基于虚拟样机的并联机床若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
并联机床因其为闭环机构链,理论上具有刚度好、精度高和配置多样等优势,在制造领域具有很广泛的应用前景。目前世界各国对并联机床的研发总体上仍处研究、试制和试用阶段。与国外相比,国内对并联机床理论、设计与应用等方面的关键技术研究仍有较大差距。因此,如何利用现有技术有效的分析机构运动学、动力学性能、运动控制等关键技术问题,并对机床的工作能力进行合理评价,成为并联机床研究中一个亟待解决的问题。由于并联机床的整体布局具有多样性,其动态特性、工作空间的大小和形状、运动参数等有很大的差异性,因此建模、仿真和虚拟现实技术是并联机床设计过程中不可缺少的环节,它涉及到并联机床机构学、运动学、零件建模、三维实现和运动控制等关键技术,是一项综合性的有创新意义和使用价值的研究课题。
     本文在前人研究的基础上,以一种3-TPT型并联机床为例,将新兴的虚拟样机技术应用到并联机床的关键技术的创新研究中,对其虚拟样机模型的建立、运动学、工作空间的求解,多柔体系统动力学,动态特性、机电系统的联合仿真以及误差等关键技术进行了研究分析和仿真,为并联机床实现高效的现代设计研究做了有意义的尝试,全文的主要研究内容如下:
     (1)论述了本课题研究的背景以及并联机床国内外发展的历史和现状,总结了并联机床当今的关键技术进展及发展趋势,综述了虚拟样机技术的发展概况,论证了将虚拟样机技术引入到并联机床进行设计开发的前沿性。
     (2)对3-TPT并联机床进行了机构分析,利用螺旋理论求取了机构的反螺旋系来判断机构受到的约束数和机构存在的自由度,同时对机构输入选取的合理性及机构的运动特性进行了研究,解出了机构可能实现和被约束掉的螺旋运动。
     (3)利用ADAMS软件与三维建模软件的转换功能,建立了3-TPT并联机床的虚拟样机模型,并对其动力学进行了分析和仿真研究。提出了利用虚拟样机技术求解工作空间的思路,得到了3-TPT并联机床的工作空间图形,同时通过与解析法对比,说明了利用虚拟样机技术求解工作空间的方法简单可行。
     (4)对3-TPT并联机床多柔体系统的动力学进行了研究,推导出了其多柔体系统的动力学方程。利用虚拟样机软件ADAMS和有限元软件ANSYS联合仿真的方法对其进行了分析,同时将仿真的载荷加载到柔性杆件上进行了应力分析,找出了柔性杆件的薄弱环节,并给出了优化意见。
     (5)利用虚拟样机技术仿真和实验模态分析两种方法,从仿真和实验两个方面研究了3-TPT并联机床的动态特性,并通过实验所测结果验证了仿真结果的可靠性。
     (6)对3-TPT并联机床的伺服控制原理以及其动力学耦合特性进行了分析,利用MATLAB软件建立其控制系统的流程图,通过其输出来驱动控制ADAMS中的虚拟样机机械系统,从而建立了并联机床机电系统的联合仿真平台,并通过对控制输入和输出结果的分析,来判断控制系统的优劣。
     (7)对并联机床的误差进行了详细的分析,分别依照矩阵法和矢量综合法以及误差独立作用原理建立了3-TPT并联机床的误差模型。利用虚拟样机技术对机床运动过程中杆件柔性所产生的误差对刀具轨迹的影响进行了仿真分析,总结了其影响规律。最后给出了误差补偿的方法。
     虚拟样机技术可以在机械设计完成后不必制作物理样机,仅通过计算机建立的机械系统的三维实体模型和力学模型就可对产品的性能进行分析和评估,为产品的设计和制造提供参考依据。本文采用虚拟样机技术有效地实现了并联机床的建模和仿真,这种方法不只是适用于并联机床的设计开发,还可以推广到其它一些复杂机械系统的研究、设计和开发,因此本文的研究方法和结论具有重要的实用价值。
The parallel machine tool (PMT) has some advantages such as good stiffness, high precision and various layouts in theory due to its closed loop mechanism chain, so it has expensive applied prospect in manufacturing domain. At present, the study and development of PMT in every country of the world are still at a stage of research and trial production. Compared with foreign countries our country still has a long way to go to study the key techniques of PMT like theory, design and application. Therefore, how to effectively analyze the key techniques and rationally evaluate the working capacity of PMT became an urgently problem. Because the layout of PMT possesses variety and the dynamic characteristic, size and shape of workspace and motion parameters are all different, modeling, simulation and virtual reality techniques are indispensable. They refer to the key techniques like mechanism, kinematics, parts modeling, three dimensional realization and motion control and so on. So it is a comprehensive study subject with innovation and use value.
     This dissertation applies the virtual prototype technique on key techniques of PKM based on former research outcome and takes a 3-TPT PMT as an example, analyzes and simulates its key techniques such as virtual prototype model, kinemics, workspace, flexible multibody dynamics, dynamic characteristic, co-simulation of electronic system and error. It is a significative attempt for realizing high efficient modern design and research. The specific content as follows:
     (1) The background of the study and the developing history and current situation of PMT are discussed. Both the progress and trend of the key techniques of PMT are summarized. Then the development general situation of virtual prototype technique is surveyed. At last the forward position of applying the virtual prototype on design and development of PMT is demonstrated.
     (2) The mechanism of 3-TPT PMT is analyzed, the reciprocal screw system of the mechanism for judging the constraints and three freedoms of degree are derived by screw theory, and then the rational input choices and main screw of mechanism of 3-TPT PMT is educed, at last the screw motions which may be realized or restrained are solved. These studies can be used for instructing building the virtual prototype model of PMT.
     (3) The virtual prototype model of 3-TPT is built by the interface between ADAMS and other 3-D software, and its kinematics is analyzed and simulated. Then the thought for resolving workspace with virtual prototype technique is put forward. The results of workspace graphics are got in ADAMS. This method is simple and feasible compared with analytical method.
     (4) The flexible multibody dynamics of 3-TPT PMT is studied and its dynamic equations are educed. Then the co-simulation by ADAMS and ANSYS is proposed, and the the simulation loads are loaded on the flexible links to carry out the stress analysis for finding out the weakness link of flexible links, after that the optimization plan is given.
     (5) The dynamic characteristic of 3-TPT PMT is studied by using virtual prototype simulation and modal experiment. The experiment results are used for testing the simulation results.
     (6) The control system and dynamics coupling characteristic of 3-TPT PMT are analyzed, then its flowchart of control system is built in MATLAB to drive the mechanism system in ADAMS, so the the co-simulation platform is built. It can be used for judging the control system is good or bad.
     (7) The error of PMT is analyzed in detail, and the error models of 3-TPT PMT are separately built by uniting matrix and vector methods and error independence principle, the effect factors are also analyzed. The errors caused by flexible links when machine tool moving are simulated by virtual prototype technique, and its effect laws are summarized. At last the error compensation methods are given.
     The physics prototype needn't to be made after design when using the virtual prototype technique. The evaluation and analysis of performance of products can be carried out by the tree dimensional model and mechanics model of mechanical system built by computer, it can provide the reference for design and manufacturing of products. This dissertation effectively realizes modeling and simulation by virtual prototype technique, the method not only suits the study, design and development of PMT but also other complex mechanism system, so the study method and conclusions have important practical value.
引文
1.毕世英.集成环境下虚拟样机技术的研究及其应用[D],昆明:昆明理工大学,2005
    2.郭旭伟.并联机床虚拟样机及数控编程技术的研究[D],哈尔滨,哈尔滨工业大学,2005
    3.熊有伦.机器人机构学[M],北京:机械工业出版社,1992
    4. Hunt K H. Kinematic Geometry of Mechanism[M], Oxford:Calaredon Press,1978
    5.彭力明.基于虚拟样机技术的虚拟轴机床机构分析研究[D],杭州:浙江大学,2004
    6.王立平,汪劲松,张华.并联机床数字化快速开发平台研究的意义[J],工具技术,2003,37(10):3-6
    7.陈文家,王洪光,房立金等.并联机床的发展现状与展望[J],机电工程,2001,18(4):5-9
    8.李金泉,丁洪生,付铁.并联机床的历史、现状及展望[J],机床与液压,2003(3):3-8
    9.蔡光起,原所先,胡明等.三自由度虚拟轴机床静力学及动力学的若干研究[J],中国机械工程,1999,10(10):1108-1111
    10.刘锋,陈文凯.3自由度并联机器人的研究现状和应用前景[J],企业技术开发,2006,25(1):9-10
    11.李冬川,并联机床的现状及发展[J],组合机床与自动化加工技术,2002(6):1-11
    12. M.Weck, D.Staimer. Application Experience with a Hexapod Machine Tool for Machining Complex Aerospace Parts[J], The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz Germany,2002,807-815
    13. H J Warnecke, R Neggebauer, F Wieland. Development of Hexapod Based Machine Tool[J], Annals of the CIRP,1998,47(1):337-340
    14. T.Treib. System comparison:5-Axis High Speed Cutting Machines. Parallel Kinematic Machine[J], The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz Germany,2002, 857-858
    15. R.Neugebauer, J.Leopold, K.Hoyer. A. Stoll, tec. Interaction Between Machine Tool and Process-Modelling, Simulation and Identification of Milling Operations on hexapod 6x HEXA[J], The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz Germany,2002, 833-841
    16. N.Hennes. ECOSPEED-An Innovative Machinery Concept for 5-Axis Machining of Large Structural Components in Aircraft Engineering[J], The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz Germany,2002,763-773
    17. T.Czwielong, W.Zarske. PEGASUS-Incorporating PKM into Woodworking[J], The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz Germany,2002,843-855
    18. J.Peirs, D.Reynaerts, H.Van Brussel. Design of Miniature Parallel Manipulators for Integration in a Self-propelling Endoscope[J], Sensors and Actuators.2000, (85): 409-417
    19. http://www.ifw.uni-hannover.de
    20. http://www.parallemic.org
    21.刘宝顺.虚轴机床工作空间分析[D],天津:天津大学,1997
    22.杨向东,李铁民,魏永明等.六自由度虚拟机床预处理算法及系统建造[J],中国机械工程,1998,19(5):82-86
    23.蔡光起,胡明等.机器人化三腿磨削机床的研制[J],制造技术与机床,1998,10:4-6
    24.胡明.三杆平动机器人运动学、力学及误差若干研究[D],沈阳:东北大学博士论文,1999
    25.王启明.三平移自由度并联机器人力学及相关问题研究[D],沈阳:东北大学博士论文,1999
    26.王启明,胡明等.并联使钢坯修磨机器人动力学及轨迹规划研究[J],机器人,1999,21(1):69-74
    27.李强,闫洪波,杨建鸣.虚拟轴并联机床研究的发展、关键技术及趋势[J],组合机床与自动化加工技术,2006(8):1-4
    28.熊光楞,李伯虎,柴旭东.虚拟样机技术[J],系统仿真学报,2001,13(1):114-117
    29.李伯虎,柴旭东.复杂产品虚拟样机工程[J],计算机集成制造系统,2002,8(9):678-681
    30.张旭,毛恩荣.机械系统虚拟样机技术的研究与开发[J],中国农业大学学报,1999,4(2):94-95
    31.王辉.并联机器人设计若干关键问题的VP解决方法研究[D],湖南大学,2005
    32.蒙艳玫,李尚平,刘正士等.虚拟样机技术及其在创新产品开发中的应用[J],广西科学,2001,8(4):256-259
    33. RICHARD Z. New and developing areas in modeling and simulation form a European perspective[J]. System Simulation and Scientific Computing,1999,10(19-21):10-14
    34.张曙.产品的虚拟原型[J],机电一体化,1999(5):11-13
    35.陈乐天,王以伦.多刚体动力学基础M],哈尔滨:哈尔滨工业大学出版社,1995
    36.姚健.虚拟制造的关键技术探究[J],机械工业自动化,1998(5):1-4
    37.李瑞涛,方泪,张文明.虚拟样机技术的概念及应用[J],机电一体化,2000(5):17-19
    38.邬勇.虚拟样机技术在机构精度分析中的研究与应用[D],长沙:湖南大学,2004
    39.李仕华.几种空间少自由度并联机器人机构分析与综合的理论研究[D],秦皇岛:燕山大学,2004
    40.方跃法,黄真.三阶螺旋系主螺旋识别的解析方法[J],机械工程学报,1997,33(6):8-12
    41. Herve J M, Sparacino E. Structural synthesis of parallel robots generating spatial translation[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. USA:IEEE,1992,808-813.
    42. Kong X, Gosselin C M. Generation of parallel manipulators with three translational degrees of freedom based on screw theory[A]. Proceedings of 2001 CCTOMM Symposium on Mechanisms, Machines and Mechatronics[C]. http://www. cim.mcgill ca alexvit/sM3/Papers/M3-01-012. pdf,2001.
    43.周汉明.基于关节空间的3-TPT并联机床作业规划[D],沈阳:东北大学,2006
    44. R.S.Ball. The Theory of Screws[D]. England:Cambridge University Press,1900,5-12
    45. A.T.Yang. F.Freudenstein, Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms[J]. ASME J.Appl.Mech,1964,31:300-308
    46. L.Woo, F.Freudenstein. Application of Line Geometry to Theoretical Kinematics and the Kinematic Analysis of Mechanical Systems[J]. J.Mechanisms,1970,5:417-460
    47. J.R.Phillips. Freedom in Machinery.Cambridge University Press,1990,78-90
    48. C.G.Gibson, K.H.Hunt. Geometry of Screw Systems-1 Crews Genesis and Geometry[J]. Mechanism and Machine Theory,1990,25(1):1-10
    49. C.G.Gibson, K.H.Hunt. Geometry of Screw Systems-2 Classification of Screw Systems[J]. Mechanism and Machine Theory,1990,25(1):11-27
    50. J.M.R.Martinez, J.Duffy. Classification of Screw Systems Ⅰ One-and Two-Systems[J]. Mechanism and Machine Theory,1992, (27):459-470
    51. J.M.R.Martinez, J.Duffy. Classification of Screw Systems Ⅱ Three-Systems[J]. Mechanism and Machine Theory,1992, (27):471-490
    52. M.J.Tsai, H.W.Lee. On the Special Bases of Two-and-Three Screw Systems[J].Trans of the ASME,1993,115:540-546
    53. H.W.Lee. Geometric Characteristics of Screw Systems[D]. Taiwan:National Cheng-Kung University.1989
    54.张文祥.螺旋二系的代数法研究,机械工程学报[J],1996,32(4):83-89
    55.张文祥.螺旋三系的代数构造,机械工程学报[J],1997,33(5):25-30
    56. W X.Zhang, Z C.Xu. Algebraic Construction of the Three-System of Screws[J]. Mech. Mach. Theory,1998,33(7):925-930
    57.黄真.空间机构学[M].北京:机械工业出版社,1989
    58.黄真,孔令富,方跃法.并联机器人机构学理论及控制[M],北京:机械工业出版社,1997
    59.王晶.欠秩三自由度并联机构瞬时运动的主螺旋分析[D],秦皇岛:燕山大学,2000
    60.王晶,李俊杰,黄真.欠秩并联机构运动螺旋的虚拟机构识别[J],机械工程学报,1999,35(6):14-20
    61. Z.Huang, H.B.Wang. Dynamic Force Analysis of n-DOF Multiloop Complex Spatial Mechanisms[J]. Mechanisms and Machine Theory,1992,27(1):97-105
    62.徐文福,强文义,梁斌等.基于虚拟样机技术的空间机器人系统的建模与仿真[J],机器人,2005(5):193-196
    63.陶学恒,马丽敏,刘彤宴等.五轴联动并联机床的三维实体建模及运动仿真[J],制造业信息化,2005(9):48-49
    64.冯培锋,陈扼西,陈艺英.3—HSR型并联机床虚拟样机参数化实体建模设计[J],计算机辅助设计与图形学学报,2004(4):589-591
    65.韩海生,黄田,周立等.虚拟环境下并联机床建模与仿真[J],制造技术与机床,2000(1):19-20
    66.郭旭伟,王知行.基于ADAMS的并联机床运动学和动力学仿真[J],现代设计与制造,2003(7):119-122
    67.曹毅.六自由度并联机器人奇异位形的研究[D],燕山大学,2003
    68.吴生富,王洪波,黄真.并联机器人工作空间的研究[J],机器人,1991,91(3):33-39
    69. F.Tahmasebi, L.W.Tsai. Workspace and Singularity Analysis of a Novel Six-DoF Parallel Minimanipulator[J]. Journal of Applied Mechanisms &Robotics,1994,1(2):31-40
    70. O.Masory, J.Wang. Workspace Evaluation of Stewart Platforms. Advanced Robotics, 1995, (9):443-461.
    71. M.Z.A.Majid, Z.Huang, Y.L.Yao. Workspace Analysis of a Six-Degree of Freedom, Three-Prismatic-Prismatic-Spheric-Revolute Parallel Manipulator[J]. The International Journal of Advanced Manufacturing Technology,2000,16(6):441-449
    72. F.Gao, X.J.Liu, X.Chen. The Relationships between the Shapes of the Workspace and the Link Lengths of 3-DoF Symmetrical Planar Parallel Manipulators[J]. Mechanism and Machine Theory,2001,36(2):205-220
    73. J.P.Merlet. Parallel robots[M]. Netherland:Kluwer Academic Publishers,2000:183-232
    74. I. A. Bonev, J. Ryu. A New Approach to Orientation Workspace Analysis of 6-DoF Parallel Manipulators[J]. Mechanism and Machine Theory,2001,36(1):15-28
    75. F.Pernkopf, M.L.Husty. Workspace Analysis of Stewart-Gough Manipulators Using Orientation Plots[C]. Proceedings of MUSME 2002, Mexico City, Mexico,2002,33-38
    76. C.M.Gosselin. Determination of the Workspace of 6-Dof Parallel Manipulators[J]. Journal of Mechanical Design,1990, (112):331-336
    77. T.Huang, J.Wang, D.J.Whitehouse. Closed Form Solution to Workspace of Hexapod-Based Virtual Axis Machine Tools[J]. Transactions of the ASME. Journal of Mechanical Design,1999,121(3):26-31
    78.姜兵,黄田.6-PSS并联机器人操作机平动工作空间解析[J].机器人,2000,22(2):136-142
    79.刘辛军,张立杰,高峰.基于AutoCAD平台的六自由度并联机器人位置工作空间的解析求解方法[J].机器人,2000,22(6):457-464
    80.于淼.虚拟轴混联研抛机床多柔体动力学研究[D],长春:吉林大学,2004
    81. Nobuyuki SHMIZU, Etsujiro IMANISHI, Naoki SUGANO. Multibody Dynamics Researches in Japan[J]. JSME International Journal, Series C.2003,46(2):438-448
    82. Arun K, Banerjee. Contributions of Multibody Dynamics to Space Flight:A Brief Review[J]. Journal of Guidance, Control and Dynamics,2003,26(30):385-394
    83. Pascal, M.. Some Open Problems in Dynamic Analysis of Flexible Multibody Systems[J]. MSD,2001,5(4):315-334
    84. Claus,H.. A Deformation Approach to Stress Distribution in Flexible Mutibody Systems[J]. MSD,2001,6(2):143-161
    85.肖建强.刚柔耦合系统的动力学建模与数值分析[D],南京:南京理工大学,2005
    86. Singh, R., Likins, P., Vandervoor, R.. Interactive Design for Flexible Multibody System Control[J], Proc. UTAM/IFTOMM Symposium on Dynamics of Mutibody System. Udine, Italy,1985,9.15-9.20
    87. Ho.J.Y. L.. Direct Path Method for Flexible Multibody Spacecraft Dynamics[J]. AJAA Journal of Spacecraft and Rocket,1977,14(2):102-110
    88. Boland P., Samin J.C. and Willems P.Y.. Stability Analysis of Interconnected Deformable Bodies on Topological Tree[J]. AIAA Journal,1974,12(8):1025-1032
    89. Meirovitch L. and Quinn R.D.. Equation of Motion for Maneuvering Flexible Spacecraft[J]. Journal of Gudance,1987(10):453-465
    90. Meirovitch L. and Quinn R.D.. Equation of Motion for Flexuble Bodies in Terms of Quasi-Coordinates[J]. Journal of Guidance,1991,14(5):312-319
    91. Meirovitch L. and Quinn R.D.. Dynamics and Control of Spacecraft with Retargeting Flexible Antennal[J]. Journal of Guidance,1990,13(20):241-248
    92. Kane,T.R. and Levinson,D.A.. Formulation of Equation of Motion for Complex Spacecraft[J]. Journal of Guidance,1987,3(2):99-112
    93. Kane,T.R., Ryan R.R.,Banerjee A.K.. Dynamics of a Cantilever Beam Attached to a Moving Base. Journal of Guidence[J], Control and Dynamics,1987,10(2):139-151
    94. Haug,E.J., Wu,S.C. and Kim,S.S.. Dynamics of Flexible Machines, A Variational Approach[J]. Proc. UTAM/IFTOMM Symposium on Dynamics of Mutibody System. Udine,. Italy,1985,9.15-9.20
    95. Livov, L. and Wittenburg, J.. Dynamics of Chains of Rigid Bodies and Elastic Rods with Recolute and Prismatic Joints[J], Proc. UTAM/IFTOMM Symposium on Dynamics of Mutibody System. Udine, Italy,1985,9.15-9.20
    96.陆佑方.柔性多体系统动力学[M],高等教育出版社,1996,5
    97.洪嘉振.计算多体系统动力学[M],高等教育出版社,1999,7
    98.赵兴玉,黄田.并联机床进给传动系统弹性动力学建模方法研究[J],振动工程学报,2001,14(2):196-201
    99.黄文虎,邵成勋.多柔体系统动力学[M],北京:科学出版社,1996
    100.仲昕,杨汝清,徐正飞等.多柔体系统动力学建模理论及其应用[J],机械科学与技术,2002,21(5):387-389
    101.姚建新,陈永.并联工业机器人的运动弹性动力学研究[J],机器人,1996,18(6):328-331
    102.于淼,赵继.五自由度虚拟轴机床刚—柔耦合动力学仿真研究[J],机床与液压,2003,183(3):57-58
    103.于淼,赵继.五自由度虚拟轴机床刚—柔耦合动力学模型[J],长春大学学报,2003,13(1):7-10
    104.于淼,赵继,张代治等.混联虚拟轴研抛机床的多柔体动力学研究[J],机械科学与技术,2004,23(6):748-751
    105.Fattah A, Angeles J, Misra A K. Dynamics of a 3-DOF spatial parallel manipulator with flexible links[C]. Proceeding of the IEEE International Conference on Robotics & Automation,1995:627-632
    106.A.A.Shabana. Flexible multibody dynamics:review of past and recent developments[J], Journal of Multibody System Dynamics 1,1997,2:189-222,
    107.C.Y.Liao, C.K.Sung. An elastodynamic analysis and control of flexible linkages using piezoceramic sensors and actuators[J], ASME Journal of Mechanical Design,1993,115: 658-665
    108.S.B.Choi, C.C.Cheong, B.S.Thompson, et al. Vibration control of flexible linkage mechanisms using piezoelectric films[J], Mechanism and Machine Theory,1994,29(4): 535-546
    109.J.Garcia de Jalon, E.Bayo. Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge[J], Springer-Verlag,1994.
    110.J.O.Song, E.J.Huag. Dynamic analysis of planar flexible mechanisms[J], Computer Methods in Applied Mechanics and Engineering,1980,24:359-381
    111.J.C.Simo, L.Vu-Quoc. On the dynamics of flexible beams under large overall motions--the planar case Part I[J], ASME Journal of Applied Mechanics,1986.53: 849-854
    112.B.S.Yuan, J.W.Lee, W.J.Book. Dynamic analysis of light weight arms with a parallel mechanism[C], Proceeding of Advances in Flexible Automation and Robotics, Minneapolis, MN, USA,1988.1:369-374
    113.W Chen. Dynamic modeling of multi-link flexible robotic manipulators[J], Computers and Structures,2001,179(2):183-195
    114.Gamarra-Rosado V 0, Yuhara E A 0. Dynamic modeling and simulation of a flexible robotic manipulator [J]. Robotics,1999,17(5):523-528.
    115.E Carrera, M A Serna. Inverse dynamics of flexible robots[J], Mathematics and Computers in Simulation,1996,41:485-508
    116.B Simeon. On Lagrange multipliers in flexible multibody dynamics[J], Computer methods in applied mechanics and engineering,2006,195:6993-7005
    117.覃正.多体系统动力学压缩建模[M],科学出版社,2000
    118.王启明.三平移自由度并联机器人力学及相关问题研究[D],沈阳:东北大学,1999
    119.周昌令,方晓庆,苏先樾.HT120点焊机器人柔性臂动力学和强度分析[J],工程力学,2004,10(5):11-15
    120.侯红玲,赵永强,魏伟锋.基于ADAMS及ANSYS的动力学仿真分析[J].现代机械,2005(4):62-63
    121.刘言松,曹巨江,张元莹.刚柔耦合机械系统动力学仿真[J],陕西科技大学学报,2006,24(3):74-76
    122.ADAMS/View, Version2005 [M]. Mechanical Dynamics, Inc.2005.
    123.Modeling and Meshing Guide, Release 10.0[M]. Ansys, Inc.2005.
    124.李庆龄.5-UPS/PRPU并联机床的动态特性分析[D],秦皇岛:燕山大学,2003
    125.杨传启.XK717数控铣床动态特性的试验研究[D],杭州:浙江工业大学,2002
    126.垣野议昭,稻崎一郎等.机床动态特性讲座(一):评价方法及在设计上的应用[J],机床译丛,1981
    127.M.韦克,K.泰佩尔,张慧聪译.金属切削机床的动态特性[M],北京:机械工业出 版社,1985
    128.杨璛,唐恒龄,寥伯瑜.机床动力学[M],北京:机械工业出版社,1983
    129.杜奕.MSY7115平面磨床的实验模态分析及动态特性修改[D],昆明理工大学硕士学位论文,2002
    130.Mostaka.Yoshimeura. Analysis and optimization of structural dynamics of machine tool by a synthesis of dynamic rigidity program system[J]. MTDR,16th,1975
    131.张广鹏,史文浩,黄玉美.机床整机动态特性的预测解析建模方法[J],上海交通大学学报,2001
    132.刘小平,郑建荣,朱治国等.SolidWorks与ADAMS/View之间的图形数据交换研究[J],机械工程师,2003(12):26-28
    133.李增刚.ADAMS入门详解与实例[M],北京:国防工业出版社,2006
    134.李德葆,陆海秋.试验模态分析及其应用[M],北京:科学出版社,2001
    135.胡寿松.自动控制原理[M],北京:科学出版社,2001,78-79,225-226
    136.李友善.自动控制原理[M],北京:国防工业出版社,1980,314-325
    137.陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M],北京:机械工业出版社,1998,1-14
    138.高世一.五自由度并联机床数控系统研究与开发[D],沈阳:东北大学,2005
    139.顾瑞龙.工程控制理论[M],北京:北京科学技术科学出版社,1990,229-230
    140.周思永.反馈与控制[M],北京:国防工业出版社,1995,192-197
    141.K.J.奥斯特隆姆,B.威顿马克.自适应控制[M],北京:科学出版社,1992,216-217
    142.Von Hans Grosβ, Jens Hamann, Georg Wiegarthner.自动化技术中的进给电气传动[M],北京:机械工业出版社,2002,32-37
    143.Delta Tau Data System,Inc.,PMAC User's Manual,March,1998
    144.李波.三杆虚轴机床数控技术研究[D],东北大学博士论文,2000
    145.Qing SHEN, J GAUSWMEIER, J BAUCH, R RADKOWSKI. A cooperative virtual prototyping system for mechatronic solution elements based assembly[J]. Advanced Engineering Informatics,2005,19:169-177
    146.K OHISHI, K MAJIMA. Gait control of biped robot based on kinematics and motion description in Cartesian space[C]. IEEE int. conf. and Robotics and Automation,1997
    147.M D BERKEMEIER. Modeling the dynamics of quadruped running[J]. The Int. Jour, of Robotics Research.1998,17(9):971-985
    148.M HONEGGER, R BREGA, G SCHWEIZER. Application of a nonlinear adaptive controller to a 6 dof parallel manipulator[C]. Por. of the 2000 IEEE, Inter Conf. On Robotics & Automation,2000
    149.R RAHMFELD. Modelling of Hydraulic-Mechanical Systems Co-Simulation between ADAMS and MATAB/Simulink[M]. Hamburg,2003
    150.MSC Company. Getting Stared Using ADAMS/Control[M],2003
    151.时培成,高洪.基于ADAMS和Matlab的ASS联合仿真[J],机械工程师,2006(9):127-130
    152.王涛,张会明.基于ADAMS和MATLAB的联合控制系统的仿真[J],机械工程与自动化,2005,3(6):79-81
    153.孙立宁,崔晶,曲东升,等.高速高精度平面并联机器人模糊自调整PID控制方法的研究[J],机器人,2003,25(6):512-516
    154.祃琳,黄田等.面向制造的并联机床精度设计[J],中国机械工程,1999(10):1114-1117
    155.汪劲松,白杰文,高猛.Stewart平台铰链间隙的精度分析[J],清华大学学报,2002,42(6):758-761
    156.高猛,李铁民等.并联机床铰链制造误差的补偿[J],清华大学学报,2003,43(5):617-620
    157.姜虹,王英蕙,王小椿等.六自由度并联机器人结构误差的识别和修正[J],西安交通大学学报,1999,33(10):39-42
    158.卢强,张友良.用蒙特卡洛法进行6腿并联机床精度综合[J],中国机械工程,2002,13(6):464-467
    159.徐礼钜,范守文、马咏梅.一种新型并联机床的精度建模和误差分析[J],四川大学学报,2003,35(4):1-4
    160.张署,U.Heisel.并联运动机床[M],北京:机械工业出版社,2003
    161.刘又午,章青.数控机床误差补偿技术及应用发展动态及展望[J],制造技术与机床,1998,12:5-6
    162.左扣成.3-TPT型并联机床的误差分析与仿真[D],沈阳:东北大学,2006
    163.张祥.一种新型三自由度平动并联机床的分析与设计[D],秦皇岛:燕山大学,2003
    164.牛国栋.三平移并联机器人机构的精度研究[D],济南:山东理工大学,2004
    165.Oren Masory, Jian wang and Hanqi Zhuang. Kinematic modeling and calibration for a Stewart platform[J], Advanced Robotics,1997(5):519-539
    166.A.J.Patel and K.F.Ehmann. Volumetric Error Analysis of a Stewart Platform Based Machine Tool[J]. Annals of the CIRP,1997(1):287-290
    167.苏玉鑫,段宝岩.六自由度Stewart平台运动精度分析[J],西安电子科技大学学报(自然科学版),2000,27(4):401-403
    168.H.Tajbakhsh, G.R.Fellow. Kinematic Error Estimation and Transmission Error Bounding for Stewart Platform Based Machine Tools[J], Transactions of NAMRI/SME,1997: 323-328
    169.Han S.Kim, Yong J.Choi. The kinematic Error Bound Analysis of the Stewart Platform[J], Journal of Robotic Systems,2000,17(1):63-73
    170.吕崇耀,熊有伦.Stewart并联机构位姿误差分析[J],华中理工大学学报,1999(8):4-6
    171.阎华,刘桂雄,郑时雄.机器人位姿误差建模方法综述[J],机床与液压,2000(1):3-5
    172.沈守范,万金保.机构学的数学工具[M],上海:华东工学院,1985
    173.K.Sugimoto and T.Okada. Compensation of Positioning Errors caused by Geometric Deviations in Robot System[C].Robotics Research-The Second International Symposium, 1985:231-236
    174.焦国太,李庆,冯永和等.机器人位姿误差的综合补偿[J].华北工学院学报,2003,24(2):104-107
    175.焦国太.机器人位姿误差的分析与综合[D],北京:北京工业大学,2002
    176.李亚.3-HSS并联机床精度设计与运动学标定方法研究[D],天津:天津大学,2002
    177.孙浩.5-UPS/PRPU并联机床的误差标定研究[D],秦皇岛:燕山大学,2004
    178.李凌云.Stewart机构的误差建模与参数标定方法研究[D],秦皇岛:燕山大学,2004
    179.Ota H. Forward kinematic calibration method for parallel mechanism using pose data measured by a double ball bar system. Invited Speech of CIRP Workshop, Paris,2001: 213-218
    180.Besnard S, Khalil W. Identifiable parameters for parallel robots kinematic calibration. Proc.Of ICRA, Seoul, Korea,2001:2859-2866
    181.唐国宝.Stewart平台运动学标定方法[D],天津:天津大学硕士学位论文,2002:37-48
    182.Huang T, Whitehouse D J. A simple yet effective approach for error compensation of a tripod-based parallel kinematic machine.CIRP Annals,2000,49(1):281-285
    183.邱研龙.铣工技师手册.北京:机械工业出版社,2003,374-377

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700