Zn~(2+)依赖性金属蛋白酶家族成员ADAM17在肿瘤发展中的作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的构建含有多对靶向TACE的小发夹结构RNA(shRNA)的真核表达载体,观察干扰TACE表达对人子宫颈癌HeLa细胞增值、凋亡、粘附和侵袭的影响。
     方法设计针对TACE基因的4个shRNA序列,构建分别含有单对shRNA真核表达载体pG1-T1,pG1-T2,pG1-T3和pG1-T4和同时含有这四对shRNA的干扰载体pG4-T。通过酶切和测序等方法进行鉴定。转染HeLa细胞后,用RealtimePCR和WesternBlot的方法检测其对HeLa细胞TACE基因表达的影响;用ELISA检测细胞分泌的sTGF-α和Western Blot检测EGFR磷酸化水平。利用MTT方法检测细胞增值活性,流式细胞术检测细胞凋亡,最后通过细胞粘附和侵袭实验观察细胞粘附和侵袭功能的变化。
     结果构建出的针对TACE基因的三个有效的特异性真核表达载体pG1-T1,pG1-T2,pG1-T3,均在不同程度上抑制了HeLa细胞TACE基因的表达。同时含有四对shRNAs的载体pG4-T表现更强的干扰率。同时发现干扰TACE基因后,HeLa细胞的生长受到抑制,同时凋亡率升高,粘附和侵袭能力均降低,与对照组相比有显著性差异(P<0.05)。
     结论多个shRNA的同时干扰一个或多个基因,在预防和治疗肿瘤上是一个强有力的策略。同时,针对TACE的siRNA干扰载体在肿瘤治疗中有可能带来治疗性的效果。
     目的为了解人TACE的解整合索域对肿瘤细胞粘附和侵袭的影响以及其独立于其他结构域发挥作用的能力。
     方法(1)重组TACE解整合素域、酶催化域和胞外功能结构域原核表达重组体的构建、表达、纯化和鉴定:从单核细胞系THP1中提取RNA,RT-PCR扩增出TACE全长基因,构建了PMD18T-TACE载体。对PMD18T-TACE质粒进行PCR,分别扩增T300(300bp,编码解整合素域)、T800(800bp,编码酶催化域)及T1300(1300bp,编码胞外域)三个片段,将其分别亚克隆至表达载体pET-28a(+)。将pET-28a-T300、pET-28a-T800和pET-28a-T1300转化大肠杆菌BL21(DE3),经IPTG诱导表达出带有His-tag的目的蛋白(T300、T800和T1300),三者均为包涵体。经过溶解包涵体、BBST NTA树脂柱亲和层析并透析复性,获得高纯度的三种活性蛋白。(2)重组蛋白的功能研究:细胞粘附实验、Transwell小室侵袭实验分别检测重组蛋白对A549细胞粘附、侵袭功能的作用。(3)系列突变重组体及稳定转染HeLa细胞株的建立及生物活性研究:以PMD18T-FL-TACE为模版,应用重叠延伸PCR扩增出缺失解整合素区的TACE片段,利用DNA重组技术将其分别定向插入真核表达在pIRES2.0-EGFP中,同时TACE全长也从PMD18T-TACE上双酶切下来构建入pIRES2.0-EGFP。这两种种真核表达载体经酶切和测序鉴定后,用脂质体法转染HeLa细胞,经过G41 8筛选,获得稳定转染的HeLa细胞系,采用Western blot及荧光法检测表达。将稳定转染细胞分别进行MTT,细胞粘附和侵袭实验检测,观察其增殖、粘附和侵袭能力的变化。
     结果(1)成功构建了TACE解整合素结构域、酶结构域和胞外结构域的原核表达载体pET-28a-T300、pET-28a-T800和pET-28a-T1300。镍柱亲和层析后得到重组蛋白T300、T800和T1300。(2)重组蛋白的体外功能研究:细胞粘附实验、Transwell小室侵袭实验分别显示TACE解整合素域、胞外域蛋白均能明显以剂量依赖性的方式抑制A549细胞与纤维粘连蛋白的粘附,并能抑制Transwell小室中A549细胞对Matrigel模拟的天然基底膜的侵袭,而酶结构域蛋白则无相应的抑制能力。(3)成功构建了pIRES-EGFP/FL-TACE、pIRES-EGFP/disΔ-TACE真核表达载体,并建立了稳定转染的HeLa细胞系,成功地表达了目的基因。实验证明稳定转染的细胞的增殖、粘附和侵袭能力增强,其中转染了pIRES-EGFP/FL-TACE的细胞的改变更显著。
     结论表明重组的TACE解整合素域蛋白可影响肿瘤细胞的粘附和侵袭,为深入研究该区域的作用及TACE在肿瘤发病中的机制提供了新的认识。稳定表达TACE和缺失解整合素TACE片段的HeLa细胞的建立,为进一步研究TACE的功能提供了细胞模型,同时也证明了解整合素域在TACE分子在肿瘤细胞中发挥更有效的作用中是必不可少的部分。
     目的探讨RNAi抑制小鼠ADAM10和PC7基因表达对H22细胞小鼠体内成瘤能力的影响。
     方法将含有两对针对ADAM10和两对针对PC7的干扰载体PG4-ADAM10/PC7转染小鼠肝癌细胞H22,RT-PCR检测转染前后ADAM10和PC7的mRNA水平的改变。观察PG4-ADAM10/PC7对小鼠的负瘤局部注射后负瘤的生长变化。免疫组化检测瘤组织中ADAM10和PC7蛋白表达的变化。
     结果RT-PCR检测转染组ADAM10和PC7基因mRNA的表达水平下调(P<0.05)。注射PG4-ADAM10/PC7的小鼠负瘤生长缓慢,与对照组瘤体积比较差异有显著性(P<0.05);采用免疫组化法检测注射PG4-ADAM10/PC7组,ADAM10和PC7蛋白的表达下调(P<0.05)。结论PG4-ADAM10/PC7可抑制ADAM10/PC7基因表达.对负瘤的生长有抑制作用。
Objective To construct the shRNA eukaryotic expression vectors of TACE geneand to investigate their inhibiting in cellular functions related to tumor malignancy.
     Methods A single vector containing four shRNAs that target four regions of theTACE gene was constructed.After transfection with our multiple shRNAs vector,Realtime quantitative PCR and Western blot analysis were used to measure the TACEmRNA and protein expression.Four shRNA vectors each containing one shRNA werealso constructed and compared their ability to silence TACE gene expression with thatof the multiple shRNAs vector.The level of proliferation in HeLa cells transfectedwith different shRNA vectors were compared using the MTT assay.The FlowCytometry was used to examine apoptosis.The adhesive and invasive ability weretested by plated adhesion model and Transwell assay.At last,ELISA kit and Westernblot analysis respectively evaluated sTGF—αand the activation of EGFRs aftertransfection of TACE shRNA vectors.
     Results We found that in HeLa cells our multiple shRNAs vector produced a higherlevel of TACE knockdown than any single shRNA vector containing only one TACEshRNA.Silencing TACE expression in HeLa cells decreased their malignancy bydecreasing the proliferation,adhesion and migration,as well as inducing apoptosis inthese cells.Furthermore,our data suggest that the effects of TACE on the malignancyof HeLa cells may be mediated via activation of the EGFR(epidermal growth factorreceptor)signaling pathway.
     Conclusion Our findings suggest that using a combination of shRNAs within one vector to silence the expression of TACE might be a potential therapeutic strategy fortumors.
     Objective:To explore effects ofdisintegrin domain of TACE on the proliferation,adhesion and invasion potential of tumor cells in vitro
     Methods:(1)The construction,expression and purification of prokaryoticexpression plasmids of TACE:The total RNA wasisolated from THP1 cell.TACEcDNA was amplified by RT-PCR and subcloned into PMD18-T vector to constructPMD18T—TACE vector.Primers were designed and synthesized according to thepublished cDNA sequence of TACE.The amplified PCR products(T1300,T591)were ligated into the pET-28a(+)prokaryotic expression vector digested with the samerestriction enzymes to create pET-28a-T300,pET-28a-T800 and pET-28a(+)-T1300,which were transformed into E.coli BL21(DE3).After induced by IPTG,therecombinant proteins were purified using a Ni~(2+)-chelating resin affinity column.Thepurified productions were analyzed by SDS-PAGE and Western blot.(2)Thebiological activites of the proteins in vitro.The adhesive and invasive ability wereexamined by plated adhesion model and Transwell assay.(3)The full-length TACEcDNA fragment was amplified by PCR from the human THP1 cell cDNA andsubcloned into pMD18T vector to construct PMD18T-TACE vector.The cDNAfragment of dis△-TACE and met△-TACE were amplified from plasmidPMD18T-TACE by using the overlap extension PCR and cloned into pIRES2.0-EGFPto construct the expression vector pIRES2.0-EGFP/FL-TACE andpIRES2.0EGFP/dis△-TACE.The full-length of TACE was obtained by doubledigesting the plasmid pMD18T-TACE and then inserted into pIRES2.0-EGFP.Thesethree eukaryotic expressing vectors were transfected into HeLa cells by Lipofectamine 2000 after identification of digestion and sequencing.The stabletransfected HeLa cell lines were then established by screening culture withG418.And the transcription and expression of TACE and dis△-TACE wereidentified by Western blot and immunofl uorescence.The proliferation,adhesion andmigration ability of stable transfected HeLa cells were detected by MTT,adhesionand migration test.
     Results:(1)SDS-PAGE and Western blotting analysis revealed that there proteinsof about 18KD,37KD and 55KD were expressed and recognized by anti-His Abrespectively,and the purity of the proteins purified by Ni~(2+)-NTA resin was more than90%.(2)The protein pET28a(+)-T300 and pET28a(+)-T1300 can reduce the adhesionand invasion ability of the human lung carcinoma cell A549 in vitro,but otherwisethe pmtein pET-28a(+)-T800 had not shown the inhibitive function.(3)Theeukaryotic expression vector pIRES2.0-EGFP/FL-TACE andpIRES2.0-EGFP/dis△-TACE were constructed successfully,stable transfected HeLaeelllines were established,and the aim proteins were expressed successfully.
     Conclusion:The disintegrin domain of TACE have the similar biological function toother disintegrins,which can be used for further research on function of TACE ininflammation and tumor.
     Objective To investigate the influence on growth of transplanted tumor byshRNA expression vector PG4-ADAM10/PC7 inhibiting expression of ADAM10 andPC7 gene in vitro.
     Methods The vector was transfected into H22 and the mRNA expression ofADAM10 and PC7 of H22 before and after transfection was detected byRT-PCR.The tumor—beating mice were treated by PG4-ADAM10/PC7.
     Results The RNA expressions of ADAM 10 and PC7 gene were down-regulated in thetransfected group of RT-PCR assay.The transplanted tumors were grown slowly intransfected PG4-ADAM10/PC7 mice and comparing with the volume of controlgroup,there was significant difference(P<0.05).Using immuno-histochemistrymethod to detect injected PG4-ADAM10/PC7 goup,PG4-ADAM10/PC7 expressionwere down-regulated(P<0.05).
     Conclusions PG4-ADAM10/PC7 can inhibitory action for the growth of transplantedtumors.
引文
1. Reiss K, Ludwig A. Saftig P. Breaking up the tie: disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. Pharmacol Ther, 2006, 111: 985-1006.
    2. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature, 1997, 385: 729-33.
    3. Buxbaum JD, Liu KN, Luo Y, Slack JL, Stocking KL, Peschon JJ, et al. Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem, 1998, 273:27765-7.
    4. Garton KJ, Gough PJ, Blobel CP. Murphy G, Greaves DR, Dempsey PJ, et al. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem, 2001, 276:37993-8001.
    5. Condon TP, Flournoy S, Sawyer GJ, Baker BF. Kishimoto TK, Bennett CF.ADAM 17 but not ADAM 10 mediates tumor necrosis factor-alpha and Lselectin shedding from leukocyte membranes. Antisense Nucleic Acid Drug Dev, 2001,11: 107-16.
    6. Garton KJ, Gough PJ. Philalay J. Wille PT, Blobel CP, Whitehead RH, et al. Stimulated shedding of vascular cell adhesion molecule 1 (VCAM-1) is mediated by tumor necrosis factor-alpha-converting enzyme (ADAM 17). J Biol Chem,2003, 278: 37459-64.
    7. Matthews V, Schuster B, Schu'tze S, BussmeyerⅠ, Ludwig A, Hundhausen C, et al. Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J Biol Chem, 2003, 37: 38829-39.
    8. Sahin U, Weskamp G, Kelly K. Zhou HM, Higashiyama S, Peschon J, et al. Distinct roles for ADAM 10 and ADAM 17 in ectodomain shedding of six EGFR ligands. J Cell Biol, 2004, 164: 769-79.
    9. Lendeckel U, Kohl J, Arndt M, Carl-McGrath S, Donat H, Rocken C. Increased expression of ADAM family members in human breast cancer and breast cancer cell lines. J Cancer Res Clin Oncol, 2005, 131: 41-8.
    10. Roemer A, Schwettmann L, Jung M, Roigas J, Kristiansen G, Schnorr D, et al. Increased mRNA expression of ADAMs in renal cell carcinoma and their association with clinical outcome. Oncol Rep, 2004, 11: 529-36.
    11. Karan D, Lin FC, Bryan M, Ringel J, Moniaux N, Lin MF, et al. Expression of ADAMs (a disintegrin and metalloproteases) and TIMP-3 (tissue inhibitor of metalloproteinase-3) in human prostatic adenocarcinomas. Int J Oncol, 2003, 23:1365-71.
    12. Sunnarborg SW, Hinkle CL, Stevenson M, Russell WE, Raska CS, Peschon JJ, et al. Tumor necrosis factor-a converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J Biol Chem, 2002, 277: 12838-45.
    13. Borrell-Page'sM, Rojo F, Albanell J, Baselga J, Arribas J. TACE is required for the activation of the EGFR by TGF-alpha in tumors. EMBO J, 2003, 22: 1114-24.
    14. Fire A, Xu S, Montgomery MK. Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature, 1998, 391:806-11.
    15. Sioud M. Therapeutic siRNAs. Trends Pharm Sci, 2004, 25: 22-8.
    16. Henry SD, van der WP, Metselaar HJ. Tilanus HW, Scholte BJ, van der Laan LJ. Simultaneous targeting of HCV replication and viral binding with a single lentiviral vector containing multiple RNA interference expression cassettes. MolTher, 2006, 14: 485-93.
    17. Ter BO, Konstantinova P, Ceylan M, Berkhout B. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther, 2006, 14: 883-92.
    18. Doedens JR, Black RA. Stimulation-induced down-regulation of tumor necrosis factor-alpha converting enzyme. J Biol Chem, 2000, 275:, 14598-607.
    19. Lovering F, Zhang Y. Therapeutic potential of TACE inhibitors in stroke. Curr Drug Targets CNS Neurol Disord, 2005. 4: 161-8.
    20. Doggrell SA. TACE inhibition: a new approach to treating inflammation. Expert Opin Investig Drugs, 2002, 11: 1003-6.
    21. Rand TA, Petersen S, Du FH, et al. Argonaute2 cleaves the an anti-guide stand of siRNA during RISC activation . Cell, 2005, 123(4): 621-629.
    22. Meister G, Tuschl T. Mechanisms of gene silencing by double-strand RNA [J]. Nature, 2004; 431(7006): 343-349.
    23. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002; 296: 550-553.
    24. Sui G, Soohoo C, Affar eB, Gay F. Shi Y, ForresterWC. A DNAvector-based RNAi technology to suppress gene expression in mammalian cells. Proc NatlAcad Sci USA, 2002, 99: 5515-5520.
    25. Klapper L N, Kirschbaum M H, Sela M, et al. Biochemical and clinical implications of the ErbB / HER signaling network of growth factor receptors. Adv cancer Res, 2000, 77(1): 25-79
    26. Sahin U, Weskamp G, Kelly K. Zhou HM, Higashiyama S, Peschon J, et al. Distinct roles for ADAM 10 and ADAM 17 in ectodomain shedding of six EGFR ligands. .J Cell Biol, 2004, 164:769-79.
    27. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell, 2000, 103: 211-25.
    28. Kenny PA, Bissell MJ. Targeting TACE-dependent EGFR ligand shedding in breast cancer. J Clin Invest, 2007, 117: 337-45.
    29. Bax DV, Messent AJ, van Hoang M, Kott J, Maciewicz RA, Humphries MJ. Integrin alpha 5 beta 1 and ADAM-17 interact in vitro and co-localize in migration Hela cells. J Biol Chem. 2004, 279: 22377-86.
    30. Chung J, Kim TH. Integrin-dependent translational control: implication in cancer progression. Microsc Res Tech, 2008, 71:380-6.
    31. Tucker GC. Integrins: molecular targets in cancer therapy. Curr Oncol Rep,2006,8:96-103.
    1.Seals DF,Courneidge SA.The ADAM gene family of metalloprotease:multidomain proteins with multiple functions.Genes Dev,2003,17:7-3.
    2.Primakof P,Myles DG.The ADAM gene family:surface proteins with adhesion and protease activity Trends Genet,2000.16:83-87.
    3.Blobel CP,Wo~berg TG,Turck CW,Myles DG,PrimakofP.White JM A potential fusion peptide and an integrin ligan d domain in a protein active in spe rm-eg fusion Nature,1992,356:248-52.
    4.Blobel CP,Myles DG,Primakof P,White JM.Proteolytic processing of a protein involved in sperm-egg correlates with acquisition of fertilization competence.J CeU Biol,1990,111 :69—78.21 Berman AE,Kozlova NI.Integrins:structure and functions.Membr Cell Biol.2000,13(2):207-244.
    5.White JM ADAM :modulators of cell-cell and cell-Matrix interactions.Curr Opin Cell Biol.2003,15:598-606.
    6.Eto K,Huet C,Tarui T,Kupriyanor S,Liu HZ.et al.Function classification of ADAM based on a conserved motif for binding to integrin alpha 9 beta 1:implications for spe rm -eg binging ang other cell interactions.J Biof Chem,277:17804-17810.
    7.Kang IC,Kim DS,Jang Y,Chung KH.Suppressive mechanism of salmosin,a novel disintegrin in B16 melanoma cell metastasis.Biochem Biophys Res Commu,2000,275 (1):169 -173.
    8.Hong SY,Koh YS,Chung KH,Kim DS.Snake venom disintegrin,saxatilin,inhibits platelet aggregation,human umbilical vein endothelial cell proliferation,and smooth muscle cell migration.Thrombosis Res,2002,105 (1):79-86.
    9.Beviglia L,Stewart G J,Niewiarowski S,et al.Effect of four disintegrins on the adhesive and metastatic properties of B 16F 10 melanoma cells in a murine model.Onco Res.1995,7:7-20.
    10.章静波,张世馥,黄东阳等.组织和细胞培养技术.第一版.北京.人民卫生 出版社. 2002年. 111-112
    11. Iba K, Albrechtsen R, Gilpin BJ, Loechel F, Wewer UM, Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion, Am. J. Pathol,1999, 154: 1489-50.
    12. Berman AE, Kozlova NI. Integrins: structure and functions. Membr Cell Biol. 2000, 13(2): 207-244.
    13. Parise LV, Lee J, Juliano RL. New aspects of integrin signaling in cancer. Semin Cancer Biol.2000, 10(6): 407-414.
    14. Zhao JH, Guan JL. Role of focal adhesion kinase in signaling by the extracellularmatrix. rogMol Subcell Biol. 2000, 25: 37-55.
    15. Mercurio AM, Bachelder RE. Rabinovitz I, O'Connor KL, Tani T, Shaw LM. The metastatic odyssey: the integrin connection. Surg Oncol Clin N Am. 2001,10(2):313-328.
    16. Souza SE, Ginsberg MH, Plow EF. Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem Sci.. 1991. 16(7): 246-250.
    17. Huang TF, Wu YJ, Ouyang C. Characterization of a potent platelet aggregation inhibitor from Agkistrodon rhodostoma snake venom. Biochim Biophys Acta.1987,925:248-257.
    18. GoulaRJ, PolojoffMA, Friedman PA, et al. Disintesrin: afamily of intesrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med, 1990, 195:168-171.
    19. Nath D, Slocombe PM, Stephens PE, Warn A. Hutchinson GR,Yamada KM, et al.Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5betal integrins on different haemopoietic cells. J Cell Sci, 1999, 112(Pt 4): 579-587.
    20. Eto K, Puzon-McLaughlin W, Sheppard D, Sehara-Fujisawa A, Zhang XP, & Takada Y. RGD-independent binding of integrin alpha9betal to the ADAM-12 and-15 disintegrin domains mediates cell-cell interaction. J Biol Chem, 2000,275: 34922-34930.
    21. Bridges, L. C, Tani. P. H., Hanson. K. R.. Roberts, C. M., Judkins, M. B., &Bowditch, R. D. The lymphocyte metalloprotease MDC-L (ADAM28) is a ligand for the integrin alpha4betal. J Biol Chem, 2002, 277: 3784-3792.
    22. Zhou, H. M., Weskamp, G., Chesneau, V., Sahin, U., Vortkamp, A., Horiuchi, K., et al. Essential role for ADAM 19 in cardiovascular morphogenesis. Mol Cell Biol, 2004,24:96-104.
    23. Zhao, Z., Gruszczynska-Biegala, J., Cheuvront, T., Yi, H., von der, M. H., vonder, M. K., et al. Interaction of the disintegrin and cysteine-rich domains of ADAM 12 with integrin alpha7betal. Exp Cell Res, 2004, 298: 28-37.
    24. Lendeckel U, Kohl J, Arndt M. Carl-McGrath S, Donat H, Rocken C, Increased expression of ADAM family members in human breast cancer and breast cancer cell lines, J. Cancer Res. Clin. Oncol.. 2005, 131: 41-8.
    25. Roemer A, Schwettmann L, Jung M, Roigas J, Kristiansen G, Schnorr D, Loening SA. Jung K, Lichtinghagen R. Increased mRNA expression of ADAMs in renal cell carcinoma and their association with clinical outcome, Oncol. Rep. 2004, 11:529-36.
    26. Blanchot-Jossic F, Jarry A, Masson D, Bach-Ngohou K, Paineau J, Denis MG, Laboisse CL, Mosnier JF, Up-regulated expression of ADAM 17 in human colon carcinoma: co-expression with EGFR in neoplastic and endothelial cells, J. Pathol.2005,207: 156-63.
    27. Karan D. Lin FC, Bryan M, Ringel J, Moniaux N, Lin MF, Batra SK, Expression of ADAMs (a disintegrin and metalloproteases) and TIMP-3 (tissue inhibitor of metalloproteinase-3) in human prostatic adenocarcinomas, Int. J. Oncol. 2003, 23.
    28. YasudaM, TanakaY, TanmraM, etal. Stimulation of lintegri down-regulates ICAM-1 expression and ICAM-1-depe ndent adhesion of lung cancer cell throLIgh focal adhesion kinase. Cancer Res, 2001, 61: 2022-2030.
    29. LuQ, ClemetsonJM, ClemestonKJ. snake veOrns and Hemostasis. J Thromb Haemost, 2005,3: 1791-1799.
    1. McCulloch DR. Akl P, Samaratunga H, Herington AC, & Odorico DM. Expression of the disintegrin metalloprotease, ADAM-10, in prostate cancer and its regulation by dihydrotestosterone, insulin-like growth factor 1, and epidermal growth factor in the prostate cancer cell model LNCaP. Clin Cancer Res, 2004,10:314-323.
    2. T Yoshimura, T Tomita, M F Dixon, et al. ADAMs (a disintegrin and metalloproteinase)messenger RNA expression in Helicobacter pyloriinfected, normol, and neoplastic gastric mucosa. Infect Dis, 2002, 185(3): 332.
    3. Endres K, Anders A, Kojro E, Gilbert S, Fahrenholz F, & Postina R. Tumor necrosis factor-alpha converting enzyme is processed by proprotein-convertases to its mature form which is degraded upon phorbol ester stimulation. Eur J Biochem, 2003, 270: 2386-2393.
    4. Murai T, Miyazaki O, Nishinakamura H, et al. Engagement of CD44 promotes rac activation and CD44 cleavage during tumor cell migration. J Biol Chem, 2004,279(6):4541-50.
    5. Sahin U, Weskamp G, Kelly K, et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol, 2004, 164(5):769-79.
    6. Huovila AP, Turner AJ, Pelto-Huikko M, et al. Shedding light on ADAM metalloproteinases. Trends Biochem Sic. 2005,30(7):413-22.
    1. Mochizuki S , Okada Y . ADAMs in cancer cell proliferation and progression. Cancer Sci, 2007, 98(5): 621.
    2. Endres K, Anders A, Kojro E, Gilbert S. Fahrenholz F, & Postina R. Tumor necrosis factor-alpha converting enzyme is processed by proprotein-convertases to its mature form which is degraded upon phorbol ester stimulation. Eur J Biochem. 2003, 270: 2386-2393.
    3. Anders A, Gilbert S, Garten W, Postina R, & Fahrenholz F. Regulation of the alpha-secretase ADAM 10 by its prodomain and proprotein convertases. FASEB J, 2001. 15:1837-1839
    4. Howard L, Nelson KK, Maciewicz RA, & Blobel CP. Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin Ⅰ and SH3PX1. J Biol Chem, 1999, 274;31693-31699.
    5. Schlomann U, Wildeboer D, Webster A. Antropova O, Zeuschner D, Knight CG, et al. The metalloprotease disintegrin ADAM8 Processing by autocatalysis is required for proteolytic activity and cell adhesion. J Biol Chem, 2002, 277:48210-48219.
    6. Lammich S, Kojro E. Postina R. Gilbert S, Pfeiffer R. Jasionowski M, et al. Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA, 1999,96:3922-3927.
    7. Kang T, Zhao YG, Pei D, Sucic JF. & Sang QX. Intracellular activation of human adamalysin 19/disintegrin and metalloproteinase 19 by furin occurs via one of the two consecutive recognition sites. J Biol Chem, 2002, 277: 25583-25591.
    8. Schlondorff J, Becherer JD, & Blobel CP. Intracellular maturation and localization of the tumour necrosis factor alpha convertase (TACE). Biochem J, 2000,347(Pt1): 131-138.
    9. Seals DF, & Courtneidge SA. The ADAM family of metalloproteases: multidomain proteins with multiple functions. Genes Dev, 2003, 17: 7-30.
    10. White JM. ADAM: modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol. 2003. 15: 598-606.
    11. Smith KM, Gaultier A. Cousin H, Alfandari D, White JM, & DeSimone DW. The cysteine-rich domain regulates ADAM protease function in vivo. J Cell Biol,2002, 159: 893-902.
    12. Reddy P, Slack JL, Davis R. Cerretti DP, Kozlosky CJ, Blanton RA, et al.Functional analysis of the domain structure of tumor necrosis factor-alpha converting enzyme. J Biol Chem, 2000, 275: 14608-14614.
    13. Janes PW, Saha N, Barton WA. Kolev MV, Wimmer-Kleikamp SH, Nievergall E, et al. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell, 2005, 123: 291-304.
    14. Milla ME, Leesnitzer MA. Moss ML, Clay WC, Carter HL, Miller AB, et al.Specific sequence elements are required for the expression of functional tumor necrosis factor-alpha-converting enzyme (TACE). J Biol Chem, 1999, 274:30563-30570.
    15. Nakamura H, Suenaga N, Taniwaki K, Matsuki H, Yonezawa K, Fujii M, et al. Constitutive and induced CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase. Cancer Res, 2004, 64: 876-882.
    16. Iba K, Albrechtsen R, Gilpin B. Frohlich C, Loechel F, Zolkiewska A, et al. The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to betal integrin-dependent cell spreading. J Cell Biol, 2000, 149: 1143-1156.
    17. Reddy P, Slack JL, Davis R, Cerretti DP, Kozlosky CJ, Blanton RA, et al.Functional analysis of the domain structure of tumor necrosis factor-alpha converting enzyme. J Biol Chem. 2000, 275: 14608-14614.
    18. Bridges LC, Sheppard D, & Bowditch RD. ADAM disintegrin-like domain recognition by the lymphocyte integrins alpha4betal and alpha4-beta7. Biochem J, 2005, 387: 101-108.
    19. Zolkiewska A. Disintegrin-1ike/cysteine-rich region of ADAM 12 is an active cell adhesion domain. Exp Cell Res, 1999, 252: 423-431.
    20. Seals DF, & Courtneidge SA. The ADAM family of metalloproteases: multidomain proteins with multiple functions. Genes Dev, 2003, 17: 7-30.
    21. Weskamp G, Kratzschmar J, Reid MS, Blobel CP. MDC9, a widely expressed cellular disintegrin containing cytoplasmic SH3 ligand domains. JCell Biol,1996,132:717.
    22. Howard L, Nelson KK, Maciewicz RA. & Blobel CP. Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin Ⅰ and SH3PX1. J Biol Chem, 1999, 274:31693-31699.
    23. Tanaka M, Nanba D, Mori S. Shiba F, Ishiguro H. Yoshino K, et al. ADAM binding protein Eve-1 is required for ectodomain shedding of epidermal growth factor receptor ligands. J Biol Chem, 2004. 279: 41950-41959.
    24. Nobuhisa Ishikawa, Yataro Daigo, Wataru Yasui, et al. ADAM8 as a flovel serological and histochemical marker for lung cancer. Clinical Cancer Research,2004, 10(24): 8363.
    25. Roemer A, Schwettmann L, Jung M, Roigas J, Kristiansen G, Schnorr D, et al.Increased mRNA expression of ADAM in renal cell carcinoma and their association with clinical outcome. Oncol Rep, 2004, 11: 529-536.
    26. ZhouBB, FridmanJS, Liux, et al. ADAM proteases, ErbB pathways
    27. and cancer[J]. Expe-Opin Investig Drugs, 2005, 14(6): 591. Schutz A, Hartig W, Wobus M, Grosche J, Wittekind C, & Aust G. Expression of ADAM 15 inlung carcinomas. Virchows Arch, 2005. 446: 421-429.
    28. Shintani Y, Higashiyama S, Ohta M, Hirabayashi H, Yamamoto S, Yoshimasu T,et al. Overexpression of ADAM9 in non-small cell lung cancer correlates with brain metastasis. Cancer Res, 2004, 64: 4190-4196.
    29. KueferR, Day KC, Kleer CG, et al. ADAM 15 disintegrin is associated with aggressive prostate and breast cancer disease. Neoplasia, 2006, 8(4): 319.
    30. O'Shea C, McKie N, Buggy Y, et al. Expression of ADAM-9 mRNA and protein in human breast cancer. Int J Cancer, 2003, 105(6): 754.
    31. Lendeckel U, Kohl J, Arndt M, Carl-McGrath S, Donat H, & Rocken C.Increased expression of ADAM family members in human breast cancer and breast cancer cell lines. J Cancer Res Clin Oncol, 2005, 131: 41-48.
    32. McGowan PM, Ryan BM, Hill AD, et al. ADAM-17 expression in breast cancer correlates with variables of tumor progression. Clin Cancer Res, 2007, 13(8):2335.
    33. Carl-McGrath S, Lendeckel U, Ebert M, Roessner A, & Rocken, C. The disintegrin-metalloproteinases ADAM9, ADAM 12, and ADAM 15 are upregulated in gastric cancer. Int J Oncol, 2005, 26: 17-24.
    34. T Yoshimura, T Tomita, M F Dixon, et al. ADAMs (a disintegrin and metalloproteinase)messenger RNA expression in Helicobacter pyloriinfected,normol, and neoplastic gastric mucosa. Infect Dis, 2002, 185(3): 332.
    35. Blanchot-Jossic F, Jarry A, Masson D, et al. Up-regulated expression of ADAM 17 in human colon carcinoula: co-expression with EGFR in neoplastic and endotheli-cells. JPathol, 2005, 207(2): 156.
    36. YamadaD, OhuchidaK, MizumotoK, etal. Increased expression of ADAM 9 and ADAM 15 mRNA in pancreatic cancer. Anticancer Res, 2007, 27(2):793.
    37. McCulloch DR, Akl P, Samaratunga H, Herington AC, & Odorico DM. Expression of the disintegrin metalloprotease, ADAM-10, in prostate cancer and its regulation by dihydrotestosterone, insulin-like growth factor1, and epidermal growth factor in the prostate cancer cell model LNCaP. Clin Cancer Res, 2004,10:314-323.
    38. Le Pabic H, Bonnier D,Wewer UM. Coutand A, Musso O, Baffet G, et al.ADAM 12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling. Hepatology, 2003, 37: 1056-1066.
    39. Hotary K, Allen E, Punturieri A, Yana I. & Weiss SJ. Regulation of cell invasion and morphogenesis in a three-dimensional type 1 collagen matrix by membrane-type matrix metalloproteinases 1. 2, and 3. J Cell Biol, 2000, 149:1309-1323.
    40. Hotary KB, Allen ED. Brooks PC, Datta NS, Long MW, & Weiss SJ. Membrane type 1 matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell, 2003, 114: 33-45.
    41. Wolfsberg TG, Primakoff P, Myles DG, & White JM. ADAM, a novel family of membrane proteins containing A Disintegrin And Metalloprotease domain:multipotential functions in cell-cell and cell-matrix interactions. J Cell Biol,1995,131:275-278.
    42. Black RA, & White JM. ADAM: focus on the protease domain. Curr Opin Cell Biol, 1998, 10:654-659.
    43. Guo YJ, Liu G,Wang X, Jin D,Wu M, Ma J, et al. Potential use of soluble CD44 in serum as indicator of tumor burden and metastasis in patients with gastric or colon cancer. Cancer Res, 1994, 54: A22-426.
    44. Carl-McGrath S, Lendeckel U, Ebert M, Roessner A, & Rocken C. The disintegrin-metalloproteinases ADAM9, ADAM 12, and ADAM 15 are upregulated in gastric cancer. Int J Oncol, 2005, 26: 17-24.
    45. Lendeckel U, Kohl J. Arndt M, Carl-McGrath S, Donat H, & Rocken C.Increased expression of ADAM family members in human breast cancer and breast cancer cell lines. J Cancer Res Clin Oncol, 2005, 131: 41-48.
    46. Raymond E, Faivre S, Armand JP. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Durgs, 2000, 60(Suppl 1): 15-23
    47. Pan D, & Rubin GM. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell,1997.90:271-280.
    48. Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet, 2002, 11:2615-2624
    49. MummJSi KopanR. Notch signaling: from the outside in. Dev Biol, 2000,228: 151-165.
    50. Edbauer D, Winkler E, Regula .1 T, Pesold B, Steiner H, Haass C. Reconstitution of gamma secretase activity. Nat Cell Biol, 2003, 5: 486-488.
    51. Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol, 2003, 194: 237-255.
    52. Yano H, Mazaki Y, KuroKawa K. Roles played by a subset of integrin signaling molecules in cadherin-based cel-cel adhesion. The Journal of Cel Biology,2004, 166(2): 283.
    53. Chert X, Liu S, Hou Y, et al. MicroPET imaging of breast cancer alpha V-integrin expresion with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol, 2004, 6(5): 350.
    54. Jansesn M, Frielink C, Dijkgrasfl, et la. Improved tumor targeting of radiolabeled RGD peptides using rapid dose fractionation. Cancer Biother Radiopharm, 2004, 19(4): 399.
    55. Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol, 2002,4(4): 83.
    56. Nath D, Slocombe PM, Stephens PE, Warn A, Hutchinson GR, Yamada KM, et al. Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5betal integrins on different haemopoietic cells.J Cell Sci, 1999, 112(Pt 4): 579-587.
    57. Eto K, Puzon-McLaughlin W, Sheppard D, Sehara-Fujisawa A, Zhang XP, & Takada Y. RGD-independent binding of integrin alpha9betal to the ADAM-12 and-15 disintegrin domains mediates cell-cell interaction. J Biol Chem, 2000,275: 34922-34930.
    58. Bridges LC, Tani PH, Hanson KR, Roberts CM., Judkins MB, & Bowditch RD. The lymphocyte metalloprotease MDC-L (ADAM28) is a ligand for the integrin alpha4betal. J Biol Chem, 2002, 277 : 3784-3792.
    59. Zhou HM, Weskamp G, Chesneau V. Sahin U. Vortkamp A, Horiuchi K, et al.Essential role for ADAM 19 in cardiovascular morphogenesis. Mol Cell Biol,2004,24:96-104.
    60. Zhao Z, Gruszczynska-Biegala J, Cheuvront T, Yi H, von der MH, vonder MK, et al. Interaction of the disintegrin and cysteine-rich domains of ADAM12 with integrin alpha7betal. Exp Cell Res, 2004, 298: 28-37.
    61. Iba K, Albrechtsen R, Gilpin BJ, Loechel F. & Wewer UM. Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion. Am J Pathol,1999, 154: 1489-1501.
    62. Iba K, Albrechtsen R, Gilpin B, Frohlich C, Loechel F, Zolkiewska A, et al. The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to betal integrin-dependent cell spreading. J Cell Biol, 2000, 149: 1143-1156.
    63. Liu X, Fridman JS , Wang Q, et al . Selective inhibition of ADAM metalloproteases blocks HER ?2 extracellular domain (ECD)cleavage and potentiates the anti-tumor efects of trastuzumab. Cancer Biol Then 2006, 5(6):648-656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700