基于C型弹簧管的光纤布拉格光栅压力传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤光栅是近年来发展最为迅速的光纤无源器件之一。由于它具有许多独特优点,因而在光纤通信、光纤传感等领域有着广阔的应用前景。
     光纤布拉格光栅(FBG)是一种光纤折射率受到周期调制的光纤型器件,该调制使光纤内传输的光信号的不同模式进行耦合,其作用相当于一个高反射窄带光反射镜。利用光纤布拉格光栅作为敏感元件的传感器,可对应力、温度、压力、加速度等多个外界量进行精确的检测。作为课题的关键器件,它的特性直接影响实验结果。
     本文系统阐述了光纤布拉格光栅的基本理论,包括:光纤光栅的分类、写入方法以及应用;利用耦合模理论分析了光纤布拉格光栅的光谱特性;分析了光纤布拉格光栅温度和应变的传感原理。通过温度传感实验,得出了与理论值较吻合的光纤布拉格光栅温度灵敏度系数。
     设计了一种基于C型弹簧管的光纤布拉格光栅传感结构,以光纤布拉格光栅对应变敏感的特性以及C型压力弹簧管表面应力分析为理论基础,将光纤布拉格光栅粘贴于C型压力弹簧管上的特定位置,将引入C型弹簧管的压力转化为光纤布拉格光栅中心波长的漂移量。通过压力传感实验,得到压力与光纤布拉格光栅中心波长漂移量的线性关系式。同时,基于温度传感实验和压力传感实验,设计了光纤布拉格光栅温度补偿实验,验证了参考FBG温度补偿的方法。
     论文的创新点是设计了一套新颖的基于C型弹簧管的光纤光栅压力传感实验系统;提出了一种新颖的基于C型弹簧管的光纤布拉格光栅粘贴方式,通过理论数据的推导,并与其他粘贴方式进行比较,本文提出的方案使得压力传感灵敏度显著提高;温度补偿实验验证了参考FBG温度补偿法的可行性。
Optical fibre grating is one of the optical fibre passive devices which have great development in recent years. Because of its unique advantages, it has brilliant prospect in field of fibre communication and sensing.
     Fibre Bragg grating(FBG) is an optical device of its refraction modulated period, which makes different modules of optical signal coupled in fibre. Its use equals a reflector of high refection. When it is used to a sensor system, it can check strain, temperature, pressure,acceleration, etc. As the key device of the experiment, its character directly influences the result of experiment.
     The basic theory for FBG has discussed in detail in this article.We introduced the classification of fibre grating、the method for creating fibre grating and its application. We used the model-coupled theory to analyze the spectrum character of FBG , based on which, we analysed the temperature and strain sensing principle of FBG. By temperature sensing experiment, we got a FBG temperature sensitivity coefficient which corresponded to the principle value.
     In this article, the structure design of a fibre Bragg grating sensor based on the C-shaped elastic tube has been put forward. Based on the FBG strain sensing character and the analysis of surface strain of C-shaped elastic tube, by bending the FBG on a special position of C-shaped elastic tube, we converted the pressure transfered into the C-shaped elastic tube to the central wavelength drift of FBG. By strain sensing experiment, wo got a linear relation expression between the pressure and the central wavelength drift of FBG. Meanwhile, based on temperature sensing experiment and strain sensing experiment, we designed a FBG temperature compensation experiment, by which, the method of reference FBG temperature compensation had been certified.
     The originality innovation of this article is that we designed a novel experiment system for FBG pressure sensing on C-shaped elastic tube; a novel bending method of FBG had been put forward. By deducing the theoretical data and comparing with the other bending method, pressure sensing sensitivity had been improved remarkablely. FBG temperature compensation experiment certifid the feasibility of the method of reference FBG temperature compensation.
引文
[1] 何慧灵,赵春梅,陈丹,等.光纤传感器现状[J].激光与光电子学进展,2004,41(3):39-41
    [2] Byoungho Lee. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology, 2003, 57-79.
    [3] Born M, Wolf E. Principle of Optics[M]. Cambridge University Press: UK, 1999, 7th
    [4] Solymar L, Cooke D J. Volume Holography and Volume Gratings[M]. Academic Press: London, 1981
    [5] Jef Hecht. City of Light: The Story of Fiber Optics[M]. Oxford University Press: NewYork, 1999
    [6] Hill K O, Fujii Y, Johnson D C, Kawasaki B S. Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication[J]. Applied Physics Letters, 1978, 32(10): 647-649
    [7] Bogue R W. Seminar Report: Sensor Innovation and Technology Transfer Event 2003[J]. Sensor Review, 2004, 24(2): 129-136
    [8] Kirkendall C K, Dandridge A. Anthony. Overview of High Performance Fibre-Optic Sensing[J]. Journal of Physics D: Applied Physics, 2004, 37(18): 197-216
    [9] Webb D J. Optical-Fiber Sensors: An Overview[J]. Source: MRS Bulletin, 2002, 27(5): 365-369
    [10] Vasiliev S A. Photoinduced Fiber Gratings[J]. SPIE, 2001, 4357: 1-12
    [11] Bhatia V. Properties and Applications of Fiber Gratings, [J]. SPIE, 2001, 4417: 154-160
    [12] 鲍吉龙,章献民,陈抗生.光纤光栅传感器及其应用[J].激光技术,2000,24(3):174~179
    [13] 王启明,魏光辉,高以智.光子学技术[M].北京:清华大学出版社,2002.91-107
    [14] GUAN BO, TAM H Y, TAO X M. Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating[J]. IEEE Photon Technol Lett, 2000, 12(6): 675-677
    [15] 姜德生,方炜炜.Bragg光纤光栅及其在传感中的应用[J].传感器世界,2003,7:22-26
    [16] 廖延彪.光纤光学[M].北京:清华大学出版社,2000
    [17] 靳伟,廖延彪,张志鹏等.导波光学传感器:原理与技术[M].北京:科学出版社,1998
    [18] Jean-Luc Archambault ans Stephen G. Grubb. Fiber gratings in lasesrs and amplifers[J]. Journal of Lightwave Technology, 1997, 15(8): 1378-1390
    [19] Y. J. Rao, "In-fiber Bragg gratings sensors"[J]. Meas. Sci.&Technol, 1997, 8(4): 355-357
    [20] A. D. Kersey, M. A. Davis, H, J. Patrick, et al. "Fiber grating sensors."[J]. Lightwave Technol, 1997, 15 (8): 1442-1463
    [21] C. R. Giles And V. M izrahi. Low-loss add/drop multiplexers of WDM lightwave network. [A]. Proc. IOOC 95, Hong Kong, 1995
    [22] H.N. Rourke, S.R.Baker, et al. A low loss 4-channel wavelength demultiplexer based of fiber Bragg grating[A], Proc. ECOC'92, Oslo, Norway, 1996
    [23] 钱颖.光纤光栅封装技术.长春邮电学院学报,2000,18(2)
    [24] 关柏鸥.光纤光栅的温度增敏实验.光子学报,1999,28(1)
    [25] 李智红,董孝义.正弦锥光纤光栅的数值计算分析.光子学报,1998,27(3):239-242
    [26] R. Kashyap, et al. Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating[J]. El ectron. Lett., 1993(29): 154-156
    [27] K. O. Hill, et al. Birefringent photosensitivity in monomode optical fiber: application to external writing of rocking filters[J]. Electron.Lett., 1991(27): 1548-1550
    [28] 蒋英,庞翠珠.光纤光栅布拉格波长随温度和应力的变化及其补偿[M].光通信技术,1999,23(5)
    [29] Lemaire P J, Atkins R M, Mizrahi V, et al. High pressure Hloading as a techniqhef or achieving ultrahigh UV photosensitivity and therm a sensitivity in GeO-doped optical fibers[J]. Electro Lett, 1993, 29(13):1191-1192
    [30] S. Mihailov, M. Gower. Recording of efficient high-order Bragg reflectors in optical fibers by mask image projection and single pulse exposure witha an xcimer laser[J]. Electronics Letters, 1994, 30(7), 707-708
    [31] Lemaire P J. Enhanced or photosensitivities in fibers and waveguides by high pressure hydrog enlod ing[J]. OFC 95':162-163
    [32] Mahgerefteh D et al. Improving the Performance of All-Optical Wavelength Converters Using Fiber Gratings[J]. Fiber and Integrated Optics, 1999, 18(3): 155-166
    [33] Ball G A, Glenn W H. Design of a Single-Mode Linear-Cavity Erbium Fiber laser Utilizing Bragg reflectors[J]. Journal Lightwave Technique, 1992, 10:1338-1343
    [34] Giles C R. Lightwave Applications of Fiber Bragg Gratings[J]. Journal of Lightwave Technology, 1997, 15:1391-1404
    [35] Othonos A, Lee X, Measures R M. Superimposed Multiple Bragg Gratings[J]. Electronics Letters, 1994, 30:1620-1621
    [36] Augustsson T. Proposal of a DMUX with a Fabry-Perot All-Reflection Filter-Based MMIMI Configuration[J]. IEEE Photonics Technology Letters, 2001, 13(3): 215-217
    [37] Sansonetti P. Novel Passive Fiber Grating Based Devices[A]. European Conference on Optical Communication, 1998, 1,187-188
    [38] Chen Z, Lu C, J H, Cheng T H. Electrically Tunable Chirped Fiber Bragg Gratings by a Bulk Distributed Heater[J]. SPIE, 2001, 4289:119-121
    [39] Kawanishi T et al. Reciprocating Optical Modulation for Harmonic Generation[J]. IEEE Photonics Technology Letters, 2001, 13(8): 854-856
    [40] Meltz G, Morey W W. Bragg Grating Formation and Germanosilicate Fiber Photosensitivity[J]. SPIE, 1991, 1516:185-199
    [41] Kersey A D, Marrone M J. Fiber Bragg Grating High-Magnetic-Field Probe[A]. 10th Optical Fiber Sensors Conference. 1994, 53-56
    [42] 叶培大.光纤理论[M].上海:知识出版社,1985
    [43] 余守宪.导波光学物理基础[M].北京:北京交通大学出版社,2002
    [44] 李玉权,崔敏.光波导理论与技术[M].北京:人民邮电出版社,2002
    [45] 张国顺,何家祥,肖桂香.光纤传感技术[M].北京:水利电力出版社,1988
    [46] Mizrahi V, Sipe J E. Optical Properties of Photosensitive Fiber Phase Gratings[J]. IEEE Journal of Lightwave Technology, 1993, 11: 1513-1517
    [47] Kogelnik H, Shank C W. Coupled Wave Theory of Distributed Feedback Lasers[J]. Journal of Applied Physics, 1972, 43:2327-2335
    [48] Kogelnik H. Theory of Optical Waveguides in Guided-Wave Opto-Electronics[J]. Springer-Verlag, 1990
    [49] Yariv A,, Yeh P. Optical Waves in Crystals[M]. John-Wiley: New York, 1984
    [50] Erdogan t. Fiber Grating Spectra[J]. IEEE Journal of Lightwave Technology, 1997, 15: 1277-1294
    [51] Born M, Wolf, E. Principles of Optics[M]. 7th edition. Oxford University Press: London, 1999
    [52] Hill K O, Fujii Y, Johnson D C et al. Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication[J]. Applied physics-Letters, 1978, 32(10): 647-649
    [53] Meltz G, Morey W W, Glenn W H. Formation of Bragg Grating in Optical Fibers by a Transverse Holographic Method[J]. Optics Letters, 1989, 14(15): 823-825
    [54] Zhu Y, Lacquct B M, Swart P L. Design of Phase-Shifted Long-Period Grating Device and its Application as Gain-Flattening Fiber Filter[J]. SPIE, 2001, 4416: 179-183
    [55] Hill K O, Meltz G. Fiber Bragg Grating Technology Fundamentals and Overview[J]. Journal of Lightwave Technology, 1997, 15(8): 1263-1276
    [56] Breidne M. Fiber Bragg Gratings-A versatile Photonics Componet[J]. SPIE, 2000, 4016: 104-111
    [57] Erdogan T. Fiber Grating Spectra[J]. Jourmal of Lightwave Technology, 1997, 15(8): 1277-1294
    [58] Meltz G, Morney W W. Bragg Grating Formation and germanosilicate Fiber Photosensitivity[J]. SIPE, 1991, 1516: 185-199
    [59] 李川,韩雪飞,张以谟等.采用WDM技术的光纤Bragg光栅传感网络[J].光子学报,2003,32(5):542-545
    [60] Taylor E W. Optical Waveguide Diffraction Grating Sensor[J]. Instrumentation in the Aerospace Instrumentation Symposium, 1987, 33: 143-147
    [61] Morey W W, Dunphy J R, Meltz G. Multiplexing Fiber Bragg Grating Sensors[J]. Fiber and Intergrated Optics, 1991, 10(4): 351-360
    [62] Lin Gang-Chih, Wang Likarn, Yang C C, etal. Thermal performance of metal-clad fiber Bragg grating sensors[J]. IEEE Photon Tech Lett, 1998, 10 (3): 406-408
    [63] Gupta S, Mizunami T, Yamao T, etal. Fiber Bragg grating gryogenic temperature sensors[J]. Appl Opt, 1996, 35(25): 5202-5205
    [64] 韩泽华,耿健新.光纤光栅调谐技术的进展与应用.激光与光电子学进展,2005,42(3)
    [65] Jia Zhen-an, Qiao Xueguang, Li Ming, Fu Haiwei, Huo Han-ping, Liu Ying-gang, Zhou Hong. The influence of temperature on reflected wavelength shift of fiber Bragg gratings[J]. LASER TECHNOLOGY, 2004, 28(3).
    [66] Othonos A, Kalli K. Fiber Bragg Gratings[M]. Artech House, Inc, MA: USA, 1999
    [67] Measures R M. Structural Monitoring with Fiber Optic Technology[M]. Academic Press: USA, 2001
    [68] 杨桂通.弹性力学[M].北京:高等教育出版社,1998
    [69] 杨佰源,张义同.工程弹塑性力学[M].北京:机械工业出版社,2003
    [70] Chang Y J, Wang L K, Liu W F et al. Temperature insensitive linear strain measurement using two fiber Bragg gratings in a power detection scheme[J]. Opt. Commun, 2001, 197: 327-330
    [71] Kersey A D, Davis M A, Patrick H J et al. Fiber Grating Sensors[J] Journal of Lightwave Technology, 1997, 15(8): 1442-1463
    [72] Culshaw B, Dakin J. Optical Fiber Sensors: Components and Subsystems Volume 3[M]. Artech House, MA: USA, 1996
    [73] 周智,田石柱,赵雪峰,等.光纤布拉格光栅应变与温度传感特性及其实验分析[J].功能材料,2002,33(5):551-554
    [74] 李国利,李志全.光纤光栅应变传感测量中的温度补偿问题[J].激光与光电子学进展.2005,42(4)
    [75] 王俊杰,王家桢.检测技术与仪表[M].武汉:武汉理工大学出版社,2002.86-102
    [76] 翁善臣,林友德,徐振廷.仪表弹性元件设计基础[M].北京:机械工业出版社,1982
    [77] 钱浚霞.弹簧管的应力分析及其工程应用[J].仪器仪表学报,1996,17(4)
    [78] 周红,乔学光,王宏亮,等.基于C型弹性管的光纤光栅压力位移传感测量[J].西安电子科技大学学报(自然科学版),2005,32(1)
    [79] Jia Zhen-an, Qiao Xueguang, Li Ming, Fu Haiwei, Huo, Liu Ying-gang. Nonlinear phenomena of fiber Bragg grating temperature sensing[J]. ACTA PHOTONICA SINICA, 2003, 32(7)
    [80] Chang Y J, Wang L K, Liu W F et al. Temperature insensitive linear strain measurement using two fiber Bragg gratings in a power detection scheme[J]. Opt. Commun, 2001, 197: 327-330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700