环保型BCB砂轮烧结工艺及其磨削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在线电解修整(ELID)磨削可实现硬脆材料高效率、超精密表面加工,已成为今后超精密磨削加工的主要手段与研究方向之一。随着新型材料与精密器件的不断开发出现,对于加工表面质量的要求越来越高。目前ELID技术主要采用铸铁结合剂砂轮,但这种砂轮存在制作困难,成本昂贵,并且对于功能材料的洁净表面加工容易造成污染等诸多问题。本研究拟采用竹炭作为砂轮结合剂,研制新型环保ELID磨削用BCB(竹炭结合剂)金刚石砂轮,结合ELID磨削技术,开发出一种制作更容易、使用更方便、加工表面质量更优良的超精密加工方法与技术,为超精密加工技术的研究与发展提供一个新的方向与途径。
     本文参考常规砂轮的制造工艺,依据ELID磨削技术特性,设计制定了BCB砂轮制造工艺,提出了完整的加工工艺流程。
     参照传统砂轮的特性参数检测方法,选择了硬度,抗压强度及摩擦磨损系数这几个特性参数作为BCB砂轮评价指标,构建了BCB砂轮的评价体系。采用XRD,SEM等先进观测手段研究不同工艺过程对砂轮组织结构的影响。
     使用ANSYS有限元分析软件对砂轮热压工艺过程进行了模拟仿真,通过研究热压过程中树脂固化过程,优化了热压过程的参数设置,提高砂轮性能。
     采用适宜的工艺参数进行ELID磨削实验,对BCB砂轮的加工特性进行了研究,BCB砂轮磨削SUS304不锈钢时的磨削比接近于1,经BCB砂轮加工的工件表面粗糙度达到0.020μm。实验结果表明BCB砂轮具有十分优良的精密加工特性。
ELID is a main technology which has been widely adopted to the ultra-precision and high effectively machining of hard and brittle materials. With the development of the research and application of new materials and precision devices, requires of surface quality become higher and higher. Metal-resin bonded wheels is the main tool in ELID but it's difficult to produce and expensive and could contaminate the clean surface of function materials. To ease this problem, this paper puts forward a new environmental friendly BCB (bamboo charcoal bonded) grinding wheel, a new ultra precision manufacturing technology which is more convenient to get a better surface quality is proposed and provide a new method and approach for the development of the ultra precision machining technology.
     Refer to the conventional grinding wheel manufacturing processes, according to characteristics of the technical features of ELID technology, a new manufacturing process of BCB grinding wheel is established in this paper and also the perfect processing process.
     Reference to the parameters of traditional grinding wheel's detection methods, chose hardness, compressive strength and friction wear coefficient of the key parameters as BCB grinding wheel 's evaluation parameters and construct evaluation system of the BCB grinding wheel. And the effect of different manufacturing parameters on the grinding wheel structure is also studied by XRD and SEM.
     A heat pressing process simulation is established by ANSYS which is a well used kind of finite element analysis software and the curing process of the phenol formaldehyde resin in the heat pressing process is studied to optimize the processing parameters of the heat pressing process and improve the performance of BCB grinding wheel.
     Study the machining characteristics of BCB grinding wheel in grinding experiments with appropriate parameters. The grinding ratios of BCB grinding wheel on SUS304 non-corrosive steel is about 1 and surface roughness of workpiece is 0.02μm. The experimental results show that BCB grinding wheel is a super precision grinding tool with excellent characteristics.
引文
[1]荣烈润,面向21世纪的超精密加工技术[J].机电一体化.2003,9(2):6~10.
    [2]袁哲俊,精密和超精密加工技术[M].北京:机械工业出版社,1999.
    [3]高道钢 编译,超精密加工技术[M].台湾:全华科技图书股份有限公司,1990.
    [4]张春河,在线电解修整砂轮精密镜面磨削理论及应用技术的研究[D].哈尔滨,哈尔滨工业大学,1996.
    [5]王先逵,超精密加工切削和磨削机理研究[J].焦作大学学报,2002,6:1~5.
    [6]刘家豪,超精密加工的关键技术及发展趋势[J].机电工程,2001,5:19~21.
    [7]任敬心等.磨削原理[M].西安:西北工业大学出版社,1988.
    [8]史兴宽,杨茂奎.硬脆材料超光滑表面磨削技术的现状及发展趋势[J].机械科学与技术,1997,5(30):883-887.
    [9]任敬心,史兴宽.磨削技术的新进展[J].中国机械工程,1997,8(4):106-110.
    [10]汪星桥.陶瓷磨削中心.世界制造技术与装备市场[J],1994,3(2):67-67.
    [11]张飞虎等,ELID磨削硬脆材料精密和超精密加工的新技术[J].宇航材料工艺,1999,29(1):51-55.
    [12]王平,硬脆材料的ELID精密镜面磨削机理和技术的研究[D].哈尔滨:哈尔滨工业大学,1995.
    [13]B.P.Bandyopadbyay et al.,Efficient and stable grinding of ceramics by electrolytic in-process dressing (ELID)[J].Journal of Material Process Technology,1997,5(66):18-24.
    [14]H.Ohmori et al.,Ultra-precision grinding of structural ceramics by electrolytic in-process dressing (ELID) grinding[J].Journal of Material Process Technology,1996,57:272-277.
    [15]朱波,钢结硬质合金与饮合金ELID磨削技术及机理的研究[D].哈尔滨:哈尔滨工业大学,2001.
    [16]H.Ohmori et al.,Efficient and precision grinding of small hard and brittle cylindrical parts by the centerless grinding process combined with electro-discharge truing and electrolytic in-process dressing [J].Journal of Materials Processing Technology,2000,98:322-327.
    [17]大森整,ELID超精密磨削技术[J].ELID研削研究会报,1992(3):35-41.
    [18]张文标等,竹炭·竹醋液的生产与应用[M].北京:中国林业出版社,2006.
    [19]H.Ohmori etc,int,Electrolytic In-Process Dressing(EL10) Grinding Technique for Ultraprecision Mirror Surfaces.Journal of JSPE,1992,26(4):74-78.
    [20]OHMORI H,Analysis of mirror surface generation of hard and brittle materials by ELID grinding with superfine grain metallic bond wheels[J].Annals of the CIRP,1995,44(1):45-49.
    [21]#12
    [22]Itoh Nobuhide.Ohmori Hitoshi,Development of metal free conductive bonded diamond wheel for environmentally-friendly electrolytic In-process Dressing(ELID) grinding[J],New diamond and Frontier carbon technology.2004,14(4):224-238.
    [23]环境调和型ELID研削技术,砥粒加工学会誌,2002,16(9):436-439.
    [24]#12
    [25]岸本 定吉.炭の本[M].日本:创森社,2002.
    [26]H.Ohmori etc,int,Electrolytic In-Process Dressing(ELID) Grinding Technique for Ultraprecision Mirror Surfaces,Journal of JSPE,1992,26(4):50-54.
    [27]Itoh nobuhide.Nemoto Akihiko.Kato Teruko.Ohmori Hitoshi,Eco-friendly ELID grinding using metal-free electro-conductive resinoid bonded wheel[J].JSME International Series C,2004,47(3):72-78.
    [28]Hokkirigawa K.Okabe T.Saito K,Development of porous carbon material "wood-ceramics"-fundamental wear properties under unlubricated condition in air,under base-oil impregnated condition and in water[J].Journal of Society of Materials Science(Japan),1995,44(501):800-804.
    [29]钱军民.金志浩.王继平,酚醛树脂/木粉复合材料制备木材陶瓷结构变化过程研究[J].复合材料学报,2004,21(4):18-23.
    [30]钱军民.金志浩,木树陶瓷制备多孔SiC的研究[J].西安交通大学学报,2004,38(1):93-96.
    [31]Iizuka H,Fushitani M,Okabe T,et al.,Mechanical properties of woodceramics:a porous carbon material[J].Journal of Porous Materials,1999,12(6):175-184.
    [32]Xie Xianqing.Fan Tongxiang,Zhang Di.et al.,Mechanical properties and damping behavior of woodceramics/ZK60A Mg alloy composite[J].Materials Research Bulletin,2002,37(4):1133-1140.
    [33]Xie Xianqing.Fan Tongxiang.Sun Binghe.et al.,Dry sliding friction and wear behavior of woodceramics/Al-/Si composites[J].Materials Science and Engineering,2003,1(342):287-293.
    [34]Ozao R.Okabe T.Arii T.et al.,TG-DTA/GC-MS study of odorless woodceramics from chickenwastes[J].Journal of Thermal Analysis and Calorimetry,2005,2(80):489-493.
    [35]Ozaoa R.Nishimoto Y.Pan Weiping.et al.,Thermoanalytical characterization of carbon/carbon hybrid material,apple woodceramics[J].Thermochimica Acta,2006,440:75-80.
    [36]涂建华.张利波.彭金辉等,木质陶瓷的X射线衍射和喇曼光谱研究[J].无机材料学报,2006,21(7):986-992.
    [37]宋强.王洪.靳向煜,以秸杆纤维为基体的本质陶瓷材料的制备[J].非织造布,2005,3(4):18-20.
    [38]吴文涛.升温模型对木质陶瓷性能的影响[J].农业工程学报,2005,21(6):126-129.
    [39]吴文涛,孙世群.甘蔗渣制备木质陶瓷及其性能表征[J].合肥工业大学学报,2001,4(6):133-1136.
    [40]Hirose T.Fan T X.Okabe T.et al.,Effect of carbonization temperature on the structural changes of woodceramics impregnated with liquefied wood[J].Carbon,2002,40:761-765.
    [41]Hirose T.Fan T X.Okabe T.et al.,Effect of carbonization temperature on the basic properties of woodceramics impregnated with liquefied wood[J].Journal of Materials Science,2001,36:4145-4149.
    [42]Kano M.Momota M.Okabe T.et al.,Specific heat capacity of new porous carbon materials:woodceramics[J].Thermochimica Acta,1997,292:175-177.
    [43]Xie Xianqing.Zhang Di.Fan Tongxiang.et al.,The fabrication of composites with interpenetrating networks based on woodceramics[J].Materials Letters,2002,56:102-107.
    [44]Qian Junmin.Jin Zhihao.Wang Jiping,Structure and basic properties of wood - ceramics made from phenolic resin-basswood powder composite[J].Materials Science and Engineering,2004,A368:71-79.
    [45]涂建华.张利波.彭金辉,炭化温度对木质陶瓷性能和结构的影响[J].材料热处理学报,2006,27(21):10-15.
    [46]根本昭彦等,环保型ELID磨削用RB陶瓷结合剂金刚石砂轮的开发[J],砥粒加工学会志,2004,48,(10):48-54.
    [47]卢灿辉,陈晓.利用木材介空结构制备新型复合材料研究进展[J].高分子材料科学与工程,2003,19(6):32-36.
    [48]Xie Xianqing.Fan Tongxiang.Zhang Di.et al.,Increasing the mechanical properties of high damping woodceramics by infiltration with a magnesium alloy[J].Composites Science and Technology,2002,62:1341-1346.
    [49]Fan T X.Hirose T.Okabe T.et al.,Surface area characteristics of woodceramics[J].Journal of Porous Materials,2001,8:211-217.
    [50]Cheng Huiming.Endo H.Okabe T.et al.,Graphitization behavior of woodceramics and bamboo ceramics as determined by X-ray diffraction[J].Journal of Porous Materials,1999,6:233-237.
    [51]李坚.李淑君,木陶瓷的孔隙结构研究[J].林产化学与工业,2002,22(4):27-30.
    [52]庄司克雄,磨削加工技术[M].北京:机械工业出版社,2007.
    [53]卢小平,现在制造技术[M].北京:清华大学出版社,2006.
    [54]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2003.
    [55]李志宏,陶瓷磨具制造[M].北京:中国标准出版社,2000.
    [56]Meiwei Chen.Julong Yuan.Yi Yang,The characteristic of organic bond grinding wheel[J].Key Engineering Materials.2008,359-360:63-67.
    [57]李印江,磨具配方的选择与调整[M].北京:兵器工业出版社,1992.
    [58]华勇.李亚萍,磨料磨具导论[M].北京:中国标准出版社,2004.
    [59]中国磨料磨具工业公司,磨料磨具技术手册[M].北京:兵器工业出版社,1993.
    [60]市田良夫,陶瓷结合剂CBN砂轮的组织均匀化对其磨削性能的影响[J].超硬材料工程,2007,19(4):46-51.
    [61]李启泉.彭振斌.陈启武,陶瓷结合剂金刚石砂轮的研究[J].矿冶工程,2007,27(1):66-68.
    [62]王改民,磨具工业热工过程及设备[M].北京:中国标准出版社,2005.
    [63]阴强等,酚醛树脂/石墨双极板复合材料的实验研究[J].人工晶体学报,2007,36(4):807-811.
    [64]邢宝林等,酚醛树脂基多孔炭材料制备的研究[J].化学与生物工程,2007,24(9):27-29.
    [65]张朝晖,ANSYS热分析教程与实例解析[M].北京:中国铁道出版社,2007.
    [66]熊春林,粉体材料成形设备与模具设计[M].北京:化学工业出版社,2007.
    [67]张建可,树脂基碳纤维复合材料的热物理性能之一--导热系数[J].中国空间科学技术,1987,6(8):55-60.
    [68]张福勤等,短炭纤维/树脂炭复合材料导热系数与石墨化度之间的关系[J].材料工程,2003,6(9):18-21.
    [69]董其伍等,预测聚合物复合材料导热系数方法综述[J].化学推进剂与高分子材料,2007,5(6):36-39.
    [70]李明伟等,颗粒弥散复合材料等效导热系数的估算[J].功能材料,2001,32(4):397-398.
    [71]陈则韶等,复合材料等效导热系数的理论推算[J].中国科技技术大学学报,1992,22(4):415-424.
    [72]张海蜂,预测复合材料导热系数的热阻网络法[J].功能材料,2005,5:757-759.
    [73]阎勇等,树脂比热容对复合材料固化过程树脂模拟的影响[J].航空材料学报,2006,26(2):37-40.
    [74]左德峰等,树脂基复合材料固化过车工内中温度场的数值模拟[J].南京航空航天大学学报,1999,31(6):701-705.
    [75]冀克俭.张银声.尤瑜升等,酚醛树脂固化过程的红外光谱分析[J].分析测试学报,1993,12(2):53-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700