NCX/HOX11L. 1-deficient (NCX-/-) mice-evidence that acetylcholine is implicated in causing intestinal neuronal dysplasia, J Pediatr Surg, 2004, 39: 927-930.
    [31] Bosman C, Devito R, Fusilli S, Boldrini R. A new hypothesis on the pathogenesis of intestinal pseudo-obstruction by intestinal neuronal dysplasia (IND). Pathol Res Pract, 2001, 197: 789-796.
    [32] Kobayashi H, Hirakawa H, Puri P. Is intestinal neuronal dysplasia a disorder of the neuromuscular junction? J Pediatr Surg, 1996, 31: 575-579.
    [33] Nogueira A, Campos M, Soares-Oliveira M, Estevao-Costa J, Silva P, Carneiro F, Carvalho JL. Histochemical and immunohistochemical study of the intrinsic innervation in colonic dysganglionosis. Pediatr Surg Int, 2001,17:144-151.
    
    [34] Wheatley JM, Hutson JM, Chow CW, Oliver M, Hurley MR. Slow-transit constipation in childhood. J Pediatr Surg, 1999,34:829-832.
    [35] Kobayashi H, Yamataka A, Lane GJ, Miyano T. Inflammatory changes secondary to postoperative complications of Hirschsprung's disease as a cause of histopathologic changes typical of intestinal neuronal dysplasia. J Pediatr Surg, 2004, 39:152-156.
    [36] Galvez Y, Skaba R, Vajtrova R, Frantlova A, Herget J. Evidence of secondary neuronal intestinal dysplasia in a rat model of chronic intestinal obstruction. J Invest Surg, 2004,17:31-39.
    [37] Jin-Fa Tou, Min-Ju Li, Tao Guan, Ji-Cheng Li, Xiong-Kai Zhu, Zhi-Gang Feng. Mutation of RET proto-oncogene in hirschspring's disease and intestinal neuronal dysplasia. World J Gastroenterol, 2006,12:1136-1139.
    [38] Moore SW, Rode H, Millar AJ, Albertyn R, Cywes S. Familial aspects of Hirschsprung's disease. Eur J Pediatr Surg, 1991,1:97-101.
    [39] Kobayashi H, Mahomed A, Puri P. Intestinal neuronal dysplasia in twins. J Pediatr Gastroenterol Nutr, 1996,22:398-401.
    [40] Jeng YM, Mao TL, Hsu WM, Huang SF, Hsu HC. Congenital interstitial cell of cajal hyperplasia with neuronal intestinal dysplasia. Am J Surg Pathol, 2000,24:1568-1572.
    [41] Newman CJ, Laurini RN, Lesbros Y, Reinberg O, Meyrat BJ. Interstitial cells of Cajal are normally distributed in both ganglionated and aganglionic bowel in Hirschsprung's disease. Pediatr Surg Int, 2003,19:662-668.
    
    [42] Demirbilek S, Ozardali HI, Aydm G Mast-cells distribution and colonic mucin composition in Hirschsprung's disease and intestinal neuronal dysplasia. Pediatr Surg Int, 2001,17:136-139.
    [43] Munakata K, Fukuzawa M, Nemoto N. Histologic criteria for the diagnosis of allied diseases of Hirschsprung's disease in adults. Eur J Pediatr Surg, 2002, 12:186-191.
    [44] Martucciello G, Torre M, Pini Prato A, Lerone M, Campus R, Leggio S, Jasonni V. Associated anomalies in intestinal neuronal dysplasia. J Pediatr Surg, 2002, 37:219-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700