谐振区雷达目标特征提取与目标识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谐振区雷达目标散射特性携带了目标的形状、尺寸等本原信息,是可供雷达目标识别使用的最为有效的电磁频谱特性。开展谐振区雷达目标识别研究可对重点防御目标进行早期预警、有效跟踪和精确打击;可充分发挥现役高频地波超视距雷达的特点,提高系统的整体性能。在高频地波超视距雷达工作频率范围内,舰船目标和飞机目标的散射特性基本处于谐振区。这一特点为高频地波超视距雷达目标识别提供了重要依据。针对这样的研究背景,本文从雷达目标散射特性的获取与分析,谐振区雷达目标特征的提取,谐振区雷达目标识别等三个方面进行了逐步深入的研究。
     首先,改进了在以往矩量法计算目标RCS中采用的线框几何建模方法,提出了一种适合谐振区复杂目标RCS计算的基于有限元建模软件FEMAP的曲面几何建模方法,实现了通过仿真计算手段获取更准确的目标RCS。提出利用一阶海杂波获取准确的高频地波超视距雷达舰船目标实测RCS的方法。利用实测RCS验证了曲面建模方法的准确性。利用仿真计算的手段研究舰船目标和飞机目标的在高频波段的RCS的变化特点,分析了目标尺寸和典型部件对RCS的贡献。
     其次,深入研究了利用仿真计算的频域数据提取复杂目标极点特征需要解决的问题。提出了一种基于谐振区频域散射数据的复杂目标极点特征提取方法。分析了由于频域数据截断造成的时域入射波形展宽和由此带来的对时域瞬态响应数据获取的影响;详细分析了入射波和目标相互作用产生瞬态响应的过程,定义了更加合理的晚期响应开始时间。提出基于晚期响应恢复误差最小化原则的改进总体最小二乘矩阵束方法,实现了飞机和舰船目标极点特征的可靠提取,首次给出了飞机和舰船目标各方位一致的极点特征。实现了用较少的极点和留数准确恢复目标的时域响应和目标频域响应。
     然后,研究了对目标频域响应数据进行有理逼近的问题。深入研究了以往的有理逼近方法对目标频域响应进行逼近存在的问题。将正交矢量拟合方法引入目标频域响应逼近问题中,运用迭代策略克服线性化误差,用正交部分分式代替多项式作为基函数解决法方程矩阵病态问题。对简单目标和复杂目标的仿真均获得了极好的频域响应逼近效果;同时可获得目标极点特征。与改进整体最小二乘矩阵束方法的效果相比,该方法获得的简单目标极点也更加准确。方法既实现了直接对目标频域数据进行有理逼近获得目标极点特征,又得到了目标频域响应的精确逼近。
     最后研究了谐振区雷达目标识别问题。在宽带雷达目标识别中,实现了利用极点特征匹配方法识别复杂目标。重点研究了噪声对极点提取以及对识别的影响。针对窄带雷达多频RCS特征目标识别中存在的问题,着重开展了雷达工作频率优化选择方面的研究。提出了基于平均分类错误概率最小准则的频率优化选择方法,实现了在较少的工作频率情况下实现较高的目标识别率。提出了一种基于门限技术的近邻分类器扩展方法,实现了在对库中舰船目标可靠识别的基础上,对非库中舰船目标有效拒判。
Radar target scattering characteristic in resonance region which takes the shape and size principle information of target is the most efficient spectrum characteristic for radar target identification (RTI). Ship and airplane targets locate in the resonance region for the working frequency of high frequency surface wave radar (HFSWR). This feature is the foundation of HFSWR target identification. Conducting the radar target identification research in resonance region can realize early stage warning and effective tracking and attack to major targets, exploit the advantage of HFSWR and improve the system performance of the HFSWR. According to this research background, research is carried out in three aspects which is radar target scattering characteristic analysis, aspect independence radar target feature extraction and HFSWR target identification.
     Firstly, surface geometry modeling method is used to replace wire-frame geometry modeling method in method of moments (MoM) based radar cross section (RCS) simulation. A modeling method based on the finite element modeling and post-processing software (FEMAP) which is fit to the resonance region targets is proposed in detail. Furthermore, a calibrating RCS approach utilizing the first order sea clutter to decrease the offset which is produced by the inaccurate of Norton surface wave attenuation and antenna gain is given to obtain more accurate measured RCS. Comparing with the measured RCS from HFSWR system, Simulation RCS results using these surface geometry modeling methods is more precise than the result of wire-frame geometry modeling method. Ship and airplane target RCS change characteristics are given and influences of target dimension and classic parts on the RCS are also analyzed based on the plenty of simulation results.
     Secondly, problems in complex target natural resonance frequencies (poles) extraction from MoM-based simulation frequency domain scattering data are investigated. A complex target poles extraction method exploiting simulated scattering data in frequency domain is provided. Waveform extended process due to the limited frequency band is analyzed and its influence to the transient response in time domain is also studied. More reasonable beginning time of late time response is defined. Then a modified total least square matrix pencil method (MTLS-MPM) is proposed to remove the disturbance of poles number uncertainty along with calculation errors based on minimal reconstruction error of late time response. Thus reliable poles extraction is realized, and poles location in complex plane of ship and airplane targets are first presented which is coincident in different aspects. Therefore, transient response is reconstructed by few pairs of pole and residue, and target frequency domain response is represented by poles and residues for the first time.
     Rational approximation to the target frequency response data is studied to obtain the target feature and accurate frequency response approximation. Least square rational approximation method and mini-max rational approximation method are investigatied. However, shortcomings of normal equation matrix ill-condition along with linearization error are discovered in theoretical analysis and numerical simulation. A rational approximation method based on orthogonal vector fitting (OVF) technique is proposed. Central to this method is that orthogonal partial fraction, instead of polynomial, is adopted as basic function of denominator and numerator to improve numerical stability, and iteration is used to decrease the linearization error. Simulations of simple and complex targets show that excellent approximations to frequency response are achieved. In addition, poles location is accurate as well as aspect independent. Particularly, Results of simple target poles are more precise than results of MTLS-MP.
     Finally, RTI in resonance region is studied. Target identification exploiting poles extraction and matching is investigated in broadband radar. Influence of noise in measured response on the poles extraction and target indentification are also studied. In narrow band radar target identication, research is emphasized on radar working frequency selection so as to improve multi-frequency radar target identification performance. Frequency optimal section based on minimal error rules (MER) of classification is proposed which can increase the identification probability without added frequency number. An expanded nearest neighbor (NN) classification method is given to realize the fundmation of rejection.
引文
1 J.R.Wait. Theory of HF Ground Wave Backscatter from Sea Waves. J. Geophys. Res. 1966, 71: 4832~4839.
    2 L.Sevgi, A.Ponsford, and H.C.Chan. An Integrated Maritime Surveillance System Based on High-frequency Surface-wave Radars. 1. Theoretical Background and Numerical Simulations. IEEE Antennas and Propagation Magazine. 2001, 43(4): 28~43.
    3 A.Ponsford, L.Sevgi, and H.C.Chan. An Integrated Maritime Surveillance System Based on High-frequency Surface-wave Radars. 2. Operational Status and System Performance. IEEE Antennas and Propagation Magazine. 2001, 43(5): 52~63.
    4 E.M.Kennaugh, D.L.Moffatt. Transient and Impulse Response Approximations. Proceedings of IEEE. 1965, 53(8): 893~901.
    5 D.L.Moffatt. Transient Response Characteristics in Identification and Imaging. IEEE Trans. on AP. 1981, 29(2): 192~205.
    6郭桂蓉,庄钊文,陈曾平.电磁特征抽取与目标识别.国防科技大学出版社. 1996: 12~20.
    7 B.Bhanu. Automatic Target Recognition: State of the ATR Survey. IEEE Trans on AES. 1986, 22(4): 364~379.
    8 C.Castro. Automatic Target Recognition Shows Promise. Defencse Elecronics. 1991, 8: 49~53.
    9 C.R.Smith, P.M.Goggans. Radar Target Identification. IEEE Antennas and Propagation Magazine. 1993, 35(2): 27~38.
    10郭桂蓉,郁文贤,胡步法.一种有效的舰船目标识别新方法.系统工程与电子技术. 1990, 11(6): 1~6.
    11许小剑.利用RCS幅度信息进行目标识别.系统工程与电子技术. 1992, 13(6): 1~6.
    12山秀明,何光辉,冯振明. MFMT和WT在雷达目标识别中的应用与比较.电子学报. 1997, 25(9): 95~97.
    13毛京红,许小剑.用子波变换提取回波波形特征.系统工程与电子技术. 1996, 17(3): 16~22.
    14 J.G.Teti. A Multi-Feature Decision Space Approach to Radar Target Dentification. IEEE Trans. on AES, 1996, 32(1): 480~487.
    15 M.R.Inggs, A.D.Robinson. Ship Target Recognition Using Low Resolution Radar and Neural Networks. IEEE Trans. on AES. 1999, 35(2): 386~393.
    16张汉华,王伟,姜卫东.基于时间谱信息的低分辨雷达飞机目标分类.系统工程与电子技术. 2004, 26 (4): 489~491.
    17王伟,张汉华,姜卫东.低分辨雷达的目标特征提取方法.国防科技大学学报. 2004, 24(2): 31~35.
    18 H.Leung. Intelligent Radar Recognition System for Surveillance. Proc. of IEEE International Conference on System, Man and Cybernetics. 1995. 2280~2285.
    19 H.Leung. Bayesian and Dempster-shafer Target Identification for Radar Surveillance. IEEE Trans. on AES. 2000, 36(2): 432~447.
    20 AD-368027. Ship Recognition with A High Resolution Radar.
    21 H.Hynes, R.E.Gardner. Doppler Spectra of S Band and X Band Signals. IEEE Trans. on AES. 1967, 3 (6): 356~365.
    22 M.R.Bell, R.A.Grubbs. JEM Modeling and Measurement for Radar Target Identification. IEEE Trans. on AES 1993, 29(1): 73~86.
    23 E.Piazza. Radar Signals Analysis and Modellization in the Presence of JEM Application to Civilian ATC Radars. IEEE Aerospace and Electronic Systems Magazine, 1999, 14(1): 35~40.
    24 S.Y.Yang, S.M.Yeh. Electromagnetic Scattering from Aircraft Propeller Blades. IEEE Trans. on MAG. 1997, 33(3): 1432~1435.
    25 V.C.Chen. Radar Signatures of Rotor Blades. Proceedings of SPIE. 2001, 4391: 63~70.
    26童创明,王光明,张晨新.喷气发动机的JEM效应调制谱分析.电波科学学报. 1999, 14(2): 137~143.
    27丁建江,张贤达.低分辨雷达螺旋桨飞机回波调制特性的研究.电子与信息学报. 2003, 25 (4): 460~466.
    28丁建江,张贤达.防空雷达飞机目标调制周期特征的研究.电子学报. 2003, 31(6): 903~906.
    29丁建江,张贤达,吕金建.常规雷达飞机回波调制特性的建模.系统工程与电子技术. 2003, 25 (11): 1047~1050.
    30 J.S.Chen. Automatic Target Classification Using HF Multifrequency Radar. Ph.D. Dissertation. The Ohio State University. 67~81.
    31 A.A.Ksienski, Y.T.Lin, L.J.White. Low-frequency Approach to Target Identification. Proceedings of IEEE. 1975, 63(12): 1651~1660.
    32 H.C.Lin, A.A.Ksienski. Optimum Frequencies for Aircraft Classification. IEEE Trans. on AES. Vol. 1981, 17(5): 656~665.
    33 J.S.Chen. E.K.Walton. Comparison of Two Target Classification Techniques. IEEE Trans. on AES. 1986, 22(1): 15~21.
    34 J.S.Chen. Relative Amplitude and Phase Features for Resonance-region Radar Identification. IEEE Proceedings of the National Aerospace and Electronics Conference, v1, 1989, 97~101.
    35 J.S.Chen. Radar Target Identification with Relative Amplitude and Unknown Target Aspect Angles. IEEE Proceedings of the National Aerospace and Electronics Conference, v1, 1990, 297-299
    36 Y.T.Chan, K.C.Ho, S.K.Wong. Aircraft Identification from RCS Measurement Using an Orthogonal Transform. IEE Proc. Radar, Sonar, Naving. 2000, 147(2): 93~102.
    37 C.L.Bennett, J.P.Toomey. Target Classcifucaion with Multifrequency Illumination. IEEE Trans. on AP. 1981, 29(2): 352~358.
    38 D.J.Straubeger, E.D.Garber, N.F.Chamberlain. Modeling and Performance of HFOTH Radar Target Classification Systems. IEEE Trans. on AES. 1993, 28(2): 396~403.
    39 AD-A197850. Modeling and Performance of HF/OTH Radar Target Classification Systems.
    40 C.Bares, C.Brousseau, A. Bourdlillon. A Multi-frequency HF-VHF Radar System for Aircraft Identification. 2005 IEEE International Radar Conference, May, 2005, 478~482.
    41 E.M.Kennaugh. The K-pulse Concept. IEEE Trans. on AP. 1981, 29(2): 387~391.
    42 H.T.Kim, N.Wang, D.L.Moffatt. K-pulse for A Thin Circular Loop. IEEE Trans. on AP. 1985, 33(12): 1403~1407.
    43 E.M.Kennaugh, D.L.Moffatt. The K-pulse and Response Waveforms for Nonlinear Transmission Lines. IEEE Trans. on AP. 1986, 34(1): 78~83.
    44 E.Rothwell, D.P.Nyquist, K.M.Chen, etc. Radar Target Discrimination Using the Extinction-pulse Techniques. IEEE Trans. on AP. 1985, 33(9): 929~936.
    45 F.S.Fok, D.L.Moffatt. The K-pulse and E-pulse. IEEE Trans. on AP. 1987, 35(11): 1325~1326.
    46 C.E.Buam, E.J.Rothwell, K.M.Chen, etc. The Singularity Expansion Method and Its Application to Target Identification. Proceedings of IEEE. 1991, 79(10): 1481~1492.
    47 K.M.Chen, D.P.Nyquist, E.Rothwell. New Progress on E/S Pulse Technique for Noncooperative Target Recognition. IEEE Trans. on AP. 1992, 40(7): 829~833.
    48 E.Rothwell, K.M.Chen, D.P.Nyquist. A General E-pulse Scheme Arising from the Dual Early-time/Late-time Behavior of Radar Scatterers. IEEE Trans. on AP. 1994, 42(9): 1336~1341.
    49 Q.Li, P. Ilavarasan. J.Ross, etc. Radar Target Identification Using a Combined Early-time/Late-time E-pulse Technique. IEEE Trans. on AP. 1998, 46(9): 1272~1278.
    50 A.Gallego, M.C.Carrion, D.P.Ruiz, etc. Extended E-pulse Technique for Discrimination of Conducting Spheres. IEEE Trans. on AP. 1993, 41(10): 1460~1462
    51 A.Gallego, D.P.Ruiz, M.C.Carrion. Radar Target Discrimination Using a Hybrid E-pulse Fourth-order Moments Technique. IEE Proc. Radar, Sonar, Naving. 1997, 144(6): 355~360.
    52 P.Ilavarasan, J.E.Ross, E.J. Rothwell, etc. Performance of an Automated Radar Target Discrimination Scheme Using E Pulses and S Pulses. IEEE Trans. on AP. 1993, 41(5): 582~588.
    53 J.E. Mooney, Z. Ding, L.S.Riggs. Performance Analysis of an Automated E-pulse Target Discrimination Scheme. IEEE Trans. on AP. 2000, 48(3): 619~628.
    54 M.C.Carrion. A.Gallego, J.Porti. Subsectional-polynoial E-pulsee Sybthesis and Application to Radar Target Discrimination. IEEE Trans. on AP. 1993, 41(9): 1024~1031.
    55 H.S.Lui, N.Shuley. Radar Target Identification Using a“Banded”E-PulseTechnique. IEEE Trans. on AP. 2006, 54(12): 3874~3881.
    56 J.D.Morales, D.Blanco, D.P.Ruiz, etc. Radar Target Identification via Exponential Extinction-Pulse Synthesis. IEEE Trans. on AP. 2007, 55(7): 2064~2072.
    57 D.Blanco, D.P.Ruiz, A.H.Hernande, etc. Extinction Pulses Synthesis for Radar Target Discrimination Using B-splines, New E-pulse Conditions. IEEE Trans. on AP. 2006, 54(5): 1577~1585.
    58 J.H.Lee, I.S.Choi, H.T.Kim. Natural Frequency-based Neural Network Approach to Radar Target Recognition. IEEE Trans. on SP. 2003, 51(12): 3191~3197
    59 M.C.Lin, Y.W.Kiang. Target Discrimination Using Multiple-frequency Amplitude Returns. IEEE Trans. on AP. 1990, 38(12): 1885~1889.
    60 M.C.Lin, Y.W.Kiang. Perfermance Analysis of a Radar Target Discrimination Technique. IEEE Trans. on AES. 1992, 28(4): 363~369.
    61 M.C.Lin, Y.W.Kiang. xperimental Discrimination of Wire Stick Targets Using Multiple-frequency Amplitude Requrns. IEEE Trans. on AP. 1992, 40(9): 1036~1040.
    62戴润林,李永庆.基于波形综合法的雷达目标识别的探讨.系统工程与电子技术. 1997,18(4): 1~4.
    63任爱民,林茂庸.极点识别的自适应综合法.系统工程与电子技术. 1994,15(11): 8~13.
    64韩鸿哲,陈曾平,庄钊文.无约束E脉冲波形综合法.系统工程与电子技术. 2000,21(10): 23~26.
    65许俊刚,柯有安.投影法雷达目标识别.电子学报. 1994,22(7): 28~34.
    66廖苏鹏,李兴国,方大纲.目标特征系数的最佳逼近算法和识别.电子科学学刊. 1993, 15(1): 26~32.
    67 S.P.Liao, X.G.Li, D.G.Fang. Optimal Approximation Algorithm of Futrue Coefficients and Target Identification. Journal of electronics. 1994, 11(1): 57~63.
    68 W.L.Cameron, L.K.Leung. Feature Motivated Polarization Scattering Matrix Decomposition. IEEE international Radar Conference, 1990: 549~557.
    69 T.Tenoux, P.Fournet. Analysis and Interpretation of High ResolutionPolarimetric SAR Images. IEEE international Radar Conference. 1994:121~125.
    70 N.F.Chamberlain, E.K.Walton, F.D.Garber. Radar Target Identification of Aircraft Using Polarization-diverse Features. IEEE Trans on. AES, 1991, 27(1): 58~67.
    71 H.J.Li, S.H.Yang. Using Range Profiles as Feature Vectors to Identify Aerospace Objects. IEEE Trans. on AP. 1993, 41(3): 261~268.
    72 H.J.Li, S.H.Yang, L.H.Wang. Matching Some Properties between Range Profiles of High Resolution Radar Targets. IEEE Trans. on AP. 1996, 44(4): 444~452.
    73 S.Hudson, D.Psaltis. Correlation Filters for Aircraft Identification from Radar Range Profiles. IEEE Trans. on AES, 1993, 29(3): 741~748.
    74 C.Stewart, Y.C.Lu, V.Larson. A Neural Clustering Approach for High Resolution Radar Target Identification. Pattern Recognition, 1994, 27(4): 503~513
    75 P.E.Zwicke, J.R.Imrekiss. A New Implementation of the Mellin Transform of Range Profile of Ship. IEEE Trans on PAMI, 1983, 5(2): 139~142.
    76何松华,郭桂蓉,郭修煌.基于目标距离像的地面目标检测与跟踪.国防科技大学学报, 1991, 13(1): 5~11.
    77 I.Journy. Despcription of Radar Targets Using Bispectrum. IEEE Trans. on AES, 1995, 31(1): 69~77.
    78 I.Journy, F.D.Garber, R.L.Moses. Radar Target Identification Using the Bispectrum: A Comparative Study. IEEE Trans. on AES. 1995, 31(1): 69~77.
    79 R.A.Mitchell, J.J.Westerkamp. Robust Ststistical Feature Based Aircraft Identification. IEEE Trans. on AES, 1999, 35(3): 1077~1083.
    80 S.Chaktabarti, etc. Robust Radar Target Classifier Using Artificial Neural Networks. IEEE Trans. on NN. 1995, 6(3) : 760~766.
    81王宝义,时振栋.电磁场在目标识别中的应用.电子工业出版社,1995: 65~80.
    82 B.D.Rao, K.S.Arun. Model Based Processing of Signals: A State Space Approach. Proceedings of IEEE. 1992, 80(3): 283~309.
    83刘继军.不适定问题的正则化方法及应用.科学出版社. 2005: 11~20.
    84 M.L.Blaricum, R.Mittra. A Technique for Extracting the Poles and Residues of a System Directly from its Transient Response. IEEE Trans. on AP, 1975, 23(6): 777~781.
    85 M.L.Blaricum, R.Mittra. Problems and Solutions Associated with Prony's Method for Processing Transient Data. IEEE Trans. on AP, 1978, 26(1): 174~182.
    86 C.W.Chuang, D.L.Moffatt. Natural Resonances of Radar Targets via Prony's Method and Target Discrimination. IEEE Trans. on AES, 1976, 12(5): 583~589.
    87 J.N.Brittingham, E.K.Miller, J.L.Willdows. Pole Extraction from Real-frequency Information. Proceedings of IEEE. 1980, 68(2): 263~273.
    88 R.Kumaresan, D.W.Tufts. Estimating the Parameters of Exponentially Damped Sinusoids and Pole-zero Modeling in Noise. IEEE Trans. on ASSP, 1982, 30(6): 833~840.
    89 D.W.Tufts, R.Kumaresan. Estimation of Frequencies of Multiple Sinusoids Making Linear Prediction Performs Like Maximum Likelihood. Proceedings of IEEE. 1982, 70(5): 975~989.
    90 M.A.Rahman, K.B.Yu Total Least Squares Approach for Frequency Estimation Using Linear Prediction. IEEE Trans. on ASSP, 1987, 35(10): 1440~1454.
    91 Y.B.Hua, T.K.Sarkar. A Discussion of E-pulse Method and Prony's Method for Radar Target Resonance Retrieval from Scattered Field. IEEE Trans. on AP. 1989, 37(7): 944~946.
    92 G.Majda, W.Struss, M.S.Wei. Computation of Exponentials in Transient Data. IEEE Trans. on AP. 1989, 37(10): 1284~1290.
    93 H.Ouibrrahim. Prony, Pisarenko, the Matrix Pencil, Unified Presentation. IEEE Trans. on AP. 1989, 37(1): 133~138.
    94 R.Kumaresan. On a frequency Domain Analog of Prony's Method. IEEE Trans. on SP. 1990, 38(1): 168~170.
    95 W.M.Steedly, C.H.Ying, R.L.Mose. A Modified TLS-Prony Method Using Data Decimation. IEEE Trans. on SP. 1994, 42(9): 2292~3003.
    96 W.M.Steedly, C.H.Ying, R.L.Mose. The Cramer-Rao Bound for Pole and Amplitude Coefficient Estimates of Damped Exponential Signals in Noise.IEEE Trans. on SP. 1993, 41(3): 1305~1318.
    97 Y.Li, K.J.Ray, J.Razavilar. A Parameter Estimation Scheme for Damped Sinusoidal Signals Based on Low-rank Hankel Approximation. IEEE Trans. on SP. 1997, 45(2): 481~485.
    98 J.H.Lee, H.T.Kim. Selecting Sampling Interval of Transient Response for the Improved Prony Method. IEEE Trans. on AP. 2003, 51(3): 74~77.
    99 J.H.Lee, H.T.Kim. Selection of Sampling Interval for Least Squares Prony Method. Electronics Letters. 2005, 41(1): 6~7.
    100 V.K.Jain. Filter Analysis by Use of Pencil of Functions Part I. IEEE Trans. on CAS. 1974, 21(5): 574~579.
    101 V.K.Jain. Filter Analysis by Use of Pencil of Functions Part II. IEEE Trans. on CAS. 1974, 21(5): 580~583.
    102 V.K.Jain, T.K.Sarkar, D.D.Weiner. Rational Modeling by Pencil-of-functions Method. IEEE Trans. on ASSP. 1983, 31(5): 564~573.
    103 A.J.Maacky, A.Mccowen. An Improved Pencil-of-functions Method and Comparisons with Traditional Methods of Pole Extraction. IEEE Trans. on AP. 1987, 35(4): 435~440.
    104 M.P.Ross, D.G.DuDley. Comments on“An Improved Pencil-of-functions Method and Comparisons with Traditional Methods of Pole Extraction”. IEEE Trans. on AP. 1988, 36(8): 1192~1195.
    105 Y.B.Hua, T.K.Sarkar. Generalized Pencil-of-functions Method for Extracting Poles of an EM System from its Transient Response. IEEE Trans. on AP. 1989, 37(2): 229~235.
    106 Y.B.Hua, T.K.Sarkar. Matrix Pencil Method for Estimating Parameters of Exponentially Damped/Undamped Sinusoids in Noise. IEEE Trans. on ASSP. 1990, 38(5): 814~824.
    107 B.D.Rao. Relationship between Matrix Pencil and State Space Based Harmonic Retrieval Methods. IEEE Trans. on ASSP. 1990, 38(1): 177~179
    108 Y.B.Hua, T.K.Sarkar. On SVD for Estimating Generalized Eigenvalues of Singular Matrix Pencil in Noise. IEEE Trans. on SP. 1991, 39(4): 892~900.
    109 Y.B.Hua. Parameter Estimation of Exponentially Damped Sinusoids Using Higher Order Statistics and Matrix Pencil. IEEE Trans. on SP. 1991, 39(7): 1691~1693.
    110 T.K.Sarkar, O.Pereira. Using the Matrix Pencil Method to Estimate the Parameters of a Sum of Complex Exponentials. IEEE Antennas and Propagation Magazine. 1995, 37(1): 48~55.
    111 R.S.Adve, T.K.Sarkar. Extrapolation of Time-domain Responses from Three-dimensional Conducting Objects Utilizing the Matrix Pencil Method. IEEE Trans. on AP. 1997, 45(1): 147~156.
    112 T.K.Sarkar, S.Park, J.Koh, etc. Application of the Matrix Pencil Method for Estimating the SEM (Singularity Expansion Method) Poles of Source-free Transient Responses from Multiple Look Directions. IEEE Trans. on AP. 2000, 48(4): 612~618.
    113 S. Rouquette, M. Najim. Estimation of Frequencies and Damping Factors by Two-dimensional ESPRIT Type Methods. IEEE Trans. on SP. 2001, 49(1): 237~245.
    114 M.L.Crow, A.Singh. The Matrix Pencil for Power System Modal Extraction. IEEE Trans. on PS. 2005, 20 (1): 501~502.
    115 M.F.Cátedra, F.Rivas, C.Delgado, etc. Application of Matrix Pencil to Obtain the Current Modes on Electrically Large Bodies. IEEE Trans. on AP. 2006, 54(8): 2429~2436.
    116 S.Wang, X.Guan, D.Wang, etc. Application of Matrix Pencil Method for Estimating Natural Resonances of Scatterers. Electronics Letters. 2007, 43(1): 16~18.
    117 F.J.Chen, C.C.Fung, C.W.Kok, etc. Estimation of Two-Dimensional Frequencies Using Modified Matrix Pencil Method. IEEE Trans. on AP. 2007, 55(2): 718~724.
    118 K.M.Chen, D.P.Nyquist, E.Rothwell, etc. Radar Target Discrimination by Convolution of Radar Return with Extinction-pulses and Single-mode Extraction Signals. IEEE Trans. on AP. 1986, 34(7): 896~902.
    119 E.Rothwell, K.M.Chen, D.P.Nyquist. Extraction of the Natural Frequencies of a Radar Target from A Measured Response Using E-pulse Techniques. IEEE Trans. on AP. 1987, 35(6): 715~800.
    120 E.Rothwell, K.M.Chen, D.P.Nyquist, etc. Frequency Domain E-pulse Synthesis and Target Discrimination. IEEE Trans. on AP. 1987, 35(4): 426~434.
    121 E.Rothwell, K.M.Chen. A Hybrid E-pulse/Least Squares Technique for Natural Resonance Extraction. Proceedings of IEEE. 1988, 74(3): 296~298.
    122 A.Gallego, A.Madouri, M.C.Carrion. Estimation of Number of Natural Resonances of Transient Signal Using E-pulse Technique. Electronics Letters. 1991, 27(24): 2253~2256.
    123 B.Drachman, E.Rothwell. A Continuation Method for Identification of the Natural Frequencies of an Object Using a Measured Response. IEEE Trans. on AP. 1985, 33(6): 445~450.
    124 B.Drachman, E.Rothwell. Addendum to“A Continuation Method for Identification of the Natural frequencies of an Object Using a Measured Response. IEEE Trans. on AP. 1986, 34(2): 271~271.
    125 S.W.Park, J.D.Codaro. Improved Estimation of SEM Parameters from Multiple Observations. IEEE Trans. on AP. 1988, 30(2): 145~153.
    126 P.Ilavarasan, E.J.Rothwell, K.M.Chen, etc. Natural Resonance Extraction from Multiple Data Sets Using A Genetic Algorithm. IEEE Trans. on EC. 1995, 43(8): 900~904.
    127 I.S.Choi, J.H.Lee, H.T.Kim. Natural frequency Extraction Using Late-time Evolutionary Programming-based CLEAN. IEEE Trans. on AP. 2003, 51(12): 3285~3292.
    128 J.Chauveau, N.Beaucoudrey, J.Saillard. Selection of Contributing Natural Poles for the Characterization of Perfectly Conducting Targets in Resonance Region. IEEE Trans. on AP. 2007, 55(9): 2160~2168.
    129 S.Jang, W.Choi, T.K.Sarkar, etc. Interpolation and Extrapolation of Radar Cross Section Data in the Frequency Domain Using the Cauchy Method. IEEE Trans. on AP. 2007, 52(11): 3109~3121.
    130 J.Li, L.Jen. Extraction of Natural Frequencies of Radar Target by L2 Space Optimization. Electronics Letters. 1994, 30(24): 2072~2073.
    131温显斌,田铮,林伟.指数信号模型中参数的稳健估计.航空学报. 2003, 24(5): 439~442.
    132匡纲要.粟毅,彭长青等.基于高阶矩的改进Prony技术的雷达目标冲击响应极点提取.系统工程与电子技术. 1995, 17(10): 20~25.
    133李敬,汪文秉,任朗.处理瞬态数据的连续化方法.电子学报. 1992, 20(3): 59~64.
    134吴先良,焦丹,王良知等.从目标瞬态响应中提取极点的样条拟合及有理逼近方法.中国科技大学学报. 1996, 26(4): 528~533.
    135焦丹,徐善驾,吴先良.一种新的目标自然频率的提取方法.自然科学进展. 1999, 9(4): 351~357.
    136 D.Jiao, S.Xu, X.Wu. New Method for Natural frequency Extraction. Progress in Nature Science. 1999, 9(7): 545~552.
    137王党卫,粟毅,马兴义.一种基于互相关处理的极点提取新算法.电子学报. 2005, 33(60): 1015~1018.
    138姜文利,柯有安.信号极点估计的状态空间方法.北京理工大学学报. 1995, 15(2): 194~199.
    139王卫东,柯有安.信号极点估计的矩阵预测方法的研究.电子科学学刊. 1995, 17(3): 250~255.
    140姜文利,唐白玉,柯有安.噪声信号极点估计的一般方法.北京理工大学学报. 1996, 16(6): 643~648.
    141王少刚,陈夏萌,粟毅.求解导体球极点的等效电路法.微波学报. 2004, 20(1): 23~25.
    142王少刚,关鑫璞,王党卫等.任意形状导体目标的极点求解.电子学报. 2007, 35(6): 1074~1078.
    143王党卫.超宽带雷达目标电磁特征抽取与识别方法研究.国防科学技术大学博士论文. 2006: 12~17.
    144黄培康,殷红成,许小剑.雷达目标特性.电子工业出版社, 2005:35~45
    145阮颖铮.雷达散射截面与隐身技术.国防工业出版社, 1998:10~32
    146 C.Uluisik, G.Cakir, L.Sevgi. Radar Cross Secrions (RCS) Modeling and Simulation, Part 1: A Tutorial Review of Definitions, Strategies, and Canonical examples. IEEE Antennas and Propagation Magazine. 2008, 50(1): 115~126.
    147 FEMAP Version 8.0 Use Guide. Structural Dynamics Research Corp. 1996: 3~16.
    148 C.W.Trueman, S.L.Kubina, S.R.Mishra, etc. RCS of Four Fuselage-Like Scatterers at HF Frequencies. IEEE Trans. on AP, 1992, 41(4): 236~240.
    149 S.R.Mishra, C. Larose, C.W.Trueman. RCS of Resonant Scatterers with Attached Wires. IEEE Trans on AP, 1993, .42(3): 351~354.
    150 C.W.Trueman, S.L.Kubina, S.R.Mishra, etc. Radar Cross Section of aGeneric Aircraft at HF Frequencies. Canadian Journal of Electrical and Computer Engineering. Apr. 1993: 59~64
    151 C.W.Trueman, S.L.Kubina, S.R.Mishra etc. HF RCS of Small Aircraft by Computation and by Measurement. Proceedings of International Symposium on Antennas, Nice, France, 8-10 Nov. 1994: 258~261.
    152 A.David, C.Brousseau, A.Bourdillon. Simulations and Measurements of a Radar Cross Section of a Boeing 747-200 in the 20-60MHz Frequency Band. Radio Sci, 2003, 38(4): 31~37.
    153 M.I.Skolnik. An Empirical Formula for the Radar Cross Section of Ships at Grazing Incidence. IEEE Trans. on AES. 1974, 55(3): 2160~2168.
    154 J.R.Rarnum. Ship Detection with High-resolution HF Skywave Radar. IEEE Journal of Oceanic Engineering. 1986, 21(2): 196~209.
    155 L.Sevgi. Target Reflectivety and RCS interaction in Intergrated Maritime Surveillance Systems Based on Surface-wave High-frequency Radars. IEEE Antennas and Propagation Magazine. 2001, 43(1): 36~51.
    156 H.Leong, H.Wilson. An Estimation and Verification of Vessel Radar Cross Sections for High-frequency Surface Radar. IEEE Antennas and Propagation Magazine. 2006, 48(2): 11~16.
    157 C.S.Saunders. Jane’s Fighting Ships 2004-2005. Jane’s Information Group Limited, Sentinel House. 2005. 1~7.
    158 D.D.Crombie. Doppler Spectrum of Sea echo at 13.56MHz. Nature. 1955, 175: 681~682.
    159 D.E.Barrick. First-order Theory and Analysis of MF/HF/VHF Scatter from the Sea. IEEE Trans. on Antennas Propagation. 1972, 20(1): 2~10.
    160 B.J.Lipa, D.E.Barrick. Extration of Sea State from HF Radar Sea echo: Mathematical Theory and Modeling. Radio Sci. 1986, 21(1): 81~100.
    161冀振元.舰载超视距雷达目标与海杂波特性分析及模拟.哈尔滨工业大学博士论文. 2001:27~35
    162 C.E.Baum. The Singularity Expansion Method for the Solution of Electromagnetic Interaction Problems. In Interaction Note 88: Air Force Weapons Lab., Dec. 1971.
    163 C.E.Baum. Emerging Technology for Transient and Broad-band Analysis and Synthesis of Antenna and Scatterers. Proceedings of IEEE. 1976, 10(4):292~292.
    164龙云亮,文希理,谢处方.奇点展开法的基本理论及发展状况.系统工程与电子技术. 1992, 13(4): 46~50.
    165马柏林.奇点展开法综述.电子学报. 1985, 13(5): 108~115.
    166 L.Marin. Natural Representation of Transient Scattered Fields. IEEE Trans. on AP. 1973, 21(6): 809~818.
    167 Y.Long, Z.Peng, X.Wen, etc. Pivoting Method for Efficient Determination of Poles in Singularity Expansion Method. Electronics Letters. 1992, 28(13): 1279~1280
    168张贤达.现代信号处理.北京:清华大学出版社. 1995:68~74.
    169 K.M Chen, D.Westmorelandi, Impulse of a Conducting Sphere Based on Singularity Expansion Method. Proceedings of IEEE. 1981, 69(6): 747~750.
    170 E.M.Kennaugh, D.L.Moffatt. Comments on“Impulse of a Conducting Sphere Based on Singularity Expansion Method”. Proceedings of IEEE. 1982, 70(3): 294~295.
    171 E.M.Kennaugh. R.L.Cosgriff. The Use of Impulse Response in Electromagnetic Scattering Problems. IRE Nat.Conv, Part 1, 1958: 72~77.
    172 L.W.Pearson. A Note on the Representation of Scattered fields as a Singularity Expansion. IEEE Trans. on Antennas Propagation. 19842, 32(5): 520~524.
    173王仁宏,朱功勤.有理函数逼近及其应用.科学出版社, 2004: 74~85.
    174 E.C.Levy. Complex Curve fitting. IRE Trans. on Automatic Control. 1959, 4(1): 37~44.
    175 C.K.Sanathanan, J.Koerner. Transfer function Systhesis as a Ratio of Two Complex Polynomials. IEEE Trans. on Autom. Control. 1963, 8(1): 56~58.
    176 B.Gustavsen, A.Semlyyen. Rational Approximation of Frequency Domain Responses by Vector Fitting. IEEE Trans. on Power Delivery. 1997, 14(3): 1052~1061.
    177 B.Gustavsen, A.Semlyyen. Robust Approach for System Identification in the Frequency Domian. IEEE Trans. on Power Delivery. 2004, 19(3): 1167~1173.
    178 W.Hendrickx, T.Dhaene. A Discussion of“Robustapproach for System Identification in the Frequency Domain”. IEEE Trans. on Power Systems.2006, 21(1): 441~443.
    179 D.Deschrijver, B.Haegeman, T.Dhaene. Orthonormal Vector Fitting: A Robust Macromodelling Tool for Rational Approximation of Frequency Domain Responses. IEEE Trans. Adv. Packag. 2007, 30(2): 216~225.
    180 D.Deschrijver, B.Gustavsen, T.Dhaene. Advancements in Iterative Methods for Rational Approximation in the Frequency Domain. IEEE Trans. on Power Delivery. 2007, 22(3): 1633~1642.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700