一类2R1T三自由度并联机构的设计理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文密切结合开发特种加工并联运动装备的需求,系统研究了少自由度并联机构的运动学性能指标体系,并以两种两转一移三自由度并联机构为例,研究了其尺度综合、位置正解分析、精度分析与综合等问题。论文取得了如下创造性成果:
     分析了雅可比矩阵构造原理,利用约束条件建立了少自由度并联机构的全速度雅可比矩阵通用模型。该模型行列数均与位形空间维数相同,包含了对末端6维误差产生影响的尺度参数信息。基于该模型,利用矩阵Rayleigh商的性质提出一种基于支链误差传递率的性能评价指标。
     以3-UPS/PU和3-PUS/PU机构为研究对象,构建其全速度雅可比矩阵。在此基础上,系统研究了机构尺度综合方法。该方法首先给定任务工作空间W_t,在考虑必要的约束条件的基础上,确定设计变量的取值范围,继而采用遗传算法得到最优解。研究结果表明,对于等同的任务空间,3-PUS/PU机构的操作性能要略优于3-U(-|P)S/PU机构。
     采用解析法研究了3-U(-|P)S/PU和3-(-|P)US/PU机构的位置正解问题。研究结果表明,两者的位置正解模型无论从方程结构还是维数上均相同。
     利用空间矢量链分析法,研究了3-U(-|P)S/PU和3-(-|P)US/PU并联机构的误差建模问题。由误差模型可知,由PU支链虎克铰的加工和装配误差,以及套筒导轨扭角误差引起的末端误差为不可控误差。在此基础上,预估了末端执行器在工作空间内的位姿误差范围。研究结果表明,对于等同的任务空间,3-(-|P)US/PU机构的几何精度要略优于3-U(-|P)S/PU机构。
     借助灵敏度分析方法,在统计意义下定量揭示出几何误差源对3-UPS/PU和3-(-|P)US/PU并联机构末端误差的影响。基于此,系统研究了机构的精度综合方法。该方法以构件制造公差为设计变量,根据灵敏度分析结果确定并简化权重指标,以设计变量加权和最大为目标函数,进而建立机构精度综合的优化数学模型,最后以误差满足设计精度且兼顾公差均衡为约束条件,采用遗传算法求解。研究结果表明,对于等同的任务空间,两种机构的构件制造公差总体相差较小。
     上述研究成果不但为指导3-UPS/PU和3-PUS/PU机构的设计奠定了坚实的理论基础,而且对开发同类制造装备具有重要的参考价值。
This dissertation deals with the theory and methodology for the kinematic design of a class of 2R1T 3-DOF parallel mechanisms, including Jacobian matrix and performance index, dimensional synthesis, forward kinematics, accuracy analysis and synthesis. The following contributions have been made.
     The constructing principles of Jacobian matrix are analyzed. Then a general model of full 6×6 Jacobian matrix for sub-6 parallel mechanisms is developed using the constraining conditions, which contains the dimensional information affecting the general errors of the end-effector. Based on such model, the ratio of the limb error onto the platform pose accuracy is proposed to be a performance index by using the characteristics of Rayleigh quotient.
     By taking 3-U(-|P)S/PU and 3-(-|P)US/PU mechanisms as examples, a methodology for the dimensional synthesis is presented on the basis of the development of the full 6×6 Jacobian matrix. In this method, the performance index is to be optimized in a global sense in conjunction with taking into account a set of appropriate mechanical constraints. Examples are given to illustrate the routine of the optimization. The results show that the 3-PUS/PU mechanism has little better kinematic performance in comparison with the 3-UPS/PU mechanism.
     Forward kinematics analysis of the 3-U(-|P)S/PU mechanism is carried out using analytical method, compared with that of the 3-PUS/PU mechanism. It shows that the forward kinematics problem of the 3-U(-|P)S/PU mechanism is similar to that of the 3-PUS/PU mechanism in terms of formulation and solution.
     The error mapping functions of the 3-UPS/PU and 3-PUS/PU mechanisms are formulated which allows the geometric error sources affecting the uncontrollable errors of the movable platform to be identified by using method of vector chain. It can be concluded that the uncontrollable errors of the mobile platform are primarily dominated by the errors of the proper-constraint limb. Based on the error models, the accuracies of the mechanisms are evaluated throughout the task workspace. It shows that for the identical task workspace, the accuracy of the 3-(-|P)US/PU mechanism is little better than that of the 3-U(-|P)S/PU mechanism.
     The effects of the geometric error sources on the uncontrollable errors of the 3-UPS/PU and 3-PUS/PU mechanisms are discussed by means of the sensitivity analysis. Consequently, a novel approach for accuracy synthesis is presented. Such method can be simply depicted as follows: a mathematical model of optimization for accuracy synthesis is established by taking accuracy of connecting limbs and joints as design variables, a properly simplified sensitivity index as weight and the sum of the weighed design variables as a target function, and making position and pose errors within the design criterion.The accuracy synthesis is carried out using genetic algorithm. It concludes that the 3-U(-|P)S/PU and 3-PUS/PU mechanisms have little difference on the general tolerances of the parts provided that they share identical task workspace.
     The outcome of this dissertation has provided a complete theoretical package for the development of the 3-UPS/PU and 3-PUS/PU mechanisms. And it’s also suitable to the development of some others similar parallel mechanism.
引文
1 Stewart D, A platform with six degree of freedom, In: Proceedings of the Institution of Mechanical Engineering, 1965, 18(1): 371-386
    2 Hunt K H, Kinematics Geometry of Mechanisms, Oxford: Oxford University Press, 1978
    3 黄真,孔令富,方跃法,并联机器人机构学理论与控制,北京:机械工业出版社,1997
    4 张曙,Heisel U,并联运动机床,北京:机械工业出版社,2003
    5 汪劲松,黄田,并联机床——机床行业面临的机遇与挑战,中国机械工程,1999,10(10):1103-1107
    6 Heisel U, Stehle T, Maier W, Werkzeugmaschinen mit Beinen-die Hexapod-Maschine, TU Stuttgart, 2002
    7 http://www.okuma.co.jp/chinese/product/pmm/index.html
    8 汪劲松,段广洪,杨向东,等,VAMTIY 虚拟轴机床,制造技术与机床,1998,2:42-43
    9 哈尔滨量具刃具集团有限责任公司展出并联加工中心,世界制造技术与装备市场,2006,1:60-61
    10 http://www.prsco.com
    11 http://www.urs-group.com
    12 空中客车公司的培训机构,国际航空,1994,8:17-18
    13 Neumann K E, Robot, US Patent No. 4732525, Mar. 22, 1988
    14 Neumann K E, System and Method for Controlling a Robot, US Patent No. 6301525, Oct. 9, 2001
    15 黄田,李曚,李占贤,等,非对称空间 5 自由度混联机器人,中国发明专利,公开号:CN 1524662,2003.9.16
    16 http://www.ifw.uni-hannover.de
    17 http://www.renualt-automation.com
    18 http://www.heckert-maschinen.com
    19 http://www.ds-technologie.de/v2/en/home/index.php
    20 赵永生,郑魁敬,李秦川,等,5-UPS/PRPU5 自由度并联机床运动学分析,机械工程学报,2004,40(2):12-16
    21 Gosselin C M, Kinematic Analysis optimization and programming of parallel robotic manipulators: [PhD Thesis], Montréal: McGill University, 1988
    22 Huang T, Li M, Zhao X Y, et al, Kinematic design of a reconfigurable miniature parallel kinematic machine, Chinese Journal of Mechanical Engineering (机械工程学报英文版), 2003, 16(1): 79-82
    23 Huang T, Li M, Li Z X, et al, Optimal kinematic design of 2-DOF parallel manipulators with well shaped workspace bounded by a specified conditioning index, IEEE Transactions on Robotics and Automation, 2004, 20(3): 538-543
    24 Huang T, Li M, Zhao X M, et al, Conceptual design and dimensional synthesis for a 3-DOF module of the TriVariant---a novel 5-DOF reconfigurable hybrid robot, IEEE Transactions on Robotics and Automation, 2005, 21(3): 449-456
    25 Liu H T, Huang T, Mei J P, et al, Kinematic design of a 5-DOF hybrid robot with large workspace/limb-stroke ratio, ASME Journal of Mechanical Design, accepted
    26 Zlatanov D, Fenton R G, and Benhabib B, A unifying framework for classification and interpretation of mechanism singularities, ASME Journal of Mechanical Design, 1995, 117(4): 566-572
    27 Merlet J P, Jacobian, manipulability, condition number and accuracy of parallel robots, ASME Journal of Mechanical Design, 2006, 128: 199-206
    28 Yoshikawa T, Manipulability of robotic mechanisms, The International Journal of Robotics Research, 1985, 4(2): 439-446
    29 Yoshikawa T, Translational and rotational manipulability of robotic manipulators, In: Proceedings of the American Control Conference, San Diego, USA , 1991: 1070-1075
    30 Lee S, Kim S, Kinematic Feature Analysis of Parallel Manipulator Systems, In: Proceedings of the IEEE/RSJ/GI International Conference on IROS’94, Munich, 1994, 77-82
    31 Doty K L, Nlelchiorri C, Schwartz E M, et al, Robot Manipulability, IEEE Transactions on Robotics and Automation, 1995, 11, 462-468
    32 Siciliano B, The Tricept robot: Inverse kinematics, manipulability analysis and closed-loop direct kinematics algorithm, Robotica, 1999, 17(4): 437-445
    33 Kim J O, Khosla P K, Dexterity measure for design and control of manipulators, In: IEEE/RSJ International Workshop on Intelligent Robots and Systems (IROS’91), Osaka, Japan, 1991: 758-763
    34 Bhattacharya S, Hatwal H, Ghosh A, On the optimum design of a Stewart platform type parallel manipulators, Robotica, 1995, 13(2): 133-140
    35 Salisbury J K, Craig J J, Articulated hands: force control of kinematic issues, The International Journal of Robotics Research, 1982, 1(1): 4-17
    36 Klein C A, Blaho B E, Dexterity measures for the design and control of kinematically redundant manipulators, The International Journal of Robotics Research, 1987, 6(2): 72-83
    37 Gosselin C M, Angeles J, The optimum kinematic design of a spherical 3-DOF parallel manipulator, ASME Journal of Mechanism, Transmission and Automation in Design, 1989, 112(2): 202-207
    38 Angeles J, The robust design of parallel manipulators, In: 1st International Colloquium, Collaborative Research Centre 562, Braunschweig, 2002, 9-30
    39 Wenger P, Chablat D, Design of a three-axis isotropic parallel manipulator for machining applications: the Orthoglide, In: Workshop: Fondamental Issues and Future Directions for Parallel Mechanisms and Manipulators, Québec, 2002, 16-23
    40 Pittens K H, Podhorodeski R P, A family of Stewart platforms with optimal dexterity, Journal of Robotic Systems, 1993, 10(4): 463-479
    41 Huang T, Whitehouse D J, Wang J S, Local dexterity, optimum architecture and design criteria for parallel machine tools, Annals of CIRP, 1998, 47(1): 347-351
    42 Huang T, Gosselin C M, Whitehouse D J, et al, Analytic approach for optimal design of a type of spherical parallel manipulators using dexterous performance indices, IMechE Journal of Mechanical Engineering Science, 2003, Part C, 217(2)
    43 Gosselin C M, Angeles J, A globe performance index for the kinematic optimization of robotic manipulators, ASME Journal of Mechanical Design, 1991, 113(3): 220-226
    44 Hong K-S, Kim J-G, Manipulability analysis of a parallel machine tool: Application to optimal link length design, Journal of Robotic Systems, 2000, 17(8): 403-415
    45 Tsai L W, Joshi S, Kinematics and optimization of a spatial 3-UPU parallel manipulator, ASME Journal of Mechanical Design, 2000, 122: 439-446
    46 Liu X J, Wang J S, Gao F, et al, The mechanism design of a simplified 6-DOF 6-RUS parallel manipulator, Robotica, 2002, 20(1): 81-91
    47 Liu X J, Wang Q M, Wang J S, Kinematics, dynamics and dimensional synthesis of a novel 2-DOF translational manipulator, Journal of Intelligent and Robotic Systems, 2005, 41(4): 205-224
    48 Gosselin C M, Angeles J, The optimum kinematic design of a planar 3-DOF parallel manipulator, Journal of Mechanisms, Transmissions and Automation in Design, 1988, 110(1): 35-40
    49 Gosselin C M, Angeles J, A globe performance index for the kinematic optimization of robotic manipulators, ASME Journal of Mechanical Design, 1991, 113(3): 220-226
    50 Stoughton R S, Arai T, A modified Stewart platform manipulators with improved dexterity, IEEE Transactions on Robotics and Automation, 1993, 9(2): 166-172
    51 黄田,王洋,倪雁冰等. 3-HSS 并联机床总体布局方案及运动学设计理论浅析, 全国生产工程第 8 届学术大会暨第三届青年学术会议, 威海, 1999: 221-226
    52 Huang T, Wang J S, Gosselin C M, et al, Kinematic synthesis of hexapods with prescribed orientation capability and well-conditioned dexterity, SME Journal of Manufacturing Processes, 2000, 2(1): 36-47
    53 Huang T, Wang J S, Whitehouse D J, Theory and methodology for kinematic design of Gough-Stewart platform, Science in China(Series E), 1999, 42(4): 1-12
    54 Huang T, Wang J S, Whitehouse D J, Design of hexapod based machine tools with specified workspace and well-conditioned dexterity, In: Proceeding of the 10th TMM World Congrees Oulu, Finland, 1999: 1146-1151
    55 汪劲松,黄田,等,6-THS 并联机床结构参数设计理论与方法,清华大学学报,1999,39(8):25-29
    56 Lipkin H, Duffy J, Hybrid twist and wrench control for a robotic manipulator, Journal of Mechanisms, Transmissions, and Automations in Design, 1988, 110(6): 138-144
    57 Doty K L, Melchiorri C, Bonevento C, A theory of generalized inverse applied to robotics, The International Journal of Robotics Research, 1993, 12(1): 1-19
    58 Doty K L, Melchiorri C, Schwartz E M, et al, Robot manipulability, IEEE Transactions on Robotics and Automation, 1995, 11(3): 462-468
    59 Gosselin C M, Dexterity indices for planar and spatial robotic manipulators, In: Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, USA, 1990, 650-655
    60 Ma O, Angeles J, Optimum architecture design of platform manipulator, In: ICAR, Pise, 1991, 1131–1135
    61 Kim S G, Ryu J, New Dimensionally homogeneous Jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators, IEEE Transactions on Robotics and Automation, 2003, 19(4): 731-736
    62 Park M K, Kim J W, Kinematic Manipulability of Closed Chains, In: ARK, Portoroz-Bernadin, 1996, 99-108
    63 Merlet J P, Daney D, Dimensional synthesis of parallel robots with a guaranteed given accuracy over a specific workspace, In: IEEE International Conference on Robotics and Automation, Barcelona, 2005
    64 Hao F, Merlet J P, Multi-criteria optimal design of parallel manipulators based on interval analysis, Mechanism and Machine Theory, 2004, available online
    65 Merlet J P, Parallel robots: open problems, online available at: http://www-sop.inria.fr/coprin/equipe/merlet/problemes
    66 Raghavan M, Roth B, Inverse kinematics of the general 6R manipulator and related linkages, ASME Journal of Mechanical Design, 1993, 115: 502-508
    67 Raghavan M, Roth B, Solving polynomial systems for the kinematic analysis and synthesis of mechanisms and robot manipulators, ASME Journal of Mechanical Design, 1995, 117: 71-79
    68 Garcia C B, Zangwill W I, Global Continuation methods for finding all solutions to polynomial systems of equations in N variables, Center for Maths Studies and Economics Report No.7755. Univ. of Chicago, 1977
    69 Watson I T, Numerical linear algebra aspects of globally convergent homotopy methods, SIAM Review, 1986, 28(4): 529-545
    70 Carlo I, Direct position analysis of the Stewart platform mechanism, Mechanism and Machine Theory, 1990, 25(6): 611-621
    71 Dasgupta B, Solution to the forward instantaneous kinematics for a general 6-DOF Stewart platform comment, Mechanism and Machine Theory, 1994,29(2): 341
    72 Dasgupta B, A canonical formulation of the direct position kinematics problem for a general 6-6 Stewart platform, Mechanism and Machine Theory, 1994, 29(6): 819-827
    73 Griffis M, Duffy J, A Forward displacement analysis of a class of Stewart platforms, Journal of Robotic Systems, 1989, 6(6): 703-720
    74 Greenivasan S, Nanua P, Solution of the direct position kinematics problem of the general Stewart platform using advanced polynomial continuation, In: Proceedings of ASME 22nd Biennial Mechanism Conference, 1992, DE-45: 99-106
    75 Innocenti C, Parenti-Castelli, V, Direct position analysis of the Stewart platform mechanism, Mechanism and Machine Theory, 1990, 25(6): 611-621
    76 Innocenti C, Parenti-Castelli V, Forward kinematics of the general 6-6 fully parallel mechanism: an executive numerical approach via a Mono dimension search algorithm, In: Proceedings of ASME 22nd Biennial Mechanism Conference, 1992, DE-45: 545-553
    77 Lazard D, Merlet J P, The true Stewart platform has 12 configurations, In: Proceedings of IEEE International Conference on Robotic and Automation, 1994, 2160-2165
    78 Nair R, Maddocks J H, On the forward kinematics of parallel manipulators, Int. J. of Robotics Research, 1994, 13(2): 171-188
    79 Nanua P, Waldron K J, Murthy V, Direct kinematic solution of a Stewart platform. IEEE Transactions on Robotics and Automation, 1990, 6(4): 438-444
    80 Parenti-Castelli V, Innocenti C, Forward displacement analysis of parallel mechanisms: closed form solution of PRR-3S and PPR-3S structures, ASME Journal of Mechanical Design, 1992, 114(l): 68-73
    81 Waldron K J, Raghavan M, Roth B, Kinematic of a hybrid series-parallel manipulation system, ASME Journal of Dynamic Systems Measurement and Control, 1989 111(2): 211-221
    82 Wei L, Duffy J, Griffis M, Forward displacement analysis of the 4-4 Stewart platforms, In: Proceedings of ASME 21st Biennial Mechanisms Conference, 1990
    83 Zhang C D, Song S M, Forward kinematics of a class of parallel(Stewart) platforms with closed-form solutions, In: Proceedings of IEEE International Conference on Robotics and Automation, 1991, 2676-2681
    84 Raghavan M, The Stewart platform of general geometry has 40 configurations, ASME Journal Mechanical Design, 1993, 115(2): 277-281
    85 Wampler C W, Forward displacement analysis of general six-in-parallel SPS (Stewart) platform manipulators using SOMA Coordinates, Mechanism and Machine Theory, 1995, 31(3): 331-337
    86 梁崇高,荣辉,一种 Stewart 平台型机械手位移正解,机械工程学报,1991,27(2):26-30
    87 Wen F A, Liang C G, Displacement analysis of the 6-6 Stewart platform, Mechanisms. Mechanism and Machine Theory, 1994, 29(4): 547-557
    88 Dietmaier P, The Stewart-Gough platform of general geometry can have 40 real postures, Advances in Robot Kinematics: Analysis and Control, Lenarcic J, Husty M L (Eds), Kluwer Academic Publishers, 1998: 7-16
    89 Innocenti C, Forward kinematics in polynomial form of the general Stewart platform, ASME Journal of Mechanical Design, 2001, 123: 254-260
    90 Lee T Y, S J K, Improved dialytic elimination algorithm for the forward kinematics of the general Stewart–Gough platform, Mechanism and Machine Theory, 2003, (38): 563-577
    91 Weck M, Staimer D, Parallel kinematic machine tools-current state and future potentials, Annals of the CIRP, 2002, 51(2): 671-683
    92 Weck M, Staimer D, Accuracy issues of parallel kinematic machine tools, IMechE Journal of Multi-body Dynamics, Part K, 2002, 216(1): 51-57
    93 孙华德,并联刀具机构的标定、位姿检测和闭环控制研究,博士论文,北京航空航天大学,2002
    94 Patel A J, Ehmann K F, Volumetric error analysis of a Stewart platform based machine tool, Annals of the CIRP, 1997, 46(1): 287-290
    95 Wang S M, Ehmann K F, Error model and accuracy analysis of a six-DOF Stewart platform, Manufacturing Science and Engineering, 1995, 221: 519-530
    96 黄真,空间机构,北京:机械工业出版社,1989
    97 Wang J, Masory O, On the accuracy of a Stewart platform Part I: the effect of manufacturing tolerance, In: Proceedings of IEEE International Conference on Robotics and Automation, 1993, 114-120
    98 汪劲松,白杰文,高猛,等,Stewart 平台铰链间隙的精度分析,清华大学学报:自然科学版,2002,42(6):758-761
    99 Soons J A, Error analysis of a hexapod machine tool, Laser Metrology and Machine Performance, 1997: 346-358
    100 Maurine P, Dombre E. A calibration procedure for the parallel robot Delta 4. IEEE International Conference on Robotics and Automation, 1996, 975-979
    101 祃琳,黄田,面向制造的并联机床精度设计中国机械工程,l999,l0(10):l1l4-l1l7
    102 黄田,李亚,李思维,等,一种三自由度并联机构几何误差建模、灵敏度分析及装配工艺设计,中国科学(E 辑),2002,32(5):628-635
    103 Zhang C, Wang H P, Li J K, Simultaneous optimization of design and manufacturing tolerances with process(machine) selection, Annals of the CIRP, 1992, 41(11): 569-572
    104 Ngoi B K A, Ong C T, Optimum assembly using a component dimensioning method, The International Journal of Advanced Manufacturing Technology, 2005, 11(3): 172-178
    105 Hoffman P, Analysis of tolerances and process inaccuracies in discrete part manufacturing, Computer-Aided Design, 1982, 14(2): 83-88
    106 Lee W, Jong W, Tony C, etal, Tolerance synthesis for nonlinear synthesis based on nonlinear programming, IEE Transactions, 1993, 25(1): 51-61
    107 Chen M S, Young K W, Optimizing Tolerance Allocation for Mechanical Assemblies Considering Geometric Tolerances Based on a Simplified Algorithm, In: Proceedings of 6th CIRP Seminars on Computer Aided Tolerancing, Netherlands, 1999
    108 Nassf A O, Eimaraghy H A, Allocation of geometric tolerance: new criterion and methodology, Annals of the CIRP, 1997, 46 (1): 101-106
    109 Ashiagbor A, Liu H C, Nnaji B O, Tolerance control and propagation for the product assembly modeler, International Journal of Production Research, 1998, 36 (1): 75-93
    110 Gadallah M H, ElMaraghy H A, A new algorithm for form tolerance evaluation, In: Proceedings of the Fourth International Conference on Computer Integrated Manufacturing and Automation Technology, Troy, NY, USA, 1994, 286-291
    111 Kim H S, Choi Y J, The kinematic error bound analysis of the Stewart platform, Journal of Robotic Systems, 2000, 17(1): 63-73
    112 卢强,张友良,用蒙特卡洛法进行 6 腿并联机床精度综合,中国机械工程,2002,13(6):464-466
    113 赵永杰,赵新华,葛为民,6-SPS 并联机器人精度综合算法,机械科学与技术,2004,23(4):392-395
    114 贺利乐,刘宏昭,潘芳伟,等,基于混沌遗传算法的并联机器人精度综合,应用科学学报,2005,23(5):526-529
    115 Huang T, Whitehouse D J, Chetwynd D, A unified error modelling for tolerance design, assembly and error compensation of a class of parallel kinematic machines with parallelogram struts, Annals of the CIRP, 2002, 52(1): 297-301
    116 黄田,唐国宝,李思维等,一类少自由度并联构型装备运动学标定方法研究,中国科学(E 辑),2003,33(9):829-838
    117 Gosselin C M, The optimum design of robotic manipulators using dexterity indices, Journal of Robotics and Autonomous Systems, 1992, 9(4): 213-226
    118 Kim S-G, Ryu J, New dimensionally homogeneous jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators, IEEE Transactions on Robotics and Automation, 2003, 19(4): 731-736
    119 Pond G, Carretero J A, Formulating Jacobian matrices for the dexterity analysis of parallel manipulators, Mechanism and Machine Theory, 2006, 41(12): 1505-1519
    120 史荣昌,矩阵分析,北京: 北京理工大学出版社,1995
    121 Zhang D, Gosselin C M, Kinetostatic modeling of n-DOF parallel mechanisms with a passive constraining leg and prismatic actuators, ASME Journal of Mechanical Design, 2001, 123: 375-381
    122 http://www.parallemic.org/WhosWho/Companies/Profile005.html
    123 Kumar V, Characterization of workspaces of parallel manipulators, ASME Journal of Mechanical Design, 1992, 114: 368-375
    124 Holland J H, Adaptation in nature and artificial systems, Cambridge: MIT Press. 1992
    125 Borm J H, Menq C H, Determination of optimal measurement configurations for robot calibration based on observability measure, The International Journal of Robotics Research, 1991, 10(1): 51-63
    126 Lintott A B, Dunlop G R, Parallel topology robot calibration: Parallel manipulators, Robotica, 1997, 15: 395-398

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700