香烟烟雾对雄性小鼠睾丸与附睾影响的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的:香烟烟雾成分复杂,许多成分能够危害人体健康。流行病学调查显示,吸烟行为与男性的生育能力之间具有较高的相关性,其主要表现为精液中精子密度降低、精子运动能力减弱、精子形态异常、体外受精受孕率降低。这一现象直接导致了吸烟男性生育能力的降低,甚至因而影响到后代的健康。很多研究者试图找出吸烟行为降低男性生育能力的原因,包括彗星电泳法(comet)、末端脱氧核苷酸转移酶介导的dUTP-生物素缺口末端标记法(TUNEL)与精子染色体结构分析(SCSA)在内的各种方法证实了吸烟会导致精子DNA的断裂、染色体的结构异常以及染色体非整倍性的发生,也有研究显示吸烟会改变血清中激素的水平,从而影响精子的生成。
     雄性生殖系统中,睾丸是精子生成的主要场所,而附睾是精子成熟的主要场所,这两个器官对精子与精液的质量具有非常重要的作用。我们的研究使用实验室先期建立的小鼠吸烟模型,运用蛋白质组学的方法来观察香烟烟雾处理后小鼠睾丸与附睾中蛋白质总体的表达情况,找出表达水平较没有使用香烟烟雾处理的小鼠睾丸与附睾中的相应蛋白质发生显著差异的蛋白质,结合生物信息学的方法分析这些蛋白质的功能以及它们与生育能力之间的关系,试图找出香烟烟雾处理对雄性生育能力造成影响的分子机制。
     研究方法:七周龄雄性C57/BL6J小鼠每日用香烟烟雾处理两次,每次一小时,持续处理两周,对照组小鼠不用香烟烟雾处理。处理期满后取小鼠睾丸与附睾,分别提取总蛋白进行双向电泳,比较处理组小鼠与对照组小鼠相关组织的双向电泳结果,挑选两者间表达水平发生显著差异的蛋白质点切胶进行基质辅助激光解吸/电离飞行时间质谱分析,以鉴定出这些蛋白质点所代表的蛋白质。从质谱分析鉴定得到的蛋白质中随机取数个蛋白质,使用Western-blotting的方法对这些蛋白质在处理组小鼠与对照组小鼠相关组织中表达水平差异的趋势进行验证,以确定双向电泳与质谱分析的结果是否可靠,同时利用Real-time PCR的方法对这些蛋白相应的基因在相应器官中的转录水平进行检测,以观察这些基因在处理组与对照组小鼠之间转录水平的差异。
     将得到验证的由双向电泳与质谱分析得到的香烟烟雾处理后小鼠睾丸与附睾组织中表达水平发生变化的蛋白质使用Blast2GO进行功能注释,同时从生物学过程、分子功能两个层次上对这些蛋白质进行基于基因本体论的归类。使用通路分析工具KEGG与IPA对这些蛋白质所涉及的通路进行分析,找出受到影响的主要通路与生物学过程。对找出的通路的下游作用标志物使用免疫组织化学的方法在组织水平上对组织切片进行检测,以验证通路分析得到的结果与推测。
     研究结果:通过双向电泳,我们发现香烟烟雾处理后的小鼠睾丸与附睾组织中各自有超过1000个蛋白点的表达水平与对照组小鼠存在差异,其中睾丸组织中有27个蛋白点的表达水平差异在1.5倍以上,附睾组织中有52个蛋白点的表达水平差异在2倍以上,可以认为差异水平显著。挑选这些在香烟烟雾处理后的小鼠睾丸与附睾组织中表达水平差异显著的蛋白点进行质谱分析,睾丸与附睾组织中分别有27个蛋白点成功地得到了鉴定,它们的表达水平各自可以用来代表27种相应蛋白质的表达水平。在小鼠睾丸中,得到鉴定的27种蛋白质中的6种蛋白质表达水平上调,21种蛋白质表达水平下调;在小鼠附睾中,得到鉴定的27种蛋白质中的12种蛋白质表达水平上调,15种蛋白质的表达水平下调。分别随机挑选睾丸组织中的5种蛋白质和附睾组织中的8种蛋白质,使用相应组织进行Western-blotting对双向电泳与质谱分析得到的结果进行验证,结果显示Western-blotting检测得到的处理组与对照组间表达差异的趋势与双向电泳和质谱分析得到的表达差异趋势基本一致,因此认为双向电泳与质谱分析的结果是可靠的。
     将通过双向电泳与质谱分析得到的差异表达蛋白上传至IPA进行通路分析,发现在香烟烟雾处理后的小鼠睾丸中,表达水平与对照组小鼠具有显著差异的蛋白质中很多都能够直接或间接地与NF-κB发生作用,且根据通路分析它们的表达水平变化趋势能够抑制NF-κB的表达或激活。使用NF-κB复合体p65亚基的抗体在相应的睾丸组织切片上使用免疫组织化学的方法检测NF-κB的表达与激活情况,证实相较于对照组小鼠睾丸组织,香烟烟雾处理后的小鼠睾丸组织中生殖细胞内的NF-κB的表达或激活遭到了抑制。NF-κB在这些细胞中的正常水平的表达与激活对维持生殖细胞的正常增殖与精子的分化具有非常重要的意义,香烟烟雾抑制了这些细胞中的NF-κB的表达与激活,可能会通过影响到生殖细胞的正常增殖与精子的分化而影响到精液的质量。
     同样的,将通过双向电泳与质谱分析得到的差异表达蛋白上传至KEGG进行通路分析后发现,在香烟烟雾处理后的小鼠附睾中,表达水平于对照组小鼠具有显著差异的蛋白质比较集中作用的通路有谷胱甘肽代谢通路与内质网相关降解途径(ERAD),且根据Blast2GO对这些蛋白质的注释,其中很多蛋白质均与维持机体正常的氧化还原稳态相关。这一结果暗示了香烟烟雾处理后小鼠附睾处于氧化应激状态。使用氧化应激的特异性标志物8-OHdG抗血清在相应的附睾组织切片上使用免疫组织化学的方法检测8-OHdG的存在,结果显示香烟烟雾处理后的小鼠附睾处于较为严重的氧化应激状态中。氧化应激能够引起ERAD从而影响蛋白质的正常合成,而Real-time PCR的结果显示处理组与对照组的小鼠附睾组织间差异表达蛋白在相应基因的转录水平上差异并不显著,且差异趋势与蛋白质水平的差异趋势不一致,这一点提示我们也许是氧化应激引起的ERAD导致了蛋白表达水平的差异。
     此外,在对其他经过香烟烟雾处理后的小鼠睾丸与附睾组织中表达存在显著差异的蛋白经过注释与分析后我们发现,它们中的很多都能够通过不同途径影响到生育能力。
     结论:香烟烟雾处理能够导致小鼠睾丸和附睾这两个重要的生殖器官中蛋白表达水平的变化,在睾丸中香烟烟雾能够通过对NF-κB途径的抑制干扰生殖细胞的正常增殖与精子的分化,在附睾中则能够通过造成氧化应激诱导ERAD的发生,从而影响蛋白质的正常合成,进一步损害附睾正常的功能。结合其他表达发生显著差异的蛋白对精子的影响,香烟烟雾最终通过这些途径降低精子的质量,从而使雄性小鼠的生育能力下降。
Background: The composition of cigarette smoke is very complex. Manycomponents of cigarette smoke are hazardous to health. Epidemiologicalresearch showed that there was a high correlation between smoking andmale fertility. Smoking could reduce sperm density in the semen, reducesperm motility, cause abnormal sperm morphology and decrease thepregnancy rate of IVF, which resulted in the depression of male fertility.Besides, smoking could even affect the health of the offspring. Manyresearchers tried to find the mechanism through which smoking affectmale fertility. Using methods include comet, TUNEL and SCSA, it wasproved that smoking could cause sperm DNA fragmentation,chromosome structural abnormalities and chromosome aneuploidy. It wasalso reported that smoking could change the hormone level in the serum,which would affect spermatogenesis. However, rare research has beendone on the molecular mechanism through which smoking affact semenquality using proteomic method.
     To the male reproductive system, testis and epididymis were the key place where spermatogenesis and sperm maturation occurred. Using thepre-established mice smoking model, this study aim to find out theproteins whose expressions were changed significantly after cigarettesmoke exposure in testis and epididymis, analysis their functions andtheir relationship with male fertility and figure out the molecularmechanisms through which cigarette smoke impact on male fertility.
     Research method: C57/BL6J mice at the age of7weeks were treatedwith cigarette smoke twice a day,1hour for each time while the mice ofcontrol group were treated without cigarette smoke. After being treatedfor2weeks, the testis and epididymis of these mice were collected andwhole proteins were extracted to perform2-DE. The results of2-DE werecompared and protein spots whose expressions were changedsignificantly were selected to be analyzed using MALDI-TOF-MS toidentify the proteins which could be represented by these protein spots.Several identified differential expressed proteins were selected, andWestern-blotting was used to detect their expression in the correspondingtissues, verifying the results of2-DE and MS. The transcript level of theirgenes in corresponding tissues was also detected through Real-time PCRto compare the differences between the two groups.
     Blast2GO was used to annotate the functions of these differentialexpressed proteins identified by2-DE/MS and classify them into groupsaccording to the Gene Ontology functional annotation. KEGG and IPA were used to analyze the pathways in which these proteins were involved,and the main pathways which were impacted by cigarette smoke exposurewere figured out. Immunohistochemistry were used to detect thedownstream markers of these pathways, verifying the results of thepathway analysis.
     Results: Over1000protein spots were found to be differential expressedfrom the testis and epididymis of the mice treated by cigarette smoke. Theexpressions of27protein spots from the testis changed over1.5foldwhile that of52protein spots from the epididymis changed over2fold,which was thought to have a significant change. These protein spots wereselected to be analyzed by MALDI-TOF-MS and27of them wereidentified as27proteins from the testis and the epididymis respectively.In the27proteins indentified from testis, the expressions of6proteinswere up-regulated and that of21proteins were down-regulated, while inthe27proteins indentified from epididymis, the expressions of12proteins were up-regulated and that of15proteins were down-regulated.Using western-blotting, the tendency of the expressions of these proteinswas proved to be identical to the results of2-DE/MS. So the results of2-DE/MS were thought to be reliable.
     IPA was used to perform the pathway analysis of the differentialexpressed proteins from the testis. Many differential expressed proteinswere found to have interaction with NF-κB, and the expression or activation of NF-κB could be suppressed by cigarette smoke exposureaccording to the pathway analysis. The subunit of NF-κB, p65, wasdetected on the testis sections to see whether the activation level ofNF-κB was changed after treatment and it was proved that the expressionor activation of NF-κB was inhibited in the germ cell in the testis of themice treated with cigarette smoke. The normal expression and activationof NF-κB was important for the proliferation and differentiation of thegerm cell in testis. Thus, the inhibition of the NF-κB expression oractivation caused by cigarette smoke exposure could affect the spermquality.
     KEGG was used to perform the pathway analysis of the differentialexpressed proteins from the epididymis. It was found that in theepididymis of the mice treated with cigarette smoke, differentialexpressed proteins were mainly enriched in glutathione metabolismpathway and ERAD, and many differential expressed proteins wererelated to the maintaining of redox homeostasis, which implied that theepididymis of the mice treated with cigarette smoke experiencedoxidative stress. The antibody of the specific marker of oxidative stress,8-OHdG, was used to detected8-OHdG on epididymis sections in situthrough immunohistochemistry, and it was proved that the epididymis ofthe mice treated with cigarette smoke experienced a serious oxidativestress. Oxidative stress could induce ERAD, altering the synthesis of the proteins, while the change tendency of transcript level of thecorresponding genes was not identical to that of the proteins according tothe results of real-time PCR, which suggested that the altering of proteinprofile in the epididymis of the mice treated with cigarette smoke wascaused by ERAD via oxidative stress.
     Besides, after being annotated and analysis, many other differentialexpressed proteins in the testis and epididymis truned out to have relationwith male fertility.
     Conclusion: cigarette smoke exposure could alter the protein profile inmice testis and epididymis. It could disturb normal proliferation anddifferentiation of germ cells via the inhibition of NF-κB pathway in tesitisand disturb the synthesis of proteins via ERAD induced by oxidativestress in epididymis, impairing the function of these organs. Otherdifferential expressed proteins also play roles in the control of spermquality. Through these ways, cigarette smoke exposure depressed spermquality and the fertility of male mice.
引文
1. Clermont Y, The cycle of the seminiferous epithelium in man. AmericanJournal of Anatomy,2005.112(1):35-51.
    2. De Rooij D G, Stem cells in the testis. International Journal of ExperimentalPathology,1998.79(2):67-80.
    3. Dettin L, Ravindranath N, Hofmann M C, et al., Morphologicalcharacterization of the spermatogonial subtypes in the neonatal mouse testis.Biology of Reproduction,2003.69(5):1565-1571.
    4. Clermont Y and Bustos‐Obregon E, Re‐examination of spermatogonialrenewal in the rat by means of seminiferous tubules mounted “in toto”.American Journal of Anatomy,2005.122(2):237-247.
    5. Hess R A, Quantitative and qualitative characteristics of the stages andtransitions in the cycle of the rat seminiferous epithelium: light microscopicobservations of perfusion-fixed and plastic-embedded testes. Biology ofReproduction,1990.43(3):525-542.
    6. Huckins C and Oakberg E F, Morphological and quantitative analysis ofspermatogonia in mouse testes using whole mounted seminiferous tubules. I.The normal testes. Anat. Rec,1978.192(4):519-528.
    7. Ehmcke J, Wistuba J, and Schlatt S, Spermatogonial stem cells: questions,models and perspectives. Human Reproduction Update,2006.12(3):275-282.
    8. Clermont Y, Renewal of spermatogonia in man. American Journal of Anatomy,1966.118(2):509-524.
    9. Jones R E and Lopez K H, Human reproductive biology. Academic Press.2006, p.99.
    10. Jones R E and Lopez K H, Human reproductive biology. Academic Press.2006, p.101-102.
    11. Jones R E and Lopez K H, Human reproductive biology. Academic Press.2006, p.102-103.
    12. Jones R E and Lopez K H, Human reproductive biology. Academic Press.2006, p.105-107.
    13. Russell L D and Clermont Y, Degeneration of germ cells in normal,hypophysectomized and hormone treated hypophysectomized rats. TheAnatomical Record,1977.187(3):347-365.
    14. Brown N and Follett B, Effects of androgens on the testes of intact andhypophysectomized Japanese quail. General and Comparative Endocrinology,1977.33(2):267-277.
    15. Cornwall G A, New insights into epididymal biology and function. HumanReproduction Update,2009.15(2):213-227.
    16. Kujala M, Hihnala S, Tienari J, et al., Expression of ion transport-associatedproteins in human efferent and epididymal ducts. Reproduction,2007.133(4):775-784.
    17. Pietrement C, Sun-Wada G, Da Silva N, et al., Distinct expression patterns ofdifferent subunit isoforms of the V-ATPase in the rat epididymis. Biology ofReproduction,2006.74(1):185-194.
    18. Veri J, Hermo L, and Robaire B, Immunocytochemical localization of the Yfsubunit of glutathione S-transferase P shows regional variation in the stainingof epithelial cells of the testis, efferent ducts, and epididymis of the male rat.Journal of Andrology,1993.14(1):23.
    19. Seiler P, Cooper T G, Yeung C, et al., Regional variation in macrophageantigen expression by murine epididymal basal cells and their regulation bytesticular factors. Journal of Andrology,1999.20(6):738.
    20. Cheung K, Leung G P H, Leung M C T, et al., Cell–cell interaction underliesformation of fluid in the male reproductive tract of the rat. The Journal ofGeneral Physiology,2005.125(5):443-454.
    21. Dacheux J, Belghazi M, Lanson Y, et al., Human epididymal secretome andproteome. Molecular and Cellular Endocrinology,2006.250(1):36-42.
    22. Turner T, Bomgardner D, Jacobs J, et al., Association of segmentation of theepididymal interstitium with segmented tubule function in rats and mice.Reproduction,2003.125(6):871-878.
    23. Li J Y, Wang H Y, Liu J, et al., Transcriptome analysis of a cDNA library fromadult human epididymis. DNA Research,2008.15(3):115-122.
    24. Penttinen J, Pujianto D A, Sipil P, et al., Discovery in silico andcharacterization in vitro of novel genes exclusively expressed in the mouseepididymis. Molecular Endocrinology,2003.17(11):2138-2151.
    25. Hsia N and Cornwall G A, DNA microarray analysis of region-specific geneexpression in the mouse epididymis. Biology of Reproduction,2004.70(2):448-457.
    26. Jelinsky S A, Turner T T, Bang H J, et al., The rat epididymal transcriptome:comparison of segmental gene expression in the rat and mouse epididymides.Biology of Reproduction,2007.76(4):561-570.
    27. Jervis K M and Robaire B, Dynamic changes in gene expression along the ratepididymis. Biology of Reproduction,2001.65(3):696-703.
    28. Johnston D S, Jelinsky S A, Bang H J, et al., The mouse epididymaltranscriptome: transcriptional profiling of segmental gene expression in theepididymis. Biology of Reproduction,2005.73(3):404-413.
    29. Thimon V, Koukoui O, Calvo E, et al., Region-specific gene expressionprofiling along the human epididymis. Molecular Human Reproduction,2007.13(10):691-704.
    30. Zhang J S, Liu Q, Li Y M, et al., Genome-wide profiling ofsegmental-regulated transcriptomes in human epididymis using oligomicroarray. Molecular and Cellular Endocrinology,2006.250(1):169-177.
    31. Oh J, Lee J, Woo J M, et al., Systematic identification and integrative analysisof novel genes expressed specifically or predominantly in mouse epididymis.BMC Genomics,2006.7(1):314.
    32. Chaurand P, Fouchécourt S, Dague B B, et al., Profiling and imaging proteinsin the mouse epididymis by imaging mass spectrometry. Proteomics,2003.3(11):2221-2239.
    33. Yuan H, Liu A, Zhang L, et al., Proteomic profiling of regionalized proteins inrat epididymis indicates consistency between specialized distribution andprotein functions. Journal of Proteome Research,2006.5(2):299-307.
    34. Liu Q, Hamil K G, Sivashanmugam P, et al., Primate epididymis-specificproteins: characterization of ESC42, a novel protein containing a trefoil-likemotif in monkey and human. Endocrinology,2001.142(10):4529-4539.
    35. Kirchhoff C and Hale G, Cell-to-cell transfer ofglycosylphosphatidylinositol-anchored membrane proteins during spermmaturation. Molecular Human Reproduction,1996.2(3):177-184.
    36. Cooper T, Interactions between epididymal secretions and spermatozoa.Journal of Reproduction and Fertility. Supplement,1998.53:119.
    37. Aumüller G, Wilhelm B, and Seitz J, Apocrine secretion—Fact or artifact?Annals of Anatomy-Anatomischer Anzeiger,1999.181(5):437-446.
    38. Yanagimachi R, Kamiguchi Y, Mikamo K, et al., Maturation of spermatozoain the epididymis of the Chinese hamster. American Journal of Anatomy,1985.172(4):317-330.
    39. Sutovsky P, Moreno R, Ramalho-Santos J, et al., A putative,ubiquitin-dependent mechanism for the recognition and elimination ofdefective spermatozoa in the mammalian epididymis. Journal of Cell Science,2001.114(9):1665-1675.
    40. Frenette G, Lessard C, Madore E, et al., Aldose reductase and macrophagemigration inhibitory factor are associated with epididymosomes andspermatozoa in the bovine epididymis. Biology of Reproduction,2003.69(5):1586-1592.
    41. Saez F, Frenette G, and Sullivan R, Epididymosomes and prostasomes: theirroles in posttesticular maturation of the sperm cells. Journal of Andrology,2003.24(2):149.
    42. Sullivan R, Saez F, Girouard J, et al., Role of exosomes in sperm maturationduring the transit along the male reproductive tract. Blood cells, Molecules&Diseases,2005.35(1):1.
    43. Gatti J L, Métayer S, Belghazi M, et al., Identification, proteomic profiling,and origin of ram epididymal fluid exosome-like vesicles. Biology ofReproduction,2005.72(6):1452-1465.
    44. Brown D and London E, Functions of lipid rafts in biological membranes.Annual Review of Cell and Developmental Biology,1998.14(1):111-136.
    45. Jones R, James P S, Howes L, et al., Supramolecular organization of thesperm plasma membrane during maturation and capacitation. Asian Journalof Andrology,2007.9(4):438-444.
    46. Travis A J, Merdiushev T, Vargas L A, et al., Expression and localization ofcaveolin-1, and the presence of membrane rafts, in mouse and Guinea pigspermatozoa. Developmental Biology,2001.240(2):599-610.
    47. Cross N L, Reorganization of lipid rafts during capacitation of human sperm.Biology of Reproduction,2004.71(4):1367-1373.
    48. Shadan S, James P S, Howes E A, et al., Cholesterol efflux alters lipid raftstability and distribution during capacitation of boar spermatozoa. Biology ofReproduction,2004.71(1):253-265.
    49. Aitken R J, Nixon B, Lin M, et al., Proteomic changes in mammalianspermatozoa during epididymal maturation. Asian Journal of Andrology,2007.9(4):554-564.
    50. Takano H and Abe K, AFM study of surface structure changes in mousespermatozoa associated with maturation. Methods in Molecular Biology,2004.242:85-94.
    51. Fowles J and Dybing E, Application of toxicological risk assessmentprinciples to the chemical constituents of cigarette smoke. Tobacco Control,2003.12(4):424-430.
    52. Borgerding M and Klus H, Analysis of complex mixtures–cigarette smoke.Experimental and Toxicologic Pathology,2005.57:43-73.
    53. Saalu L, The incriminating role of reactive oxygen species in idiopathic maleinfertility: an evidence based evaluation. Pak J Biol Sci,2010.13(9):413-422.
    54. Block G, Dietrich M, Norkus E P, et al., Factors associated with oxidativestress in human populations. American Journal of Epidemiology,2002.156(3):274-285.
    55. Woodruff T J, Carlson A, Schwartz J M, et al., Proceedings of the Summit onEnvironmental Challenges to Reproductive Health and Fertility: executivesummary. Fertility and Sterility,2008.89(2): e1-e20.
    56. Toshima H, Suzuki Y, Imai K, et al., Endocrine disrupting chemicals in urineof Japanese male partners of subfertile couples: A pilot study on exposure andsemen quality. International Journal of Hygiene and Environmental Health,2011.215(5):502-506.
    57. Zenzes M T, Smoking and reproduction: gene damage to human gametes andembryos. Human Reproduction Update,2000.6(2):122-131.
    58. Kiziler A R, Aydemir B, Onaran I, et al., High levels of cadmium and lead inseminal fluid and blood of smoking men are associated with high oxidativestress and damage in infertile subjects. Biological Trace Element Research,2007.120(1):82-91.
    59. Mostafa T, Tawadrous G, Roaia M, et al., Effect of smoking on seminal plasmaascorbic acid in infertile and fertile males. Andrologia,2006.38(6):221-224.
    60. Rubes J, Lowe X, Moore2nd D, et al., Smoking cigarettes is associated withincreased sperm disomy in teenage men. Fertility and Sterility,1998.70(4):715.
    61. Shi Q, Ko E, Barclay L, et al., Cigarette smoking and aneuploidy in humansperm. Molecular Reproduction and Development,2001.59(4):417-421.
    62. Viloria T, Garrido N, Fernández J L, et al., Sperm selection by swim-up interms of deoxyribonucleic acid fragmentation as measured by the spermchromatin dispersion test is altered in heavy smokers. Fertility and Sterility,2007.88(2):523-525.
    63. Sepaniak S, Forges T, Gerard H, et al., The influence of cigarette smoking onhuman sperm quality and DNA fragmentation. Toxicology,2006.223(1):54-60.
    64. Joesbury K, Edirisinghe W, Phillips M, et al., Evidence that male smokingaffects the likelihood of a pregnancy following IVF treatment: application ofthe modified cumulative embryo score. Human Reproduction,1998.13(6):1506-1513.
    65. Chia S, Tay S, and Lim S, What constitutes a normal seminal analysis? Semenparameters of243fertile men. Human Reproduction,1998.13(12):3394-3398.
    66. Vine M, Margoli B, Morrison H, et al., Cigarette smoking and sperm density:a meta-analysis. Fertility and Sterility,1994.61(1):35-43.
    67. Vine M F, Smoking and male reproduction: a review. International Journal ofAndrology,1996.19(6):323-337.
    68. Zavos P M, Correa J R, Antypas S, et al., Effects of seminal plasma fromcigarette smokers on sperm viability and longevity. Fertility and Sterility,1998.69(3):425-429.
    69. Saleh R A, Agarwal A, Sharma R K, et al., Effect of cigarette smoking onlevels of seminal oxidative stress in infertile men: a prospective study. Fertilityand Sterility,2002.78(3):491-499.
    70. Kumosani T, Elshal M, Al-Jonaid A, et al., The influence of smoking on semenquality, seminal microelements and Ca2+-ATPase activity among infertile andfertile men. Clinical Biochemistry,2008.41(14):1199-1203.
    71. Ochedalski T, Lachowicz-Ochedalska A, Dec W, et al., Examining the effectsof tobacco smoking on levels of certain hormones in serum of young men].Ginekologia Polska,1994.65(2):87.
    72. Kapawa A, Giannakis D, Tsoukanelis K, et al., Effects of paternal cigarettesmoking on testicular function, sperm fertilizing capacity, embryonicdevelopment, and blastocyst capacity for implantation in rats. Andrologia,2004.36(2):57-68.
    73. Yamamoto Y, Isoyama E, Sofikitis N, et al., Effects of smoking on testicularfunction and fertilizing potential in rats. Urological Research,1998.26(1):45-48.
    74. Polyzos A, Ernst Schmid T, Pi a-Guzmán B, et al., Differential sensitivity ofmale germ cells to mainstream and sidestream tobacco smoke in the mouse.Toxicology and Applied Pharmacology,2009.237(3):298-305.
    75. Venners S A, Wang X, Chen C, et al., Paternal smoking and pregnancy loss: aprospective study using a biomarker of pregnancy. American Journal ofEpidemiology,2004.159(10):993-1001.
    76. Grufferman S, Delzell E, Maile M, et al., Parents' cigarette smoking andchildhood cancer. Medical Hypotheses,1983.12(1):17-20.
    77. Ji B T, Shu X O, Zheng W, et al., Paternal cigarette smoking and the risk ofchildhood cancer among offspring of nonsmoking mothers. Journal of theNational Cancer Institute,1997.89(3):238-243.
    78. Fraga C, Motchnik P, Wyrobek A, et al., Smoking and low antioxidant levelsincrease oxidative damage to sperm DNA. Mutation Research/Fundamentaland Molecular Mechanisms of Mutagenesis,1996.351(2):199-203.
    79. Zhang J and Ratcliffe J M, Paternal smoking and birthweight in Shanghai.American Journal of Public Health,1993.83(2):207-210.
    80. Martinez F D, Wright A L, and Taussig L M, The effect of paternal smoking onthe birthweight of newborns whose mothers did not smoke. Group HealthMedical Associates. American Journal of Public Health,1994.84(9):1489-1491.
    81. Hughes E and Brennan B G, Does cigarette smoking impair natural or assistedfecundity? Fertility and Sterility,1996.66(5):679.
    82. Pattinson H, Taylor P, and Pattinson M, The effect of cigarette smoking onovarian function and early pregnancy outcome of in vitro fertilizationtreatment. Fertility and Sterility,1991.55(4):780.
    83. Florack E I, Zielhuis G A, and Rolland R, Cigarette smoking, alcoholconsumption, and caffeine intake and fecundability. Preventive Medicine: AnInternational Journal Devoted to Practice and Theory,1994.23(2):175-180.
    84. Agarwal A and Said T M, Oxidative stress, DNA damage and apoptosis inmale infertility: a clinical approach. BJU International,2005.95(4):503-507.
    85. Barroso G, Morshedi M, and Oehninger S, Analysis of DNA fragmentation,plasma membrane translocation of phosphatidylserine and oxidative stress inhuman spermatozoa. Human Reproduction,2000.15(6):1338-1344.
    86. Loft S, Kold‐Jensen T, Hjollund N H, et al., Oxidative DNA damage inhuman sperm influences time to pregnancy. Human Reproduction,2003.18(6):1265-1272.
    87. Olsen A K, Andreassen, Singh R, et al., Environmental exposure of the mousegerm line: DNA adducts in spermatozoa and formation of de novo mutationsduring spermatogenesis. PloS One,2010.5(6): e11349.
    88. Horak S, Polanska J, and Widlak P, Bulky DNA adducts in human sperm:relationship with fertility, semen quality, smoking, and environmental factors.Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2003.537(1):53-65.
    89. Yauk C L, Berndt M L, Williams A, et al., Mainstream tobacco smoke causespaternal germ-line DNA mutation. Cancer research,2007.67(11):5103-5106.
    90. Nakayama T, Kaneko M, Kodama M, et al., Cigarette smoke induces DNAsingle-strand breaks in human cells. Nature1985.314:462-464.
    91. Hoffmann H, H gel J, and Speit G, The effect of smoking on DNA effects in thecomet assay: a meta-analysis. Mutagenesis,2005.20(6):455-466.
    92. Potts R, Newbury C, Smith G, et al., Sperm chromatin damage associatedwith male smoking. Mutation Research/Fundamental and MolecularMechanisms of Mutagenesis,1999.423(1):103-111.
    93. Sofikitis N, Takenaka M, Kanakas N, et al., Effects of cotinine on spermmotility, membrane function, and fertilizing capacity in vitro. UrologicalResearch,2000.28(6):370-375.
    94. Linschooten J O, Van Schooten F J, Baumgartner A, et al., Use ofspermatozoal mRNA profiles to study gene–environment interactions in humangerm cells. Mutation Research/Fundamental and Molecular Mechanisms ofMutagenesis,2009.667(1):70-76.
    95. Li J, Liu F, Wang H, et al., Systematic mapping and functional analysis of afamily of human epididymal secretory sperm-located proteins. Molecular&Cellular Proteomics,2010.9(11):2517-2528.
    96. Girouard J, Frenette G, and Sullivan R, Comparative proteome and lipidprofiles of bovine epididymosomes collected in the intraluminal compartmentof the caput and cauda epididymidis. International Journal of Andrology,2011.34(5pt2): e475-e486.
    97. Thimon V, Frenette G, Saez F, et al., Protein composition of humanepididymosomes collected during surgical vasectomy reversal: a proteomicand genomic approach. Human Reproduction,2008.23(8):1698-1707.
    98. Baker M A, Hetherington L, Reeves G M, et al., The mouse sperm proteomecharacterized via IPG strip prefractionation and LC‐MS/MS identification.Proteomics,2008.8(8):1720-1730.
    99. Stein K K, Go J C, Lane W S, et al., Proteomic analysis of sperm regions thatmediate sperm‐egg interactions. Proteomics,2006.6(12):3533-3543.
    100.古洪元,唐茂萍,方鹏, et al.,香烟烟雾对雄性小鼠生育能力的影响.上海交通大学学报:农业科学版,2012.30(3):1-5.
    101. Pahl H L, Activators and target genes of Rel/NF-kappaB transcription factors.Oncogene,1999.18(49):6853.
    102. Chen F E and Ghosh G, Regulation of DNA binding by Rel/NF-κBtranscription factors: structural views. Oncogene,1999.18(49):6845-6852.
    103. Hayden M S and Ghosh S, Shared principles in NF-κB signaling. Cell,2008.132(3):344-362.
    104. Pentik inen V, Suomalainen L, Erkkil K, et al., Nuclear factor-κB activationin human testicular apoptosis. The American Journal of Pathology,2002.160(1):205-218.
    105. Mathur P P, Francispillai M, Vaithinathan S, et al., NF-κB in MaleReproduction: A Boon or a Bane? Open Reproductive Science Journal,2011.3:85-91.
    106. Pentik inen V, Erkkil K, Suomalainen L, et al., TNFα down-regulates the Fasligand and inhibits germ cell apoptosis in the human testis. Journal of ClinicalEndocrinology&Metabolism,2001.86(9):4480-4488.
    107. Nagata S and Golstein P, The Fas death factor. Science-AAAS-Weekly PaperEdition,1995.267(5203):1449-1455.
    108. Richburg J H, Na ez A, Williams L R, et al., Sensitivity of testicular germcells to toxicant-induced apoptosis in gld mice that express a nonfunctionalform of Fas ligand. Endocrinology,2000.141(2):787-793.
    109. Suda T, Takahashi T, Golstein P, et al., Molecular cloning and expression ofthe Fas ligand, a novel member of the tumor necrosis factor family. Cell,1993.75(6):1169.
    110. Itoh N, Yonehara S, Ishii A, et al., The polypeptide encoded by the cDNA forhuman cell surface antigen Fas can mediate apoptosis. Cell,1991.66(2):233.
    111. Oehm A, Behrmann I, Falk W, et al., Purification and molecular cloning ofthe APO-1cell surface antigen, a member of the tumor necrosis factor/nervegrowth factor receptor superfamily. Sequence identity with the Fas antigen.Journal of Biological Chemistry,1992.267(15):10709-10715.
    112. Pentik inen V, Erkkil K, and Dunkel L, Fas regulates germ cell apoptosis inthe human testis in vitro. American Journal of Physiology-Endocrinology AndMetabolism,1999.276(2): E310-E316.
    113. Ashkenazi A and Dixit V M, Death receptors: signaling and modulation.Science,1998.281(5381):1305-1308.
    114. Cohen G M, Caspases: the executioners of apoptosis. Biochemical Journal,1997.326(Pt1):1.
    115. Nicholson D W and Thornberry N A, Caspases: killer proteases. Trends inBiochemical Sciences,1997.22(8):299.
    116. Chen F, Castranova V, Shi X, et al., New insights into the role of nuclearfactor-κB, a ubiquitous transcription factor in the initiation of diseases.Clinical Chemistry,1999.45(1):7-17.
    117. Pyne S, Tolan D, Conway A, et al., Lipids as regulators of cell function.Biochem. Soc. Trans,1997.25:549.
    118. Spiegel S and Milstien S, Sphingosine-1-phosphate: an enigmatic signallinglipid. Nature Reviews Molecular Cell Biology,2003.4(5):397-407.
    119. Hla T, Signaling and biological actions of sphingosine1-phosphate.Pharmacological Research,2003.47(5):401-407.
    120. Suomalainen L, Pentik inen V, and Dunkel L, Sphingosine-1-phosphateinhibits nuclear factor κB activation and germ cell apoptosis in the humantestis independently of its receptors. The American Journal of Pathology,2005.166(3):773-781.
    121. Datta S R, Brunet A, and Greenberg M E, Cellular survival: a play in threeAkts. Genes&Development,1999.13(22):2905-2927.
    122. Rey R, Regulation of spermatogenesis. Endocrine Development,2003.5:38-55.
    123. Plant T M and Marshall G R, The functional significance of FSH inspermatogenesis and the control of its secretion in male primates. EndocrineReviews,2001.22(6):764-786.
    124. Kangasniemi M, Kaipia A, Mali P, et al., Modulation of basal and FSH‐dependent cyclic AMP production in rat seminiferous tubules staged by animproved transillumination technique. The Anatomical Record,2005.227(1):62-76.
    125. Delfino F and Walker W H, Stage-specific nuclear expression of NF-κB inmammalian testis. Molecular Endocrinology,1998.12(11):1696-1707.
    126. Shirakawa F and Mizel S B, In vitro activation and nuclear translocation ofNF-kappa B catalyzed by cyclic AMP-dependent protein kinase and proteinkinase C. Molecular and Cellular Biology,1989.9(6):2424-2430.
    127. Ghosh S and Baltimore D, Activation in vitro of NF-κB" by phosphorylation ofits inhibitor IκB". Nature,1990.344:678-682.
    128. Hales D B, Diemer T, and Hales K H, Role of cytokines in testicular function.Endocrine,1999.10(3):201-217.
    129. Barkett M and Gilmore T D, Control of apoptosis by Rel/NF-kappaBtranscription factors. Oncogene,1999.18(49):6910.
    130. Aggarwal B B, Kohr W J, Hass P E, et al., Human tumor necrosis factor.Production, purification, and characterization. Journal of BiologicalChemistry,1985.260(4):2345-2354.
    131. Pennica D, Nedwin G E, Hayflick J S, et al., Human tumour necrosis factor:precursor structure, expression and homology to lymphotoxin. Nature,1984.312(5996):724.
    132. Suominen J S, Wang Y, Kaipia A, et al., Tumor necrosis factor-alpha(TNF-alpha) promotes cell survival during spermatogenesis, and this effectcan be blocked by infliximab, a TNF-alpha antagonist. European Journal ofEndocrinology,2004.151(5):629-640.
    133. Hsu H, Shu H B, Pan M G, et al., TRADD-TRAF2and TRADD-FADDinteractions define two distinct TNF receptor1signal transduction pathways.Cell,1996.84(2):299.
    134. Dahl A M, Klein C, Andres P G, et al., Expression of Bcl-XL Restores CellSurvival, but Not Proliferation and Effector Differentiation, in Cd28-DeficientT Lymphocytes. The Journal of Experimental Medicine,2000.191(12):2031-2038.
    135. Lacasse E C, Baird S, Korneluk R G, et al., The inhibitors of apoptosis (IAPs)and their emerging role in cancer. Oncogene,1998.17(25):3247.
    136. Reed J C, Bcl-2family proteins. Oncogene,1998.17(25):3225.
    137. Griswold M D, The central role of Sertoli cells in spermatogenesis. SeminCell Dev Biol,1998.9(4):411-416.
    138. Dunkel L, Hirvonen V, and Erkkil K, Clinical aspects of male germ cellapoptosis during testis development and spermatogenesis. Cell Death andDifferentiation,1997.4(3):171.
    139. Turner T T and Lysiak J J, Oxidative stress: a common factor in testiculardysfunction. Journal of Andrology,2008.29(5):488.
    140. Taira T, Saito Y, Niki T, et al., DJ-1has a role in antioxidative stress toprevent cell death. EMBO Reports,2004.5(2):213-218.
    141. An C N, Jiang H, Wang Q, et al., Down-regulation of DJ-1protein in theejaculated spermatozoa from Chinese asthenozoospermia patients. Fertilityand Sterility,2011.96(1):19-23. e2.
    142. Okada M, Matsumoto K, Niki T, et al., DJ-1, a target protein for an endocrinedisrupter, participates in the fertilization in mice. Biological andPharmaceutical Bulletin,2002.25(7):853-856.
    143. Wang P, Bouwman F G, and Mariman E, Generally detected proteins incomparative proteomics–A matter of cellular stress response? Proteomics,2009.9(11):2955-2966.
    144. Onorato T M, Brown P W, and Morris P L, Mono-(2-ethylhexyl) phthalateincreases spermatocyte mitochondrial peroxiredoxin3and cyclooxygenase2.Journal of Andrology,2008.29(3):293.
    145. Motiei M, Tavalaee M, Rabiei F, et al., Evaluation of HSPA2in fertile andinfertile individuals. Andrologia,2013.45(1):66-72.
    146. Orthwein A, Zahn A, Methot S P, et al., Optimal functional levels ofactivation-induced deaminase specifically require the Hsp40DnaJa1. TheEMBO Journal,2012.31:679-691.
    147. Mizrak S, Bogerd J, Lopez‐Casas P, et al., Expression of stress inducibleprotein1(Stip1) in the mouse testis. Molecular Reproduction andDevelopment,2006.73(11):1361-1366.
    148. Tarnasky H, Cheng M, Ou Y, et al., Gene trap mutation of murine Outer densefiber protein-2gene can result in sperm tail abnormalities in mice with highpercentage chimaerism. BMC Developmental Biology,2010.10(1):67.
    149. Yeung K, Seitz T, Li S, et al., Suppression of Raf-1kinase activity and MAPkinase signalling by RKIP. Nature,1999.401(6749):173-177.
    150. Seger R, Hanoch T, Rosenberg R, et al., The ERK signaling cascade inhibitsgonadotropin-stimulated steroidogenesis. Journal of Biological Chemistry,2001.276(17):13957-13964.
    151. Crépieux P, Marion S, Martinat N, et al., The ERK-dependent signalling isstage-specifically modulated by FSH, during primary Sertoli cell maturation.Oncogene,2001.20(34):4696.
    152. Weidinger S, Mayerhofer A, Kunz L, et al., Tryptase inhibits motility ofhuman spermatozoa mainly by activation of the mitogen-activated proteinkinase pathway. Human Reproduction,2005.20(2):456-461.
    153. Iuchi Y, Okada F, Tsunoda S, et al., Peroxiredoxin4knockout results inelevated spermatogenic cell death via oxidative stress. Biochem. J,2009.419:149-158.
    154. Brown L, Glutathione protects signal transduction in type II cells underoxidant stress. American Journal of Physiology-Lung Cellular and MolecularPhysiology,1994.266(2): L172-L177.
    155. Deneke S M and Fanburg B L, Regulation of cellular glutathione. AmericanJournal of Physiology-Lung Cellular and Molecular Physiology,1989.257(4):L163-L173.
    156. Bilimoria M and Ecobichon D, Protective antioxidant mechanisms in rat andguinea pig tissues challenged by acute exposure to cigarette smoke.Toxicology,1992.72(2):131-144.
    157. Cotgreave I, Johansson U, Moldeus P, et al., The effect of acute cigarettesmoke inhalation on pulmonary and systemic cysteine and glutathione redoxstates in the rat. Toxicology,1987.45(2):203-212.
    158. Ishizaki T, Kishi Y, Sasaki F, et al., Effect of probucol, an oralhypocholesterolaemic agent, on acute tobacco smoke inhalation in rats.Clinical Science,1996.90(6):517-524.
    159. Li X, Rahman I, Donaldson K, et al., Mechanisms of cigarette smoke inducedincreased airspace permeability. Thorax,1996.51(5):465-471.
    160. Hayes J D, Flanagan J U, and Jowsey I R, Glutathione transferases. Annu.Rev. Pharmacol. Toxicol.,2005.45:51-88.
    161. Valavanidis A, Vlachogianni T, and Fiotakis C,8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress andcarcinogenesis. Journal of Environmental Science and Health Part C,2009.27(2):120-139.
    162. Kemal Duru N, Morshedi M, and Oehninger S, Effects of hydrogen peroxideon DNA and plasma membrane integrity of human spermatozoa. Fertility andSterility,2000.74(6):1200-1207.
    163. Kodama H, Yamaguchi R, Fukuda J, et al., Increased oxidativedeoxyribonucleic acid damage in the spermatozoa of infertile male patients.Fertility and Sterility,1997.68(3):519-524.
    164. Agarwal A, Ikemoto I, and Loughlin K R, Relationship of sperm parameterswith levels of reactive oxygen species in semen specimens. Journal of Urology,1994.152(1):107-110.
    165. Armstrong J S, Rajasekaran M, Chamulitrat W, et al., Characterization ofreactive oxygen species induced effects on human spermatozoa movement andenergy metabolism. Free Radical Biology and Medicine,1999.26(7):869-880.
    166. Lenzi A, Lombardo F, Gandini L, et al., Computer assisted sperm motilityanalysis at the moment of induced pregnancy during gonadotropin treatmentfor hypogonadotropic hypogonadism. Journal of EndocrinologicalInvestigation,1993.16(9):683.
    167. Suleiman S A, Ali M E, Zaki Z, et al., Lipid peroxidation and human spermmotility: protective role of vitamin E. Journal of Andrology,1996.17(5):530.
    168. De Lamirande E and Gagnon C, Reactive oxygen species and humanspermatozoa. II. Depletion of adenosine triphosphate plays an important rolein the inhibition of sperm motility. Journal of Andrology,1992.13(5):379.
    169. Aitken J, Buckingham D, and Krausz C, Relationships between biochemicalmarkers for residual sperm cytoplasm, reactive oxygen species generation,and the presence of leukocytes and precursor germ cells in human spermsuspensions. Molecular Reproduction and Development,2005.39(3):268-279.
    170. Aitken R, Harkiss D, and Buckingham D, Analysis of lipid peroxidationmechanisms in human spermatozoa. Molecular Reproduction andDevelopment,1993.35(3):302-315.
    171. Aitken R J, Clarkson J S, and Fishel S, Generation of reactive oxygen species,lipid peroxidation, and human sperm function. Biology of Reproduction,1989.41(1):183-197.
    172. Almeida M, Han L, Ambrogini E, et al., Oxidative stress stimulates apoptosisand activates NF-κB in osteoblastic cells via a PKCβ/p66Shc signalingcascade: counter regulation by estrogens or androgens. MolecularEndocrinology,2010.24(10):2030-2037.
    173. Buttke T M and Sandstrom P A, Oxidative stress as a mediator of apoptosis.Immunology Today,1994.15(1):7.
    174. Lee J, Richburg J H, Younkin S C, et al., The Fas system is a key regulator ofgerm cell apoptosis in the testis. Endocrinology,1997.138(5):2081-2088.
    175. Wang X, Sharma R K, Sikka S C, et al., Oxidative stress is associated withincreased apoptosis leading to spermatozoa DNA damage in patients withmale factor infertility. Fertility and Sterility,2003.80(3):531-535.
    176. Zhang J, Wu J, Huo R, et al., ERp57is a potential biomarker for humanfertilization capability. Molecular Human Reproduction,2007.13(9):633-639.
    177. Malhotra J D and Kaufman R J, Endoplasmic reticulum stress and oxidativestress: a vicious cycle or a double-edged sword? Antioxidants&RedoxSignaling,2007.9(12):2277-2294.
    178. Van Der Vlies D, Makkinje M, Jansens A, et al., Oxidation of ER residentproteins upon oxidative stress: effects of altering cellular redox/antioxidantstatus and implications for protein maturation. Antioxidants and RedoxSignaling,2003.5(4):381-387.
    179. Brohmann H, Pinnecke S, and Hoyer-Fender S, Identification andcharacterization of new cDNAs encoding outer dense fiber proteins of ratsperm. Journal of Biological Chemistry,1997.272(15):10327-10332.
    180. Schalles U, Shao X, Van Der Hoorn F A, et al., Developmental expression ofthe84-kDa ODF sperm protein: localization to both the cortex and medulla ofouter dense fibers and to the connecting piece. Developmental Biology,1998.199(2):250-260.
    181. Amlani S and Vogl A, Changes in the distribution of microtubules andintermediate filaments in mammalian Sertoli cells during spermatogenesis.The Anatomical Record,1988.220(2):143-160.
    182. Richburg J H and Boekelheide K, Mono-(2-ethylhexyl) phthalate rapidlyalters both Sertoli cell vimentin filaments and germ cell apoptosis in young rattestes. Toxicology and Applied Pharmacology,1996.137(1):42-50.
    183. Kang W, Expression of Age-Related Molecular Vimentin in the Testis andEpididymis of Different Months Old Rats. Journal of Shanxi Medical Collegefor Continuing Education,2009.4:003.
    184. Mcguire L, Ng J, and Lee J, Coexpression of cytokeratin and vimentin.Applied Pathology,1989.7(2):73.
    185. Wernert N, Seitz G, and Achtst tter T, Immunohistochemical investigation ofdifferent cytokeratins and vimentin in the prostate from the fetal period up toadulthood and in prostate carcinoma. Pathology, Research and Practice,1987.182(5):617.
    186. Warner J R and Mcintosh K B, How common are extraribosomal functions ofribosomal proteins? Molecular Cell,2009.34(1):3-11.
    187. Wittwer J A, Robbins D, Wang F, et al., Enhancing Mitochondrial RespirationSuppresses Tumor Promoter TPA-Induced PKM2Expression and CellTransformation in Skin Epidermal JB6Cells. Cancer Prevention Research,2011.4(9):1476-1484.
    188. Jodar M, Kalko S, Castillo J, et al., Differential RNAs in the sperm cells ofasthenozoospermic patients. Human Reproduction,2012.27(5):1431-1438.
    189. Baldwin C, Nolan V G, Wyszynski D F, et al., Association of klotho, bonemorphogenic protein6, and annexin A2polymorphisms with sickle cellosteonecrosis. Blood,2005.106(1):372-375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700