卫星联合定轨的参数化信息融合技术及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以卫星轨道动力学信息的稀疏参数建模和测量信息的参数化建模为基础的参数化信息融合数据处理技术是实现天地基综合信息网中卫星联合定轨需要突破的关键技术之一。本文以系统科学理论和系统工程技术为指导,以轨道动力学信息的稀疏参数建模和测量信息的参数化建模为突破口,研究联合定轨参数化信息融合的理论、模型与方法,并在基于双星定位系统的近地卫星联合定轨涉及的几个典型研究层次中获得应用。
     本文的主要工作和创新点如下:
     1)联合定轨的需求分析及定轨原理建模。通过对联合定轨系统的功能需求和数据需求分析,建立了以定轨系统结构和测量系统特征分析、轨道动力学信息的稀疏参数建模和测量信息的参数化建模、非线性半参数联合估计算法设计、联合定轨精度综合评估为内涵的通用联合定轨数据处理流程,拓展和完善了传统联合定轨的概念内涵和研究外延,在此基础上建立了基于双星距离和观测数据的联合定轨基本模型及其数值融合算法。
     2)动力学模型稀疏参数建模及高精度表示。针对卫星轨道动力学模型建模误差的存在,改进了传统的卫星轨道动力学模型误差补偿方法,提出了一种物理模型和基于稀疏参数表示和时间序列分析的数学模型相结合的卫星轨道动力学模型高精度表示方法,在分别建立轨道摄动偏差信号的基于小波分解的加权迭代稀疏参数估计算法和轨道摄动残差信号的时间序列参数估计方法的基础上,建立了轨道动力学高精度表示模型的改进的Gauss—Newton迭代求解算法。理论分析和实验结果表明,该建模方法是对物理参数模型建模误差的一种有效补偿,卫星联合定轨精度得到较大程度的改善。
     3)测量模型误差的非线性半参数建模及精度评估。在建立多测元观测数据的联合定轨多源融合测量模型及其多结构非线性融合处理算法的基础上,针对联合定轨数据处理中的非线性影响因素导致的测量模型误差,提出了一种参数化建模和非参数分量表示相结合的非线性半参数联合定轨模型建模方法,在此基础上建立了参数估值的偏差修正算法和基于数据融合处理的联合定轨精度综合评估方法。理论分析和实验结果表明,考虑测量模型误差的基于正则矩阵补偿的半参数估计方法及其偏差修正算法能够有效改善卫星的联合定轨精度。
     4)联合定轨应用技术的分层次研究方法。以基于双星定位系统的近地卫星联合定轨作为工程应用背景,提出了联合定轨应用技术的基于观测数据层、模型结构层、策略融合层的分层次研究方法,分别建立了同质观测数据的二步系统误差消除的方差分量估计加权算法以及异质观测数据的方差分量估计和模型结构分析相结合的综合加权算法、基于加权因子的多结构非线性联合定轨模型及其最优加权算法、基于动力学和运动学定轨策略融合的一体化联合定轨模型及其加权融合估计算法,三个层次的最优加权估计算法能够进一步抑制轨道动力学建模误差、测量模型误差等非线性影响因素对联合定轨精度的影响,最终的卫星轨道参数估计精度得到了进一步的改善。
The parameterized information fusion technology based on sparse parameter modeling of satellite trajectory dynamic information and parameterized modeling of measurement information is the key technology of satellites combined orbit determination(COD) in space-ground-based synthetical information network. Taking the system science theories and system engineering technologies as guidances, the theories, models and methods of COD parameterized information fusion technology are studied in the thesis taking sparse parameter modeling and parameterized information fusion as breakthrough point, and the applied technology of low earth orbit(LEO) satellites COD based on bi-satellite positioning system (BPS) is discussed in representative research hiberarchy.
     The contributions and innovation points of the thesis are listed as follows.
     1) Requirements analyses and fundamental modeling of COD. The general COD data processing course which include COD system structure and measurement system characteristic analyses, sparse parameter modeling of trajectory dynamic information and parameterized modeling of measurement information, nonlinear semiparametric combined estimation algorithm design, COD precision synthetical evaluation is constructed by analyzing of COD system function requirements and data requirements, which expands and perfects the conception connotation and research denotation of traditional COD. Based on these, COD basal mathematic model based on bi-satellite range sum data and its numerical fusion algorithm are constructed.
     2) Sparse parameter modeling of orbit dynamics model and high precision denotation. Aiming at modeling errors of satellite dynamic models, a high precision denotation method of satellite orbit dynamics based on physics model and mathematics model with sparse parameters representation and time series analysis is presented by improving traditional method of dynamic model error compensation. Based on upbuilding weighting iterative sparse parameters estimation algorithm of trajectory perturbation deviation signal based on wavelet decomposition and time series parameters estimation algorithm of trajectory perturbation residual error signal, an improved Gauss-Newton iterative algorithm of high precision denotation model is brought forward. Theoretical analyses and simulation experiments results show that the modeling method can achieve effective compensation for physics model errors, and the COD precision can be gained better improvement.
     3 )The model error modeling method based on nonlinear semiparametric regression and precision estimation. Based on building COD multi-source fusion measurement models and multi-structural nonlinear algorithm, a modeling method of nonlinear semi-parametric COD model which associated parameterized modeling with non-parametric components expression is put forward aiming at model errors of COD nonlinear influencing factors, and the deviation correction simulation algorithm and COD precision estimation method based on data fusion process are built. Theoretical analyses and simulation experiments results show that the semi-parametric estimation method based on regularization matrix compensation and its deviation correction algorithm can ameliorate precision effectively considering model errors modeling.
     4) The layered research method of COD applied technology. Taking LEOs COD based on BPS as the engineering application background, a layered research method of COD applied technology based on observation data layer, model structure layer and strategy fusion layer is put forward. The improved variance component estimation optimal weighting method of homogeneous data with two-step system errors correction and the integrated weighting method based on model structure characteristics analyses and VCE estimation of heterogeneous data, multi-structural nonlinear regressive model and optimal weighting algorithm of COD system based on weighting factor, integrative COD model based on dynamic and kinematic orbit determination strategy fusion and the fusion weighting algorithm are constructed, and theoretical analyses and simulation computation results show that optimal weighting estimation algorithm of three layers can restrain nonlinear influence factor including dynamic modeling error and measure model errors to the effects of COD precision.
引文
[1]Matthew A.H.Orbit determination techniques of a conceptual space based observation system for the detection and monitoring of near-earth objects.Ph.D.thesis,University of Illinois,2001.
    [2]沈自成.天基测控网与天基综合信息网相关技术述评.电讯技术,2002,(1):117-123.
    [3]张云彬,张永生.多源信息融合与天基信息网.信息工程大学学报,2003,4(4):33-37。
    [4]吴迪,王欣,赵阳等.卫星综合信息网的研究.东北大学学报,2001,22(2):179-182.
    [5]代坤,鲁士文.天基综合信息网的体系结构模型.微电子学与计算机,2004,21(4):69-74.
    [6]Oza D.H,Jones T.L,Hakimi M.Landsat-4 orbit determination using batch least-square and sequential methods.AIAA-92-4432-CP:103-112.
    [7]Oza D.H.,Niklewski D.J.,Feiertag R.J.et al.Assessment of orbit determination solutions for TDRSS users.AIAA-95-3242-CP:634-646.
    [8]Svehla D.,Rothacher M.Kinematic and reduced-dynamic precise orbit determination of low earth orbiters.Advances in Geosciences,2003,(1):47-56.
    [9]Oscar L.C.,Scott B.L.Kinematic point positioning of a LEO with simultaneous reduced-dynamic orbit determination.Proceedings of Institute of Navigation GNSS-2004 meeting,Long Beach,California,2004.
    [10]Kang Z.G.,Tapley B.,Bettadpur S.Precise orbit determination for the GRACE mission using only GPS data.Journal of Geodesy,2006,80(6):322-331.
    [11]Robert W.Satellite orbit determination and ephemeris determination using inter satellite links.Ph.D.thesis,University of Bundeswehr Munchen,2000.
    [12]Liu Y.C.,Liu L.Orbit determination using satellite-to-satellite tracking data.Journal of Astronomy and Astrophysics,2001,1(3):281-286.
    [13]Kunig,R.,Shi C.,Neumayer K.H.,et al.Conventional and new approaches for combining multi-Satellite techniques.Observation of the Earth System from Space,Flury,J.,Rummel,R.(Eds.),2006:413-426.
    [14]Doll C.E.,Oza D.H.,Lorah J.M.et al.Accurate orbit determination strategies for Topex/Poseidon using TDRSS.AIAA-95-3243-CP:647-655.
    [15]Marshall J.A.,Lerch E J.An assessment of TDRSS for precision orbit determination.The Journal of the Astronauticial Sciences,1996,44(1):115-127.
    [16]Gill E..Precise orbit determination of the GNSS-2 space segment from ground- based and satellite-to-satellite tracking.The 2nd European symposium on GNSS,Toulouse,1998:1-6.
    [17]郗晓宁,张雅声,任萱等.利用星载GPS伪码测距进行小卫星星座的整网定位.国防科技大学学报,1998,20(6):12-16.
    [18]王世练,路军,张尔扬.基于星间无线电测距的卫星自主定轨与导航.宇航学报,2002,23(1):69-72.
    [19]胡松杰,王歆,刘林.卫星星座与编队飞行问题综述.天文学进展,2003,21(3):231-240.
    [20]刘迎春,刘林,王昌彬.关于星-星跟踪与地面跟踪的联合定轨问题.紫金山天文台台刊,2000,19(2):117-120.
    [21]刘迎春,刘林,王昌彬.关于星-星跟踪的定轨问题.飞行器测控学报,2000,19(2):7-14.
    [22]刘林,刘迎春.关于星-星相对测量自主定轨中的亏秩问题.飞行器测控学报,2000,19(3):13-16.
    [23]董光亮,刘迎春.联合定轨技术及其应用前景.飞行器测控学报,2002,21(3):12-16.
    [24]胡松杰,陈力,刘林.双星定位系统在中低轨卫星定轨中的应用.天文学报,2002,43(3):293-301.
    [25]Yunck T.P.,Wu S.C.,Wu J.T.,et al.Precise tracking of remote sensing satellites with the Global Positioning System.IEEE Transactions on Geoscience and Remote Sensing,1990,28(1):108-116.
    [26]Wu S.C.,Yunck T.P.,Thornton C.L.Reduced-dynamic technique for precise orbit determination of low earth satellites,Journal of Guidance,Control,and Dynamics,1991,14(1):24-30.
    [27]秦显平,杨元喜,焦文海.利用SLR与伪距资料综合定轨.武汉大学学报,2003,28(6):745-748.
    [28]Zhu S,Reigber C,Koenig R.Integrated adjustment of CHAMP,GRACE and GPS data.Journal of Geodesy,2004,78(1):103-108.
    [29]Jesus S.,Isabel M.,Vigo A.A fuzzy clustering application to POD.Journal of Computational and Applied Mathematics.2007,204(1):137-143.
    [30]Jaeggi A.,Hugentobler U.,Beutler G.Combined determination of orbit and accelerometer calibration parameters for CHAMP.35th COSPAR Scientific Assembly,Paris,2004.
    [31]Weber R.,Fragner E.,Slater J.A.Precise GLONASS orbit determination within the IGS/IGLOS Pilot Project.35th COSPAR Scientific Assembly,Paris,2004.
    [32]Yuan D.N.The determination and error assessment of the Earth gravity field Model. Ph.D. thesis, University of Texasat Austin, 1991.
    [33] Frank G. L., Nikita P. Z., Douglas S. C., et al. Towards the GEOSAT follow-on precise orbit determination goals of high accuracy and near-real-time processing.AIAA/AAS Astrodynamics Specialist Conference, Keystone, Colorado, 2006.
    [34] Andersen P. H., Aksnes K.. Precise ERS-2 orbit determination using SLR, PRARE observation. Journal of Geodesy, 1998, 72: 421-429.
    [35] Hu X. G., Liao X. H., Huang C. Data weighing and solution assessment in combination. Journal of Geodesy, 1999, 73: 391-397.
    [36] Luthcke S. B., Zelensky N., Rowlands D. D, et al.The 1-centimeter orbit: Jason-1 precision orbit determination using GPS, SLR, DORIS, and altimeter data. Marine Geodesy, 2003,26: 399-421.
    [37] Oliver M., Gill E., Remco K.. Rapid orbit determination of LEO satellites using IGS clock and ephemeris products. GPS Solutions, 2005, 9(3): 226-236.
    [38] Bock H., Hugentobler U., Springer T.. Efficient precise orbit determination of LEO satellites using GPS. Advanced Space Research. 2002, 30(2): 295-300.
    [39] Van D. I., Visser P., Patino R. CHAMP precise orbit determination Using GPS Data.Advances in Space Research, 2003, 31(8): 1889-1895.
    [40] Key R. C, John C. R., Tapley B. D. Jason-1 Precision orbit deter- mination by combining SLR and DORIS with GPS tracking data.Marine Geodesy, 2004, 27(2):319-331.
    
    [41] Karslioglu M. O. An interactive program for GPS-based dynamic orbit determination of small satellites. Computers & Geosciences, 2005, 31(3): 309-317.
    [42] Svehla D. Combined processing and orbit determination of Galileo and GPS by estimating phase clocks. 36th COSPAR Scientific Assembly, Beijing, 2006.
    [43] Wang, J. S., Chen J. R., Wu G. Y., et al. GEO/LEO satellites joint orbit determination based on satellite-to-satellite tracking. 36th COSPAR Scientific Assembly,Beijing, 2006.
    [44] Gomes V. M., Kuga, H. K., Chiaradia A. P., et al. Orbit determination using GPS navigation solution. 35th COSPAR Scientific Assembly, Paris, 2004.
    [45] Bisnath S. B., Langley R. B. Precise A posteriori geometric tracking of low earth orbiters with GPS. Journal of Canadian Aeronautics and Space, 1999,45: 245-252.
    [46] Jo J. H., Choe N.J, Cicci D.A, et al. Comparison of accuracy for various size of geopotential fields for low-earth-orbit satellite precision orbit determination using GPS observation. Advances in the Astronautical Sciences. 2004,116(1): 337-348.
    [47] Bock, H., Hugentobler U., Beutler G. Kinematic orbit determination for low earth orbiters (LEOs). IAG 2001 Scientific Assembly, Budapest, Vistas for Geodesy in the New Millenium, Springer IAG, 2001:322-328.
    [48] Svehla D., Rothacher M. Kinematic orbit determination of LEOs based on zero- or double- difference algorithms using simulated and real SST data. IAG 2001 Scientific Assembly, Budapest, Vistas for Geodesy in the New Millenium, Springer IAG, 2002: 334-338.
    [49] Svehla D., Rothacher M. Kinematic positioning of LEO and GPS satellites and IGS stations on the ground. Advanced Space Research. 2005, 36:376-381.
    [50] Bae T. S, Kwon J.H., Brzezinska D.G Analysis for kinematic orbit determination of CHAMP satellite. 2002 ION National Technical Meeting, San Diego, Canada,2002: 28-30.
    [51] Oliver M. Kinematic GPS positioning of LEO satellites using ionosphere-free single frequency measurements. Aerospace Science and Technology, 2003, (7):396-405.
    [52] Colombo, O. L., Evans A. G. Testing decimeter-level, kinematic, differential GPS over great distances at sea and on land. Proceedings ION GPS '98, Nashville,Tennessee, 1998.
    [53] Colombo, O. L., Luthcke, S. B., Rowlands, D.D., et al. Filtering errors in LEO trajectories obtained by kinematic GPS with floated ambiguities. Proceedings ION GNSS 2002, Portland, Oregon, 2002.
    
    [54] Svehla D., Rothacher M. CHAMP double-difference kinematic orbit with ambiguity resolution. First CHAMP Science Meeting, Springer-Verlag, Potsdam,Germany, 2003: 70-77.
    [55] Sabol C, Kelecy T., Murai M. Geosynchronous orbit determination using the high accuracy network determination system. Advances in the Astronautical Sciences.2005,117(2): 1783-1800.
    [56] Wu J. F., Huang C. Application of robust estimation in zero-difference kinematical orbit determination of GPS-equipped satellites. Chinese Astronomy and Astrophysics, 2007, 31(1): 76-84.
    [57] Peng D. J., Wu B. Zero-difference and single-difference POD for LEO using GPS.Chinese Science Bulletin, 2007, 52(15): 2024-2030.
    [58] Byun S. H., Schutz B.E. Improving satellite orbit solution using double-differenced GPS carrier phase in kinematic mode. Journal of Geodesy, 2001, 75(9): 533-543.
    [59] Jay H. Kwon, Dorota G B., Chang K. H. Kinematic Orbit Determination of Low Earth Orbiter using Triple Differences. Journal of Navigation. 2003, 56: 457-473.
    [60] Bisnath S. B., Langley R. B. CHAMP orbit determination with GPS phase-connected precise point positioning. Proceedings of the First CHAMP Science Meeting,Potsdam,2002:59-64.
    [61]Bisnath S.B.Precise orbit deyermination of low earth orbiters with a single GPS receiver-based,geometric strategy.Report of University of New Brunswick,2004.
    [62]Oscar L.C.,Scott B.L.Kinematic point positioning of a LEO With simultane-ous reduced-dynamic orbit estimation.Proceedings of the Institute Of Navigation(ION)GNSS-2004 Meeting,Long Beach,California,2004.
    [63]Colombo,O.L.,Sutter,A.W.,Evans A.G..Evaluation of precise,kinematic GPS point positioning.Proceedings of the Institute Of Navigation(ION) GNSS-2004Meeting,Long Beach,California,2004.
    [64]Bisnath S.B.,Langley R.B.Precise orbit determination of low earth orbiters with GPS point positioning.Proceedings of the Institute of Navigation 2001 National Technical Meeting,Alexandria,2001:725-733.
    [65]Shabanloui A.,Ilk K.H.Kinematical LEO Precise Orbit Determination(POD) with only sequential time differenced GPS SST carrier phase observations.Geophysical Research Abstracts,2007,9:236-248.
    [66]Swatschina P.,Weber R.LEO orbit determination and parameter estimation.Geophysical Research Abstracts,2006,8(4):1607-1615.
    [67]Chen J.P.,Wang J.X.Models of solar radiation pressure in the orbit determination of GPS satellites.Chinese Astronomy and Astrophysics,2007,31(1):66-75.
    [68]Key Rok Choi.Jason-1 Precision Orbit Determination Using GPS Combined with SLR and DORIS Tracking Data.The University of Texas at Austin,2003.
    [69]Montenbruck O.,Van H.T.,Kroes R.,et al.Reduced dynamic orbit determination using GPS code and carrier measurements.Aerospace Science and Technology,2005,9:261-271.
    [70]Yunck,T.P.,Bertiger W.I.,Wu S.C.,et al.First assessment of GPS-based reduced dynamic orbit determination on T/P.Geophys.Res.Lett.1994,21(7):541-544.
    [71]J(a|¨)ggi A.,Beutler G.,Hugentobler U.Reduced-dynamic POD and the use of accelerometer data.Advances in Space Research,2005,36(3):438-444.
    [72]Svehla D.,Rothacher M.Kinematic and reduced-dynamic POD of low earth orbiters.Advances in Geosciences 2003,(1):47-56.
    [73]Heike B.,Hugentobler U.,Gerhard B.Kinematic and dynamic determination of trajectories for low earth satellites using GPS.GPS Solutions,2004,11:386-394.
    [74]Seungwoo L.,Bob E.S.Hybrid POD strategy by global position system tracking.Journal of Spacecraft and Rockets.2004,41(6):997-1009.
    [75]朱炬波.不完全测量的建模与处理.国防科学技术大学博士学位论文,2004,4.
    [76]傅震,尧德中.稀疏分解的加权迭代方法及其初步应用.电子学报,2004, 32(4):567-570.
    [77]汪雄良.基追踪方法及其在图像处理中应用的研究.国防科技大学博士学位论文,2006.
    [78]王正明,易东云.测量数据建模与参数估计.长沙:国防科技大学出版社,1996.
    [79]Mallat S.,Zhang Z.Mathing pursuits with time-frequency dictionaries.IEEE Trans.On Signal Processing,1993,41(12):3397-3412.
    [80]Ronald R.C.,Mladen V.W.Entropy-based algorithm for best basis selection.IEEE.Trans.On Information Theory,1992,38(2):713-718.
    [81]Chen S.B.,Donoho D.L,Michael A.S.Atomic decomposition by basis pursuit.SIAM Review,2001,43(1):129-159.
    [82]Donoho D.L.Sparse components of images and optimal atomic decompo-sition.Technical Report of Stanford University,2000.
    [83]Cetin M.,Karl W.C,Castanon D.A..Formation of HRR profiles by nonquadratic optimization for improved feature extraction.Proceedings of the SPIE conference on Algorithms for SAR Imagery Ⅸ,Orlando,2002.
    [84]Cetin M.,Malioutov D.M.,Willsky A.S.A variational technique for source localization based on a sparse signal reconstruction perspective.Proceedings of the 2002 IEEE international conference on Acoustics,Speech,and Signal Processing,Orlando,2002.
    [85]Tenorio L.Statistical regularization of inverse problems.SIAM Review,2001,43(2):347-366.
    [86]王正明.选择最优回归模型的快速算法.宇航学报,1992,(2):14-20.
    [87]Daubechies I.,Han B.,Ron A.,et al.MRA based construction of wavelet frames.Application Computation,2003,14(1):1-46.
    [88]Tropp J.,Gilbert A.,Strauss M.Algorithms for simultaneous sparse approximation.Part Ⅰ:Greedy pursuit.Signal Processing,special issue on Sparse approximations in signal and image processing,2006,86(4):572-588.
    [89]Zhishun S.W.,John Y.C.Minimum fuel neural network and their applications to overcomplete signal representations.IEEE Transactions and Systems-Ⅰ:Fundamental Theory and Applications,2000,47(8):1146-1159.
    [90]Li Y.,Cichocki A.,Amafi S.Analysis of sparse representation and blind source separation.Neural Computation,2004,16(6):1193-1234.
    [91]Starck J.,Elad M.,Donoho D.L.Image decomposition via the combination of sparse representation and a variational approach.IEEE Transaction on Image Processing,2005,14(10):1570-1582.
    [92]Fabian J.,Gonzalo A..On the use of sparse signal decomposition in the analysis of multi-channel surface electromyograms.Signal Processing,2006,86(3):415-416.
    [93]Zhou Haiyin,Li Donghui,Pan Xiaogang.Method of combined satellite orbit determination by space-ground-based measurement data fusion based on sparse parameters.International Conference of Space Information Technology,WuHan,2005:598550-1-5.
    [94]Wang Zhengming,Zhu Jubo.Reduced parameter model on trajectory tracking data with applications.Science in China(Series E),1999,29(2):146-154.
    [95]Zhu Jubo.Data Fusion Techniques for incomplete measurement of trajectory,Chinese Science Bulletin,2000,45(20):2236-2240.
    [96]Wang Zhengming,Duan Xiaojun.Frequency domain method on separating signal and noise,Science in China(Series E),1999,29(6):525-531.
    [97]杨天社,席政,李济生等.航天器天基测控中心关键技术分析.飞行器测控学报,2006,25(5):9-12.
    [98]刘迎春.航天任务轨道支持中的两个问题——天地基联合定轨方法和月球探测器轨道支持.南京大学博士学位论文,2002.
    [99]李济生.航天器轨道确定.北京:国防工业出版社,2003.
    [100]李济生.人造卫星精密轨道确定.北京:解放军出版社,1995.
    [101]刘林.人造地球卫星轨道力学.北京:高等教育出版社,1992.
    [102]刘林.航天器轨道理论.北京:国防工业出版社,2000.
    [103]翁海娜.基于多模型的组合导航系统信息融合技术研究.北京:北京航天航空大学博士后学位论文,2003.
    [104]Claypoole R.L.,Geoffrey M.D.,Sweldens W.,et al.Nonlinear wavelet transforms for image coding via lifting.IEEE Transactions on Image Processing,2003,12(12):1449-1459.
    [105]Donoho D.L.De-noising by soft-thresholding.IEEE Transactions on Information Theory,1995,41(3):613-627.
    [106]王石.轨道摄动的小波平滑,系统仿真学报,2002,14(5):551-553.
    [107]Donoho D.L.,Huo X.M.Uncertainty principles and ideal atomic decomposition,IEEE Transaction on Information Theory,2001,47:2845-2862.
    [108]Huo X.M.Sparse image representation via combined transforms,PhD thesis,Stanford University,1999.
    [109]Donoho D.L.,Michael E.Optimally sparse representation in general dictionaries via l_1 minimization,PNAS,2003,100(5):2197-2202.
    [110]Donoho D.L.,Michael E.,Vladimir T.Stable recovery of sparse overcomeplete represent-tations in the presence of noise,http://www-stat.stanford.edu/donoho /reports.html,2004.
    [111]杨位钦.时间序列分析与动态数据建模.北京:北京理工大学出版社,1988.
    [112]《数学手册》编写组.数学手册.北京:高等教育出版社,1979.
    [113]王正明,易东云,周海银等.弹道跟踪数据的校准与评估.长沙:国防科技大学出版社,1999.
    [114]易东云.动态测量误差的复杂特征研究与数据处理结果的精度评估.长沙:国防科技大学博士学位论文,2003.
    [115]黄捷.电波大气折射误差修正.北京:国防工业出版社,1999.
    [116]潘晓刚,王炯琦.基于双星定位系统和星敏感器的低轨卫星自主定轨方法研究.飞行器测控学报,2005,24(4):20-25.
    [117]段战胜,韩崇昭,党宏社.测量噪声相关情况下的多传感器数据融合.计量学报,2005,26(4):360-364.
    [118]李启虎.相关观测的最佳线性数据融合.声学学报,2001,26(5):385-388.
    [119]Jin X.B.,Sun Y.X.Optimal estimation for multi-sensor data fusion system with correlated measurement noise.Proceedings of the 6th International Conference on Signal Processing,Beijing,2002:1641-1644.
    [120]韦博成.近代非线性回归分析.南京:东南大学出版社,1989.
    [121]Silverman B.W.A fast and efficient cross-validation method for smoothing parameter choice in spline regression.Journal of American Statistic Association,1984,79:584-589.
    [122]Green P.J.,Silverman B.W.Nonparametric regression and generalized linear models.London:CHAPMAN and HALL,1994.
    [123]Sun H.Y.,Wu Y.Semi-parametric regression and model refining.Geospatial Information Science,2002,4(5):10-13.
    [124]张松林,王新洲.非线性半参数模型在GPS系统误差处理中的应用.测绘科学,2004,29(3):16-19.
    [125]丁士俊.测量数据建模与半参数估计.武汉:武汉大学博士学位论文,2005.
    [126]Craven P.,Wahba.Smoothing noisy data with spline function.Numerical Mathematics.1999,31:377-403.
    [127]潘雄.半参数模型的估计理论及其应用.武汉:武汉大学博士学位论文,2005.
    [128]Severini T.A.,Wong W.H..Profile likelihood and conditionally parametric models.Annual Statistics,1992,20:1768-1802.
    [129]Staniswalis J.G.The kernel estimate of a regression function in likelihood-based models.Journal of American Statistic Association,1989,84:276-283.
    [130]朱仲义.系统分析中半参数非线性模型的统计分析.南京:东南大学博士学位论文,1999.
    [131]Wei B.C.,Fung W.K.,Hu Y.Q.Generalized leverage and its applications. Journal Statist.,1998,25:25-37.
    [132]Wei B.C.,Shi J.Q.Testing for varying dispersion in exponential family nonlinear models.Annual Institute Statistics Mathematics,1998,50:277-294.
    [133]Tapley B.D.,Schutz B.E.,Eanes R.J.,et al.LAGEOS laser ranging contributions to geodynamics,geodesy and orbital dynamics.Contributions of Space Geodesy in Geodynamics:Crustal Dynamics,AGU Geodynamics Series(Vol.24),1993:147-174.
    [134]Sillard P,Altamini Z,Boucher C.The ITRF96 realization and its associated velocity field.Geophys Research Letters,1998,25(17):3223-3226.
    [135]张飞鹏,冯初刚,黄碱等.改进的Helmert方差分量估计在精密定轨中的应用.测绘学报,2000,29(3):216-223.
    [136]秦显平,杨元喜.抗差方差分量估计在定轨中的应用.大地测量与地球动力学,2000,29(3):40-43.
    [137]Ou Ziqiang.Estimation of variance and covafiance components.Bulletin Geodesique,1989,63:139-148.
    [138]周海银.空际目标跟踪数据的融合理论和模型研究及其应用.长沙:国防科学技术大学博士学位论文,2004.
    [139]吴翊,易东云.一类非线性回归模型的曲率降低问题.中国科学(E辑),2000,30(1):85-90.
    [140]Bates,D.M,Watts,D.G.Relative curvature measures of nonlinearity.Journal of Statistics,1980,42:1-25.
    [141]B.Belon,D.Blumstein.A new approach to GNSS-2.The 48th International Astronautical Congress,Italy,1997:1-11.
    [142]刘经南,赵齐乐,张小红.CHAMP卫星的纯几何定轨及动力平滑中的动力模型补偿研究.武汉大学学报(信息科学版),2004,29(1):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700